The Complete Genome Sequence of Moorella Thermoacetica (F

Total Page:16

File Type:pdf, Size:1020Kb

The Complete Genome Sequence of Moorella Thermoacetica (F Environmental Microbiology (2008) 10(10), 2550–2573 doi:10.1111/j.1462-2920.2008.01679.x The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum) Elizabeth Pierce,1 Gary Xie,2,3 Ravi D. Barabote,2,3 functions, 665 (25.43%) matched genes of unknown Elizabeth Saunders,2,3 Cliff S. Han,2,3 function, and the remaining 24 (0.92%) had no data- John C. Detter,2,3 Paul Richardson,2,4 base match. A total of 2384 (91.17%) of the ORFs in Thomas S. Brettin,2,3 Amaresh Das,5 the M. thermoacetica genome can be grouped in Lars G. Ljungdahl5 and Stephen W. Ragsdale1* orthologue clusters. This first genome sequence of 1Department of Biological Chemistry, University of an acetogenic bacterium provides important informa- Michigan, Ann Arbor, MI, USA. tion related to how acetogens engage their extreme 2Los Alamos National Laboratory, Bioscience Division, metabolic diversity by switching among different Los Alamos, NM, USA. carbon substrates and electron donors/acceptors and 3Department of Energy Joint Genome Institute, how they conserve energy by anaerobic respiration. Walnut Creek, CA, USA. Our genome analysis indicates that the key genetic 4Lawrence Berkeley National Laboratory, Berkeley, CA, trait for homoacetogenesis is the core acs gene USA. cluster of the Wood–Ljungdahl pathway. 5Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA. Introduction Here we report the first complete genome sequence of an Summary acetogenic bacterium. Acetogens are obligately anaero- This paper describes the genome sequence of bic bacteria that use a mechanism of anaerobic CO and Moorella thermoacetica (f. Clostridium thermoaceti- CO2 fixation, called the reductive acetyl-CoA or the cum), which is the model acetogenic bacterium Wood–Ljungdahl pathway as their main mechanism for that has been widely used for elucidating the energy conservation and for synthesis of acetyl-CoA and Wood–Ljungdahl pathway of CO and CO2 fixation. cell carbon from CO2 (Drake et al., 1994). Other terms to This pathway, which is also known as the reductive describe an organism using this type of metabolism are acetyl-CoA pathway, allows acetogenic (often called ‘homoacetogen’ and ‘CO2-reducing acetogen’. We deter- homoacetogenic) bacteria to convert glucose sto- mined the genome sequence of Moorella thermoacetica, ichiometrically into 3 mol of acetate and to grow originally named Clostridium thermoaceticum, which has autotrophically using H2 and CO as electron donors been the model acetogen since its isolation in 1942 and CO2 as an electron acceptor. Methanogenic (Fontaine et al., 1942) for elucidating the Wood– archaea use this pathway in reverse to grow by con- Ljungdahl pathway. As discussed below, this pathway is verting acetate into methane and CO2. Acetogenic found in a broad range of phylogenetic classes, and is bacteria also couple the Wood–Ljungdahl pathway to used in both the oxidative and reductive directions. a variety of other pathways to allow the metabolism of Besides being used for energy production and autotrophic a wide variety of carbon sources and electron donors carbon assimilation in acetogens (Ljungdahl, 1994; (sugars, carboxylic acids, alcohols and aromatic Ragsdale, 1997; Drake et al., 2002), the Wood–Ljungdahl compounds) and electron acceptors (CO2, nitrate, pathway is used for acetate catabolism by sulfate- nitrite, thiosulfate, dimethylsulfoxide and aromatic reducing bacteria (Schauder et al., 1988; Spormann and carboxyl groups). The genome consists of a single Thauer, 1988) and aceticlastic methanogens (Ferry, 1999) circular 2 628 784 bp chromosome encoding 2615 and for CO2 fixation by hydrogenotrophic methanogens open reading frames (ORFs), which includes 2523 (Stupperich et al., 1983; Ladapo and Whitman, 1990). predicted protein-encoding genes. Of these, 1834 As early as 1932, organisms were discovered that genes (70.13%) have been assigned tentative could convert H2 and CO2 into acetic acid (Fischer et al., 1932). In 1936, Wieringa reported the first acetogenic bacterium, Clostridium aceticum (Wieringa, 1936; 1940), Received 20 December, 2007; accepted 1 May, 2008. *For correspondence. E-mail [email protected]; Tel. (+1) 734 615 which was reisolated in 1981 (Braun et al., 1981). 4621; Fax (+1) 734 763 4581. Moorella thermoacetica (Collins et al., 1994), a © 2008 The Authors Journal compilation © 2008 Society for Applied Microbiology and Blackwell Publishing Ltd M. thermoacetica genome sequence 2551 clostridium in the Thermoanaerobacteriaceae family, community that has been enriched for bioremediation attracted wide interest when it was isolated because of its (Macbeth et al., 2004). unusual ability to convert glucose almost stoichiometri- For organisms that house acetogens in their digestive cally to 3 mol of acetic acid (Fontaine et al., 1942). It took systems, like humans, termites and ruminants (Greening many years to uncover the biochemical reactions respon- and Leedle, 1989; Tholen and Brune, 1999; Chassard sible for this homoacetogenic pathway. The novelty of this and Bernalier-Donadille, 2006), the acetate generated by pathway was recognized with the discovery that growth of microbial metabolism is a beneficial nutrient for the host M. thermoacetica on glucose involves incorporation of and for other microbes within the community. In these two molecules of CO2 directly into acetic acid (Barker and ecosystems, acetogens can compete directly with hydro- Kamen, 1945; Wood, 1952). The isolation of Acetobacte- genotrophic methanogenic archaea, or interact syntrophi- rium woodii in 1977 and the description of methods to cally with acetotrophic methanogens that use H2 and CO2 isolate organisms that can grow on H2 and CO2 (Balch to produce methane (Chassard and Bernalier-Donadille, et al., 1977) led to the isolation of many acetogens that 2006). Organisms containing the acs gene cluster are can grow autotrophically, and in 1983 M. thermoacetica also enriched in the marine and terrestrial vertebrate and was shown to grow on H2/CO2 (Kerby and Zeikus, 1983). invertebrate gut biomes (Gill et al., 2006; Warnecke et al., The identification of a hydrogenase in 1982 provided a 2007). In the termite gut, acetogens are the dominant biochemical basis for autotrophic growth of acetogens on hydrogen sinks (Pester and Brune, 2007), and it has been hydrogen (Drake, 1982). Subsequently, acetogens have proposed that acetate is the major energy source for the been shown to use a wide variety of carbon sources and termite (Odelson and Breznak, 1983). However, metha- electron donors and acceptors. Moorella thermoacetica is nogens are the dominant hydrogenotrophs in many envi- a versatile heterotroph, growing on sugars, two-carbon ronments as methanogens have a lower threshold for H2 compounds (glyoxylate, glycolate and oxalate), lactate, than acetogens (Le Van et al., 1998) and as the energy pyruvate, short-chain fatty acids and methoxylated yield from the conversion of CO2 and H2 to methane is aromatic compounds. Besides CO2, electron acceptors greater than that for conversion to acetate (Schink, 1997). include nitrate, nitrite, thiosulfate and dimethylsulfoxide. Under such conditions, acetogens must often resort to Acetogenic bacteria play an important role in the global other metabolic pathways for growth and, thus, have a carbon cycle, producing over 1012 kg (10 billion US tons) highly diverse metabolic menu that comprises the biodeg- of acetic acid on a huge scale annually (Wood and radation products of most natural polymers like cellulose Ljungdahl, 1991; Drake et al., 1994), which dwarfs the and lignin, including sugars, alcohols, organic acids and total output of acetate (an important chemical feedstock) aldehydes, aromatic compounds and inorganic gases like 10 -1 by the world’s chemical industry (~10 kg year ). While CO, H2 and CO2. They also can use a variety of electron most acetogens like M. thermoacetica are in the phylum acceptors, e.g. CO2, nitrate, dimethylsulfoxide, fumarate Firmicutes, acetogens include Spirochaetes (Leadbetter and protons. The M. thermoacetica genome sequence et al., 1999; Salmassi and Leadbetter, 2003), Deltapro- described here provides important information related to teobacteria like Desulfotignum phosphitoxidans (Schink how acetogens engage this extreme metabolic diversity et al., 2002), and Acidobacteria like Holophaga foetida and how they switch with such facility among different (Liesack et al., 1994). Important in the biology of the soil, carbon substrates and electron donors and acceptors. lakes and oceans, acetogens have been isolated from diverse environments, including the GI tracts of animals and termites (Breznak, 1994; Mackie and Bryant, 1994), Results rice paddy soils (Rosencrantz et al., 1999), hypersaline General genome features waters (Ollivier et al., 1994), surface soils (Peters and Conrad, 1995; Kusel et al., 1999) and deep subsurface The major features of the M. thermoacetica genome are sediments (Liu and Suflita, 1993). Like methanogens, listed in Table 1 and shown in Fig. S1. The genome con- acetogens act as a H2 sink, depleting H2 that is generated sists of a single circular 2 628 784 bp chromosome that in anaerobic environments during the natural biodegrada- has a GC content of 56% (Fig. S1). Base pair one of the tion of organic compounds. As the build-up of H2 inhibits chromosome was assigned within the putative origin of biodegradation by creating an unfavourable thermody- replication. The genome contains 51 tRNAs, three rRNAs namic equilibrium, acetogens
Recommended publications
  • Supplementary Information
    doi: 10.1038/nature06269 SUPPLEMENTARY INFORMATION METAGENOMIC AND FUNCTIONAL ANALYSIS OF HINDGUT MICROBIOTA OF A WOOD FEEDING HIGHER TERMITE TABLE OF CONTENTS MATERIALS AND METHODS 2 • Glycoside hydrolase catalytic domains and carbohydrate binding modules used in searches that are not represented by Pfam HMMs 5 SUPPLEMENTARY TABLES • Table S1. Non-parametric diversity estimators 8 • Table S2. Estimates of gross community structure based on sequence composition binning, and conserved single copy gene phylogenies 8 • Table S3. Summary of numbers glycosyl hydrolases (GHs) and carbon-binding modules (CBMs) discovered in the P3 luminal microbiota 9 • Table S4. Summary of glycosyl hydrolases, their binning information, and activity screening results 13 • Table S5. Comparison of abundance of glycosyl hydrolases in different single organism genomes and metagenome datasets 17 • Table S6. Comparison of abundance of glycosyl hydrolases in different single organism genomes (continued) 20 • Table S7. Phylogenetic characterization of the termite gut metagenome sequence dataset, based on compositional phylogenetic analysis 23 • Table S8. Counts of genes classified to COGs corresponding to different hydrogenase families 24 • Table S9. Fe-only hydrogenases (COG4624, large subunit, C-terminal domain) identified in the P3 luminal microbiota. 25 • Table S10. Gene clusters overrepresented in termite P3 luminal microbiota versus soil, ocean and human gut metagenome datasets. 29 • Table S11. Operational taxonomic unit (OTU) representatives of 16S rRNA sequences obtained from the P3 luminal fluid of Nasutitermes spp. 30 SUPPLEMENTARY FIGURES • Fig. S1. Phylogenetic identification of termite host species 38 • Fig. S2. Accumulation curves of 16S rRNA genes obtained from the P3 luminal microbiota 39 • Fig. S3. Phylogenetic diversity of P3 luminal microbiota within the phylum Spirocheates 40 • Fig.
    [Show full text]
  • A Systems-Level Investigation of the Metabolism of Dehalococcoides Mccartyi and the Associated Microbial Community
    A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community by Mohammad Ahsanul Islam A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto © Copyright by Mohammad Ahsanul Islam 2014 A Systems-Level Investigation of the Metabolism of Dehalococcoides mccartyi and the Associated Microbial Community Mohammad Ahsanul Islam Doctor of Philosophy Department of Chemical Engineering and Applied Chemistry University of Toronto 2014 Abstract Dehalococcoides mccartyi are a group of strictly anaerobic bacteria important for the detoxification of man-made chloro-organic solvents, most of which are ubiquitous, persistent, and often carcinogenic ground water pollutants. These bacteria exclusively conserve energy for growth from a pollutant detoxification reaction through a novel metabolic process termed organohalide respiration. However, this energy harnessing process is not well elucidated at the level of D. mccartyi metabolism. Also, the underlying reasons behind their robust and rapid growth in mixed consortia as compared to their slow and inefficient growth in pure isolates are unknown. To obtain better insight on D. mccartyi physiology and metabolism, a detailed pan- genome-scale constraint-based mathematical model of metabolism was developed. The model highlighted the energy-starved nature of these bacteria, which probably is linked to their slow growth in isolates. The model also provided a useful framework for subsequent analysis and visualization of high-throughput transcriptomic data of D. mccartyi. Apart from confirming expression of the majority genes of these bacteria, this analysis helped review the annotations of ii metabolic genes.
    [Show full text]
  • Trash to Treasure: Production of Biofuels and Commodity Chemicals Via Syngas Fermenting Microorganisms
    Available online at www.sciencedirect.com ScienceDirect Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms 1 2 2 1,2 Haythem Latif , Ahmad A Zeidan , Alex T Nielsen and Karsten Zengler Fermentation of syngas is a means through which unutilized billion gallons of biofuels by 2022 [2]. The biological organic waste streams can be converted biologically into conversion of renewable lignocellulosic biomass such as biofuels and commodity chemicals. Despite recent advances, wheat straw, spruce, switchgrass, and poplar to biofuels is several issues remain which limit implementation of industrial- expected to play a prominent role in achieving these scale syngas fermentation processes. At the cellular level, the goals. These forms of biomass address many of the con- energy conservation mechanism of syngas fermenting cerns associated with the production of first-generation microorganisms has not yet been entirely elucidated. biofuels [3,4]. However, 10–35% of lignocellulosic bio- Furthermore, there was a lack of genetic tools to study and mass is composed of lignin [5–7], which is highly resistant ultimately enhance their metabolic capabilities. Recently, to breakdown by the vast majority of microorganisms [8]. substantial progress has been made in understanding the Thus, if the EU and US cellulosic biofuel targets are intricate energy conservation mechanisms of these realized, land allocation for biofuel production will microorganisms. Given the complex relationship between increase and megatons of organic waste will be generated. energy conservation and metabolism, strain design greatly benefits from systems-level approaches. Numerous genetic This organic waste provides a significant resource of manipulation tools have also been developed, paving the way biomass that can be utilized for producing biofuels as for the use of metabolic engineering and systems biology well as commodity chemicals.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • Process Performance and Microbial Community Structure in Thermophilic Trickling Biofilter Reactors for Biogas Upgrading
    Downloaded from orbit.dtu.dk on: Sep 24, 2021 Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading Porté, Hugo; Kougias, Panagiotis ; Alfaro, Natalia; Treu, Laura; Campanaro, Stefano; Angelidaki, Irini Published in: Science of the Total Environment Link to article, DOI: 10.1016/j.scitotenv.2018.11.289 Publication date: 2019 Document Version Peer reviewed version Link back to DTU Orbit Citation (APA): Porté, H., Kougias, P., Alfaro, N., Treu, L., Campanaro, S., & Angelidaki, I. (2019). Process performance and microbial community structure in thermophilic trickling biofilter reactors for biogas upgrading. Science of the Total Environment, 655, 529-538. https://doi.org/10.1016/j.scitotenv.2018.11.289 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. 1 Process performance and microbial community 2 structure in thermophilic trickling biofilter reactors for 3 biogas upgrading 4 5 Hugo Portéa+, Panagiotis G.
    [Show full text]
  • Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella Thermoacetica and Moorella Thermoautotrophica
    Downloaded from orbit.dtu.dk on: Oct 09, 2021 Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica Redl, Stephanie Maria Anna; Poehlein, Anja; Esser, Carola; Bengelsdorf, Frank R.; Jensen, Torbjørn Ølshøj; Jendresen, Christian Bille; Tindall, Brian J.; Daniel, Rolf; Dürre, Peter; Nielsen, Alex Toftgaard Published in: Frontiers in Microbiology Link to article, DOI: 10.3389/fmicb.2019.03070 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Redl, S. M. A., Poehlein, A., Esser, C., Bengelsdorf, F. R., Jensen, T. Ø., Jendresen, C. B., Tindall, B. J., Daniel, R., Dürre, P., & Nielsen, A. T. (2020). Genome-Based Comparison of All Species of the Genus Moorella, and Status of the Species Moorella thermoacetica and Moorella thermoautotrophica. Frontiers in Microbiology, 10, [3070]. https://doi.org/10.3389/fmicb.2019.03070 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Joana Isabel Ferreira Alves Sion
    Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves sion Microbiology of thermophilic anaerobic syngas conversion hermophilic anaerobic syngas conver Microbiology of t es a Alv eir err Joana Isabel F 3 1 UMinho|20 Julho de 2013 Universidade do Minho Escola de Engenharia Joana Isabel Ferreira Alves Microbiology of thermophilic anaerobic syngas conversion Tese de Doutoramento em Engenharia Química e Biológica Trabalho efectuado sob a orientação da Doutora Diana Zita Machado de Sousa da Doutora Maria Madalena dos Santos Alves e da Doutora Caroline M Plugge Julho de 2013 i Autor: Joana Isabel Ferreira Alves E-mail: [email protected] Telf.: +351 253 604 400 Cart~aocidad~ao: 12071827 T´ıtuloda tese: Microbiology of thermophilic anaerobic syngas conversion Microbiologia da convers~aoanaer´obiade g´asde s´ıntese em condi¸c~oestermof´ılicas Orientadores: Doutora Diana Zita Machado de Sousa Doutora Maria Madalena dos Santos Alves Doutora Caroline M Plugge Ano de conclus~ao: 2013 Doutoramento em Engenharia Qu´ımicae Biol´ogica E´ AUTORIZADA A REPRODUC¸ AO~ INTEGRAL DESTA TESE/TRABALHO APENAS PARA EFEITOS DE INVESTIGAC¸ AO,~ MEDIANTE AUTORIZAC¸ AO~ ESCRITA DO INTERES- SADO, QUE A TAL SE COMPROMETE. Universidade do Minho, 19 de Julho de 2013. Joana Isabel Ferreira Alves - July 2013 Acknowledgments E´ o momento de agradecer a todos os que, de uma forma ou de outra, contribu´ırampara o sucesso do meu trabalho e me ajudaram ao longo dos ´ultimos4 anos. Assim, agrade¸coem primeiro lugar `asminhas orientadoras Diana Sousa, Madalena Alves e Caroline Plugge, por todo o seu trabalho de supervis~aoe orienta¸c~aocient´ıficae por tudo o que me ensinaram.
    [Show full text]
  • A Novel Cellulolytic, Anaerobic, and Thermophilic Bacterium, Moorella Sp
    Biosci. Biotechnol. Biochem., 67 (1), 183–185, 2003 Note A Novel Cellulolytic, Anaerobic, and Thermophilic Bacterium, Moorella sp. Strain F21 Shuichi KARITA,1,† Kengo NAKAYAMA,1 Masakazu GOTO,1 Kazuo SAKKA,1 Wan-Jae KIM,1 and Satoru OGAWA2 1Department of Sustainable Resource Science, Faculty of Bioresources, and 2Laboratory of Electron Microscope, School of Medicine, Mie University, Tsu 514-8507, Japan Received June 24, 2002; Accepted September 9, 2002 A cellulolytic and thermophilic anaerobe was isolated and fermenting cellulosic materials to organic acids from soil. This bacterium made a halo on a roll-tube was isolated. In this paper, we identiˆed the strain culture containing Avicel. Analysis of the PCR-based using DNA sequencing of the 16S rRNA coding 16S rRNA gene sequence showed that the bacterium was region and studied the enzyme activities and ferment- closely related to Moorella thermoacetica.Scanning ed products from the strain. electron microscopy showed the bacterium is a rod and Cellulolytic anaerobic bacteria were isolated in has no protuberant structure on the surface of cells anaerobic culture by the roll-tube method. The cul- growing on cellulose, suggesting that this strain is a non- ture medium for isolation was GS medium3) contain- cellulosomal cellulolytic bacterium. Carboxymethyl cel- ing Avicel as the sole carbon source. The bacteria lulase and xylanase activities were detected in the culture were grown at 609Cfor1week.Bacteriamaking broth. A major fermentation product from ball-milled haloes around their colonies were isolated as cellulo- cellulose was acetate. This strain has a potential to con- lyticanaerobes.Thesebacteriawerecultivatedwith vert cellulosic biomass to acetate, directly.
    [Show full text]
  • Acetogenesis and the Wood–Ljungdahl Pathway of CO2 Fixation
    Biochimica et Biophysica Acta 1784 (2008) 1873–1898 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbapap Review Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation Stephen W. Ragsdale ⁎, Elizabeth Pierce Department of Biological Chemistry, MSRB III, 5301, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109-0606, USA article info abstract Article history: Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Received 2 July 2008 Wood–Ljungdahl pathway of CO2 fixation involves this type of stepwise process. The biochemical events that Received in revised form 12 August 2008 underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have Accepted 13 August 2008 intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a Available online 27 August 2008 description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that fi Keywords: have led to the identi cation of the key components and steps of this usual mechanism of CO and CO2 fi fl Acetogenesis xation. In this historical perspective, we have included re ections that hopefully will sketch the landscape Nickel of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then Iron–sulfur describe the properties of the genes and enzymes involved in the pathway and conclude with a section Cobalamin describing some major questions that remain unanswered. Methanogenesis © 2008 Elsevier B.V. All rights reserved.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • The Biology and Community Structure of CO2-Reducing
    The Biology and Community Structure of CO2-Reducing Acetogens in the Termite Hindgut Thesis by Elizabeth Ann Ottesen In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2009 (Defended September 25, 2008) i i © 2009 Elizabeth Ottesen All Rights Reserved ii i Acknowledgements Much of the scientist I have become, I owe to the fantastic biology program at Grinnell College, and my mentor Leslie Gregg-Jolly. It was in her molecular biology class that I was introduced to microbiology, and made my first attempt at designing degenerate PCR primers. The year I spent working in her laboratory taught me a lot about science, and about persistence in the face of experimental challenges. At Caltech, I have been surrounded by wonderful mentors and colleagues. The greatest debt of gratitude, of course, goes to my advisor Jared Leadbetter. His guidance has shaped much of how I think about microbes and how they affect the world around us. And through all the ups and downs of these past six years, Jared’s enthusiasm for microbiology—up to and including the occasional microscope session spent exploring a particularly interesting puddle—has always reminded me why I became a scientist in the first place. The Leadbetter Lab has been a fantastic group of people. In the early days, Amy Wu taught me how much about anaerobic culture work and working with termites. These last few years, Eric Matson has been a wonderful mentor, endlessly patient about reading drafts and discussing experiments. Xinning Zhang also read and helped edit much of this work.
    [Show full text]
  • Parshina Et Al., 2010)
    fmicb-11-588468 November 10, 2020 Time: 16:0 # 1 ORIGINAL RESEARCH published: 16 November 2020 doi: 10.3389/fmicb.2020.588468 Effect of Sulfate on Carbon Monoxide Conversion by a Thermophilic Syngas-Fermenting Culture Dominated by a Desulfofundulus Species 1 2† 1 3 2 Edited by: Joana I. Alves , Michael Visser , Ana L. Arantes , Bart Nijsse , Caroline M. Plugge , Wei Xiong, M. Madalena Alves1, Alfons J. M. Stams1,2 and Diana Z. Sousa1,2* National Renewable Energy 1 2 Laboratory (DOE), United States Centre of Biological Engineering, University of Minho, Braga, Portugal, Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands, 3 Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Reviewed by: Wageningen, Netherlands Xiuzhu Dong, Institute of Microbiology, Chinese Academy of Sciences, China A syngas-degrading enrichment culture, culture T-Syn, was dominated by a bacterium Tamara N. Nazina, closely related to Desulfofundulus australicus strain AB33T (98% 16S rRNA gene Winogradsky Institute of Microbiology (RAS), Russia sequence identity). Culture T-Syn could convert high CO concentrations (from pCO ≈ *Correspondence: 34 kPa to pCO ≈ 170 kPa), both in the absence and in the presence of sulfate as Diana Z. Sousa external electron acceptor. The products formed from CO conversion were H2 and [email protected] acetate. With sulfate, a lower H2/acetate ratio was observed in the product profile, †Present address: Michael Visser, but CO conversion rates were similar to those in the absence of sulfate. The ability National Reference Centre of Plant of D. australicus strain AB33T to use CO was also investigated. D. australicus strain Health, Dutch National Plant AB33T uses up to 40% CO (pCO ≈ 68 kPa) with sulfate and up to 20% CO (pCO ≈ Protection Organization, Wageningen, Netherlands 34 kPa) without sulfate.
    [Show full text]