Ponds, Lagoons, and Natural Systems Study Guide Subclass A4
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Springdale WG 2010 Equipment
SSpprringdaleingdale WWaatterer GGaarrdensdens After installation, enjoy a cool beverage by your new water feature . Pond Installation Equipment 2010 Orders (800) 420-5459 • Information 540-337-4507 Planning Your Water Garden Size of lower pond L _______________ W __________ D________ Size of upper pond L ________________ W __________ D ________ Liner size lower ____________ Liner size upper ___________ Protection Mat size lower __________ Protection Mat size upper ________ Liner and Protection Mat Size = maximum length + maximum depth + maximum depth + extra 2 feet (Same way for width) Length of waterfall or stream ______________________________ Height of falls from lower pond surface to outflow _______________ Liner length for falls _____________________________________ Protection Mat for falls _____________________________________ Average width of waterfall (water only, not including stonework) ___________________________________________________________ Desired waterfall width in inches ___________ Desired flow rate for pump _____________ Pump selection _______________________ Waterfall filter, curtainfalls box or waterfall box selection _________________________________________________________________ Flow rate of falls should be 100-200 gallons per inch of waterfall width (suggest mid to high rate) Skimmer selection and opening size __________________________ Tubing or pipe size ________________ Pipe length _____________ SKIMMER OPTIONS: Pump removal assembly ______________ Ball valve ____________ Auto-fill device ____________ UV -
Thesis, Dissertation
AN EXPLORATION OF SMALL TOWN SENSIBILTIES by Lucas William Winter A thesis submitted in partial fulfillment of the requirements for the degree of Master of Architecture in Architecture MONTANA STATE UNIVERSITY Bozeman, Montana April 2010 ©COPYRIGHT by Lucas William Winter 2010 All Rights Reserved ii APPROVAL of a thesis submitted by Lucas William Winter This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to the Division of Graduate Education. Steven Juroszek Approved for the Department of Architecture Faith Rifki Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Lucas William Winter April 2010 iv TABLE OF CONTENTS 1. THESIS STATEMENT AND INRO…...........................................................................1 2. HISTORY…....................................................................................................................4 3. INTERVIEW - WARREN AND ELIZABETH RONNING….....................................14 4. INTERVIEW - BOB BARTHELMESS.…………………...…....................................20 5. INTERVIEW - RUTH BROWN…………………………...…....................................27 6. INTERVIEW - VIRGINIA COFFEE …………………………...................................31 7. CRITICAL REGIONALISM AS RESPONSE TO GLOBALIZATION…………......38 8. -
The Biological Treatment Method for Landfill Leachate
E3S Web of Conferences 202, 06006 (2020) https://doi.org/10.1051/e3sconf/202020206006 ICENIS 2020 The biological treatment method for landfill leachate Siti Ilhami Firiyal Imtinan1*, P. Purwanto1,2, Bambang Yulianto1,3 1Master Program of Environmental Science, School of Postgraduate Studies, Diponegoro University, Semarang - Indonesia 2Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang - Indonesia 3Department of Marine Sciences, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang - Indonesia Abstract. Currently, waste generation in Indonesia is increasing; the amount of waste generated in a year is around 67.8 million tons. Increasing the amount of waste generation can cause other problems, namely water from the decay of waste called leachate. Leachate can contaminate surface water, groundwater, or soil if it is streamed directly into the environment without treatment. Between physical and chemical, biological methods, and leachate transfer, the most effective treatment is the biological method. The purpose of this article is to understand the biological method for leachate treatment in landfills. It can be concluded that each method has different treatment results because it depends on the leachate characteristics and the treatment method. These biological methods used to treat leachate, even with various leachate characteristics, also can be combined to produce effluent from leachate treatment below the established standards. Keywords. Leachate treatment; biological method; landfill leachate. 1. Introduction Waste generation in Indonesia is increasing, as stated by the Minister of Environment and Forestry, which recognizes the challenges of waste problems in Indonesia are still very large. The amount of waste generated in a year is around 67.8 million tons and will continue to grow in line with population growth [1]. -
Thank You for Downloading the BTL's Guide to Geomembranes
All You Need to Know About Geomembranes Thank you for downloading the BTL's Guide to Geomembranes. We hope that this book helps you with your projects! We strive to provide our customers with not only great service and quality products, but great information to help them with whatever project they're taking on. For more free ebooks, articles, downloads and more visit our website at www.btlliners.com www.btlliners.com 2 All You Need to Know About Geomembranes Contents Introduction ........................................................................................................................... 5 What are Geomembranes? ............................................................................................................... 5 Common Uses of Geomembranes .................................................................................................. 6 Flexible vs Non-Flexible Materials ................................................................................................... 7 Reinforced vs Unreinforced Geomembranes .................................................................................. 7 Buried vs Exposed Materials ............................................................................................................ 7 Geomembrane Tarps ............................................................................................................. 8 What Material Works Best for a Tarp? ............................................................................................ 9 Applications for Geomembrane -
Ponds for Stabilising Organic Matter
WQPN 39, FEBRUARY 2009 Ponds for stabilising organic matter Purpose Waste stabilisation ponds are widely used in rural areas of Western Australia. They rely on natural micro-organisms and algae to assist in the breakdown and settlement of degradable organic matter, generally before discharge of treated effluent to land. The ponds mimic processes that occur in nature for degrading complex animal and plant wastes into simple chemicals that are suitable for reuse in the environment. The operating processes in waste stabilisation ponds are shown at Appendix A. The use of ponds fosters the destruction of disease-causing organisms and lessens the risk of fouling of natural waters. They also limit organic waste breakdown in waterways which strips oxygen out of the water, often resulting in fish and other aquatic fauna deaths. These ponds need to be adequately designed to: • maximise the stabilisation of wastewater and settling of solids • avoid the generation of foul odours • maximise the destruction of pathogenic micro-organisms • prevent the discharge of partly treated wastes into the environment. This note provides advice on the design, construction and operation of waste stabilisation pond systems for use in Western Australia. It is intended to assist decision-makers in setting criteria for effective retention of liquids in the ponds and design measures to ensure their effective environmental performance. The Department of Water is responsible for managing and protecting the state’s water resources. It is also a lead agency for water conservation and reuse. This note offers: • our current views on waste stabilisation pond systems • guidance on acceptable practices used to protect the quality of Western Australian water resources • a basis for the development of a multi-agency code or guideline designed to balance the views of industry, government and the community, while sustaining a healthy environment. -
Trickling Filter Technology for Treating Abattoir Wastewater
Trickling Filter Technology for Treating Abattoir Wastewater Project code: 2014 /1016 Prepared by: GHD Pty Ltd Date Published: April 2015 Published by: Australian Meat Processor Corporation Disclaimer: The information contained within this publication has been prepared by a third party commissioned by Australian Meat Processor Corporation Ltd (AMPC). It does not necessarily reflect the opinion or position of AMPC. Care is taken to ensure the accuracy of the information contained in this publication. However, AMPC cannot accept responsibility for the accuracy or completeness of the information or opinions contained in this publication, nor does it endorse or adopt the information contained in this report. No part of this work may be reproduced, copied, published, communicated or adapted in any form or by any means (electronic or otherwise) without the express written permission of Australian Meat Processor Corporation Ltd. All rights are expressly reserved. Requests for further authorisation should be directed to the Chief Executive Officer, AMPC, Suite 1, Level 5, 110 Walker Street Sydney NSW. Table of Contents Executive Summary 4 1. Introduction 6 1.1 Project Background 6 1.2 Objectives 6 1.3 Workscope and Basis 6 1.4 Overview 7 2. Treatment of Abattoir Wastewater 11 2.1 Characterisation of Wastewater 11 2.2 Typical Treatment Train 11 2.3 Treatment 12 3. Trickling Filtration 15 3.1 General 15 3.2 Description 15 3.3 Trickling Filter Media 17 3.4 Construction 18 3.5 Recirculation 19 3.6 Air Access / Circulation 19 3.7 Broad Design 19 3.8 Activated Sludge Versus Trickling Filters 22 4. -
Helpful Study Guide (PDF)
WASTEWATER STABILIZATION POND (WWSP) STUDY GUIDE ALASKA DEPARTMENT OF ENVIRONMENTAL CONSERVATION DIVISION OF WATER OPERATOR TRAINING AND CERTIFICATION PROGRAM http://dec.alaska.gov/water/opcert/index.htm Phone: (907) 465-1139 Email: [email protected] January 2011 Edition Introduction This study guide is made available to examinees to prepare for the Wastewater Stabilization Pond (WWSP) certification exam. This study guide covers only topics concerning non-aerated WWSPs. The WWSP certification exam is comprised of 50 multiple choice questions in various topics. These topics will be addressed in this study guide. The procedure to apply for the WWSP certification exam is available on our website at: http://www.dec.state.ak.us/water/opcert/LargeSystem_Operator.htm. It is highly recommended that an examinee complete one of the following courses to prepare for the WWSP certification exam. 1. Montana Water Center Operator Basics 2005 Training Series, Wastewater Lagoon module; 2. ATTAC Lagoons online course; or 3. CSUS Operation of Wastewater Treatment Plants, Volume I, Wastewater Stabilization Pond chapter. If you have any questions, please contact the Operator Training and Certification Program staff at (907) 465-1139 or [email protected]. Definitions 1. Aerobic: A condition in which “free” or dissolved oxygen is present in an aquatic environment. 2. Algae: Simple microscopic plants that contain chlorophyll and require sunlight; they live suspended or floating in water, or attached to a surface such as a rock. 3. Anaerobic: A condition in which “free” or dissolved oxygen is not present in an aquatic environment. 4. Bacteria: Microscopic organisms consisting of a single living cell. -
Safety Evaluation of the Zhaoli Tailings Dam a Seepage, Deformation and Stability Analysis with Geostudio
UPTEC ES 16 031 Examensarbete 30 hp September 2016 Safety Evaluation of the Zhaoli Tailings Dam A seepage, deformation and stability analysis with GeoStudio Johan Bäckström Malin Ljungblad Abstract Safety Evaluation of the Zhaoli Tailings Dam Johan Bäckström and Malin Ljungblad Teknisk- naturvetenskaplig fakultet UTH-enheten The mining industry produce large amount of mine waste, also called tailings, which must be kept in tailings dams. In this thesis the safety and stability of a tailings dam Besöksadress: have been studied, where some of the tailing material is being used as filling material. Ångströmlaboratoriet Lägerhyddsvägen 1 The dam has been modelled and simulated using the software Geostudio. To evaluate Hus 4, Plan 0 the safety and stability of the dam seepage, stress and strain as well as slope stability have been simulated with SEEP/W, SIGMA/W and SLOPE/W, which are different Postadress: modules in the Geostudio software. Box 536 751 21 Uppsala The results show that the dam is stable for all tested scenarios. However, in this Telefon: thesis many simplifications and assumptions have been made so it is recommended to 018 – 471 30 03 do a more detailed study to confirm the safety of the dam. The dam should also be Telefax: simulated for earthquakes before a definite evaluation can be made. 018 – 471 30 00 This master thesis has been conducted in cooperation with Vattenfall AB, Energiforsk Hemsida: AB, Uppsala University and Tsinghua University in Beijing, China. The project has http://www.teknat.uu.se/student been carried out on the planned Zhaoli ditch tailing dam in the Shanxi Province, China. -
Study of Man-Made Ponds in Suffolk County New York
Study of Man-made Ponds in Suffolk County New York Prepared by: Suffolk County Planning Department December, 1990 H A N-H A D E P 0 N D S in SUFFOLK COUNTY Suffolk County Planning Department Arthur H. KlDlZ Director Suffolk County Planning Commission Stephen M. Jones Chairman. Nancy Nagle Kelley Vice Chairman Mardooni Vahradian Secretary Elaine Capobiance Robert Donnelly Donald M. Eversoll George R. Gohn Felix J. Grucci, Jr. Lloyd L. Lee Dennis Lynch Mark McDonald Maurice J. O'Connell Gilbert L. Shepard Samuel Stahlman Anthony Yarusso Participating Staff Arthur Kunz Robert E. Riekert Graphics Ken Babits Anthony Tucci Text Gail Calfa Sandy Martin TABLE OF CONTENTS I. Introduction II. Types of Ponds - How a Natural Pond Works III. Groundwater Impacts - Quantity - Quality IV. Examples of Ponds - Sterile Ponds - Lenox Road Pond System v. Pros and Cons of Man Made Ponds - Regulating Agencies - Water Sources - Algacides - Stagnation - Pond Depth - Liability - Creation of Natural Wetlands VI. Policy Options - Augmentation - Pond Ownership - Sitings - Algacides VII. Conclusions and Recommendations - Specific Design Criteria - Pond Ownership/Management - Specific Site Restrictions I. INTRODUCTION Man has been constructing dams, building reservoirs and diverting streams and rivers for many years. The primary reasons for this included providing irrigation for crops and drinking water for people and livestock. Later on, man began to harness the energy of flowing water for his mills. By the middle of the twentieth century many dams were constructed for electrical production all over the world and many large reservoirs covering many square miles were holding water for large municipalities. For the most part, little or no study had been done to consider the impacts of these structures on the environment. -
General Sewer Plan
CITY OF GRANDVIEW GENERAL SEWER PLAN Prepared by PROJECT NO. 08032 January 2009 CITY OF GRANDVIEW GENERAL SEWER PLAN Prepared by PROJECT NO. 08032 January 2009 TABLE OF CONTENTS Page No. INTRODUCTION AND EXECUTIVE SUMMARY ......................................................................................... 1 INTRODUCTION ............................................................................................................................... 2 REQUIREMENTS.............................................................................................................................. 2 PURPOSE AND OBJECTIVE OF PLAN ........................................................................................... 2 SUMMARY OF RECOMMENDED IMPROVEMENTS ...................................................................... 3 SCHEDULE OF IMPROVEMENTS ................................................................................................... 3 ESTIMATED COSTS AND PROPOSED SEWER SYSTEM FINANCIAL PROGRAM ..................... 3 CHAPTER 1 - BASIC PLANNING INFORMATION ...................................................................................... 4 1.1 BACKGROUND INFORMATION .............................................................................................. 5 Wastewater System Ownership .......................................................................................... 5 Geography ........................................................................................................................... 5 Wastewater -
Pond Infiltration and Watertable Mounding
GEO-SLOPE International Ltd, Calgary, Alberta, Canada www.geo-slope.com Pond Infiltration and Watertable Mounding 1 Introduction The objective of this illustration is show how to model the filling of a pond with a liner. The zone below the liner remains unsaturated and the watertable deep in the profile mounds, due to percolation from the base of the pond. The modeling can help evaluate the effectiveness of lining the reservoir with a clay liner. Not only can the final, steady-state condition be established for both scenarios, but the rise in the watertable with time can be determined by conducting a transient analysis. Feature Highlights Transient boundary conditions Watertable viewing over time Unit flux boundary conditions Unsaturated flow 2 Geometry and boundary conditions The containment facility is located on top of a hill, with a stream at the bottom of the embankment, as shown below. Since the change in the regional system needs to be evaluated with time, a transient analysis will be conducted. 12 11 10 9 ) 8 m ( 7 n o i 6 t a v 5 e l E 4 3 2 1 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 Distance (m) Figure 1 Problem configuration Before conducting a transient analysis, it is sometimes helpful to know the long-term, steady-state solution, so you know the conditions where the system is eventually going to stabilize. It can also be helpful as a point of reference to compare against your transient results, which can help you determine if the steady-state solution is reasonable or too far in the future to be considered obtainable. -
Surface Water Management Plan Water Resources | City of St
Surface Water Management Plan Water Resources | City of St. Louis Park Proposals are due 4:00 p.m. April 24, 2017 Executive Summary City of St. Louis Park Surface Water Management Plan Executive Summary Located in Hennepin County just west of Minneapolis, the 10.7-square-mile City of St. Louis Park is a fully developed suburban community. The population of St. Louis Park is approximately 48,000 residents, making it the 20th largest city in Minnesota. St. Louis Park contains a variety of physical and water resources including several wetlands and small lakes, wooded areas, parks, and recreational lands, as well as the Minnehaha Creek corridor. Two watershed management organizations (WMOs) cover St. Louis Park, each with its own governing body: the Bassett Creek Watershed Management Commission (BCWMC) and the Minnehaha Creek Watershed District (MCWD). This local Surface Water Management Plan (SWMP) was prepared in accordance with Minnesota Statute 103B.235 and Minnesota Rules 8410 and is intended to replace the 2009 plan. The purpose of this SWMP includes objectives outlined in Minnesota Statute 103B.201 for metropolitan water management programs. According to the statute, the purposes of these water management programs are to: • protect, preserve, and properly use natural surface and groundwater storage and retention systems; • minimize public capital expenditures needed to correct flooding and water quality problems; • identify and plan for means to effectively protect and improve surface and groundwater quality; • establish more uniform local policies and official controls for surface and groundwater management; • prevent the erosion of soil into surface water systems; • promote effective groundwater recharge; • protect and enhance fish and wildlife habitats and water recreational facilities; and • secure the other benefits associated with the proper management of surface and groundwater.