Overlapping Role of SCYL1 and SCYL3 in Maintaining Motor Neuron Viability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Seq2pathway Vignette
seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway. -
Transcriptomic Analysis of the Aquaporin (AQP) Gene Family
Pancreatology 19 (2019) 436e442 Contents lists available at ScienceDirect Pancreatology journal homepage: www.elsevier.com/locate/pan Transcriptomic analysis of the Aquaporin (AQP) gene family interactome identifies a molecular panel of four prognostic markers in patients with pancreatic ductal adenocarcinoma Dimitrios E. Magouliotis a, b, Vasiliki S. Tasiopoulou c, Konstantinos Dimas d, * Nikos Sakellaridis d, Konstantina A. Svokos e, Alexis A. Svokos f, Dimitris Zacharoulis b, a Division of Surgery and Interventional Science, Faculty of Medical Sciences, UCL, London, UK b Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece c Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece d Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, Larissa, Greece e The Warren Alpert Medical School of Brown University, Providence, RI, USA f Riverside Regional Medical Center, Newport News, VA, USA article info abstract Article history: Background: This study aimed to assess the differential gene expression of aquaporin (AQP) gene family Received 14 October 2018 interactome in pancreatic ductal adenocarcinoma (PDAC) using data mining techniques to identify novel Received in revised form candidate genes intervening in the pathogenicity of PDAC. 29 January 2019 Method: Transcriptome data mining techniques were used in order to construct the interactome of the Accepted 9 February 2019 AQP gene family and to determine which genes members are differentially expressed in PDAC as Available online 11 February 2019 compared to controls. The same techniques were used in order to evaluate the potential prognostic role of the differentially expressed genes. Keywords: PDAC Results: Transcriptome microarray data of four GEO datasets were incorporated, including 142 primary Aquaporin tumor samples and 104 normal pancreatic tissue samples. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Inhibiting TRK Proteins in Clinical Cancer Therapy
cancers Review Inhibiting TRK Proteins in Clinical Cancer Therapy Allison M. Lange 1 and Hui-Wen Lo 1,2,* 1 Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; [email protected] 2 Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA * Correspondence: [email protected] Received: 25 February 2018; Accepted: 29 March 2018; Published: 4 April 2018 Abstract: Gene rearrangements resulting in the aberrant activity of tyrosine kinases have been identified as drivers of oncogenesis in a variety of cancers. The tropomyosin receptor kinase (TRK) family of tyrosine receptor kinases is emerging as an important target for cancer therapeutics. The TRK family contains three members, TRKA, TRKB, and TRKC, and these proteins are encoded by the genes NTRK1, NTRK2, and NTRK3, respectively. To activate TRK receptors, neurotrophins bind to the extracellular region stimulating dimerization, phosphorylation, and activation of downstream signaling pathways. Major known downstream pathways include RAS/MAPK/ERK, PLCγ, and PI3K/Akt. While being rare in most cancers, TRK fusions with other proteins have been well-established as oncogenic events in specific malignancies, including glioblastoma, papillary thyroid carcinoma, and secretory breast carcinomas. TRK protein amplification as well as alternative splicing events have also been described as contributors to cancer pathogenesis. For patients harboring alterations in TRK expression or activity, TRK inhibition emerges as an important therapeutic target. To date, multiple trials testing TRK-inhibiting compounds in various cancers are underway. In this review, we will summarize the current therapeutic trials for neoplasms involving NTKR gene alterations, as well as the promises and setbacks that are associated with targeting gene fusions. -
Dissertation
DISSERTATION submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto Carola University Heidelberg, Germany for the degree of Doctor of Natural Sciences Presented by Manu Jain Goyal (M.Sc, Biotechnology) born in Kota, India Oral examination: 03.07.2019 Paralog specific role of COPI pathway in P19 neuronal differentiation Referees: Prof. Dr. Felix Wieland Dr. Julien Béthune This work has been carried out at the Biochemistry Center of the University of Heidelberg from January 2015 to January 2019 under the supervision of Dr. Julien Béthune. Acknowledgement I would like to thank Julien for giving me opportunity to be part of his team, for supervising me throughout my PhD. I appreciate that all the scientific discussions we have had helped me to improve my knowledge and thinking scientifically. Thank you so much for giving freedom in the lab to work independently and for handling the situations in a best possible way. Next, I would like to thank my TAC members Prof. Dr. Felix and Prof. Dr. Walter for giving suggestions and inputs for my project. Also providing me antibodies and equipments for my experiments. I would like to thank my examiners Prof Dr. Thomas Söllner and Prof. Dr. Marius Lemberg for considering it. I would like to thank all my team members and special thanks to Petra, Cinthia and Isabel for always supporting and helping me. Additionally, I would like to thank Alice and Laura for socializing together outside the BZH so that I can survive far away from my home country. I admire all the moments I had with you all. -
Consequences of Mitotic Loss of Heterozygosity on Genomic Imprinting in Mouse Embryonic Stem Cells
CONSEQUENCES OF MITOTIC LOSS OF HETEROZYGOSITY ON GENOMIC IMPRINTING IN MOUSE EMBRYONIC STEM CELLS by RACHEL LEIGH ELVES B.Sc., University of British Columbia, 2004 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIRMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2008 © Rachel Leigh Elves, 2008 Abstract Epigenetic differences between maternally inherited and paternally inherited chromosomes, such as CpG methylation, render the maternal and paternal genome functionally inequivalent, a phenomenon called genomic imprinting. This functional inequivalence is exemplified with imprinted genes, whose expression is parent-of-origin specific. The dosage of imprinted gene expression is disrupted in cells with uniparental disomy (UPD), which is an unequal parental contribution to the genome. I have derived mouse embryonic stem (ES) cell sub-lines with maternal UPD (mUPD) for mouse chromosome 6 (MMU6) to characterize regulation and maintenance of imprinted gene expression. The main finding from this study is that maintenance of imprinting in mitotic UPD is extremely variable. Imprint maintenance was shown to vary from gene to gene, and to vary between ES cell lines depending on the mechanism of loss of heterozygosity (LOH) in that cell line. Certain genes analyzed, such as Peg10 , Sgce , Peg1 , and Mit1 showed abnormal expression in ES cell lines for which they were mUPD. These abnormal expression levels are similar to that observed in ES cells with meiotically-derived full genome mUPD (parthenogenetic ES cells). Imprinted CpG methylation at the Peg1 promoter was found to be abnormal in all sub-lines with mUPD for Peg1 . -
Supplementary Table S2
1-high in cerebrotropic Gene P-value patients Definition BCHE 2.00E-04 1 Butyrylcholinesterase PLCB2 2.00E-04 -1 Phospholipase C, beta 2 SF3B1 2.00E-04 -1 Splicing factor 3b, subunit 1 BCHE 0.00022 1 Butyrylcholinesterase ZNF721 0.00028 -1 Zinc finger protein 721 GNAI1 0.00044 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 GNAI1 0.00049 1 Guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 1 PDE1B 0.00069 -1 Phosphodiesterase 1B, calmodulin-dependent MCOLN2 0.00085 -1 Mucolipin 2 PGCP 0.00116 1 Plasma glutamate carboxypeptidase TMX4 0.00116 1 Thioredoxin-related transmembrane protein 4 C10orf11 0.00142 1 Chromosome 10 open reading frame 11 TRIM14 0.00156 -1 Tripartite motif-containing 14 APOBEC3D 0.00173 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3D ANXA6 0.00185 -1 Annexin A6 NOS3 0.00209 -1 Nitric oxide synthase 3 SELI 0.00209 -1 Selenoprotein I NYNRIN 0.0023 -1 NYN domain and retroviral integrase containing ANKFY1 0.00253 -1 Ankyrin repeat and FYVE domain containing 1 APOBEC3F 0.00278 -1 Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3F EBI2 0.00278 -1 Epstein-Barr virus induced gene 2 ETHE1 0.00278 1 Ethylmalonic encephalopathy 1 PDE7A 0.00278 -1 Phosphodiesterase 7A HLA-DOA 0.00305 -1 Major histocompatibility complex, class II, DO alpha SOX13 0.00305 1 SRY (sex determining region Y)-box 13 ABHD2 3.34E-03 1 Abhydrolase domain containing 2 MOCS2 0.00334 1 Molybdenum cofactor synthesis 2 TTLL6 0.00365 -1 Tubulin tyrosine ligase-like family, member 6 SHANK3 0.00394 -1 SH3 and multiple ankyrin repeat domains 3 ADCY4 0.004 -1 Adenylate cyclase 4 CD3D 0.004 -1 CD3d molecule, delta (CD3-TCR complex) (CD3D), transcript variant 1, mRNA. -
Recount Brain Example with Data from SRP027383
recount_brain example with data from SRP027383 true Abstract This is an example on how to use recount_brain applied to the SRP027383 study. We show how to download data from recount2, add the sample metadata from recount_brain, explore the sample metadata and the gene expression data, and perform a gene expression analysis. Introduction This document is an example of how you can use recount_brain. We will use the data from the SRA study SRP027383 which is described in “RNA-seq of 272 gliomas revealed a novel, recurrent PTPRZ1-MET fusion transcript in secondary glioblastomas” (Bao, Chen, Yang, Zhang, et al., 2014). As you can see in Figure @ref(fig:runselector) a lot of the metadata for these samples is missing from the SRA Run Selector which makes it a great case for using recount_brain. We will show how to add the recount_brain metadata and perform a gene differential expression analysis using this information. Sample metadata Just like any study in recount2 (Collado-Torres, Nellore, Kammers, Ellis, et al., 2017), we first need to download the gene count data using recount::download_study(). Since we will be using many functions from the recount package, lets load it first1. ## Load the package library('recount') Download gene data Having loaded the package, we next download the gene-level data. if(!file.exists(file.path('SRP027383', 'rse_gene.Rdata'))) { download_study('SRP027383') } load(file.path('SRP027383', 'rse_gene.Rdata'), verbose = TRUE) ## Loading objects: ## rse_gene 1If you are a first time recount user, we recommend first reading the package vignette at bioconductor.org/packages/recount. 1 Figure 1: SRA Run Selector information for study SRP027383. -
Disease-Related Cellular Protein Networks Differentially Affected
www.nature.com/scientificreports OPEN Disease‑related cellular protein networks diferentially afected under diferent EGFR mutations in lung adenocarcinoma Toshihide Nishimura1,8*, Haruhiko Nakamura1,2,8, Ayako Yachie3,8, Takeshi Hase3,8, Kiyonaga Fujii1,8, Hirotaka Koizumi4, Saeko Naruki4, Masayuki Takagi4, Yukiko Matsuoka3, Naoki Furuya5, Harubumi Kato6,7 & Hisashi Saji2 It is unclear how epidermal growth factor receptor EGFR major driver mutations (L858R or Ex19del) afect downstream molecular networks and pathways. This study aimed to provide information on the infuences of these mutations. The study assessed 36 protein expression profles of lung adenocarcinoma (Ex19del, nine; L858R, nine; no Ex19del/L858R, 18). Weighted gene co-expression network analysis together with analysis of variance-based screening identifed 13 co-expressed modules and their eigen proteins. Pathway enrichment analysis for the Ex19del mutation demonstrated involvement of SUMOylation, epithelial and mesenchymal transition, ERK/mitogen- activated protein kinase signalling via phosphorylation and Hippo signalling. Additionally, analysis for the L858R mutation identifed various pathways related to cancer cell survival and death. With regard to the Ex19del mutation, ROCK, RPS6KA1, ARF1, IL2RA and several ErbB pathways were upregulated, whereas AURK and GSKIP were downregulated. With regard to the L858R mutation, RB1, TSC22D3 and DOCK1 were downregulated, whereas various networks, including VEGFA, were moderately upregulated. In all mutation types, CD80/CD86 (B7), MHC, CIITA and IFGN were activated, whereas CD37 and SAFB were inhibited. Costimulatory immune-checkpoint pathways by B7/CD28 were mainly activated, whereas those by PD-1/PD-L1 were inhibited. Our fndings may help identify potential therapeutic targets and develop therapeutic strategies to improve patient outcomes. -
An Integrated Approach to Comprehensively Map the Molecular Context of Proteins
bioRxiv preprint doi: https://doi.org/10.1101/264788; this version posted February 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Liu et al. An integrated approach to comprehensively map the molecular context of proteins Xiaonan Liu1,2, Kari Salokas1,2, Fitsum Tamene1,2,3 and Markku Varjosalo1,2,3* 1Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland 2Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland 3Proteomics Unit, University of Helsinki, Helsinki 00014, Finland *Corresponding author Abstract: Protein-protein interactions underlie almost all cellular functions. The comprehensive mapping of these complex cellular networks of stable and transient associations has been made available by affi nity purifi cation mass spectrometry (AP-MS) and more recently by proximity based labelling methods such as BioID. Due the advancements in both methods and MS instrumentation, an in-depth analysis of the whole human proteome is at grasps. In order to facilitate this, we designed and optimized an integrated approach utilizing MAC-tag combining both AP-MS and BioID in a single construct. We systematically applied this approach to 18 subcellular localization markers and generated a molecular context database, which can be used to defi ne molecular locations for any protein of interest. In addition, we show that by combining the AP-MS and BioID results we can also obtain interaction distances within a complex. Taken together, our combined strategy off ers comprehensive approach for mapping physical and functional protein interactions. Introduction: Majority of proteins do not function in isolation geting the endogenous bait protein, allowing and their interactions with other proteins defi ne purifi cation of the bait protein together with the their cellular functions. -
Long Non-Coding RNA Landscape in Prostate Cancer Molecular Subtypes: a Feature Selection Approach
International Journal of Molecular Sciences Article Long Non-Coding RNA Landscape in Prostate Cancer Molecular Subtypes: A Feature Selection Approach Simona De Summa 1,* , Antonio Palazzo 2 , Mariapia Caputo 1, Rosa Maria Iacobazzi 3 , Brunella Pilato 1, Letizia Porcelli 3, Stefania Tommasi 1 , Angelo Virgilio Paradiso 4,† and Amalia Azzariti 3,† 1 Molecular Diagnostics and Pharmacogenetics Unit, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; [email protected] (M.C.); [email protected] (B.P.); [email protected] (S.T.) 2 Laboratory of Nanotechnology, IRCCS IstitutoTumori Giovanni Paolo II, 70124 Bari, Italy; [email protected] 3 Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; [email protected] (R.M.I.); [email protected] (L.P.); [email protected] (A.A.) 4 Scientific Directorate, IRCCS Istituto Tumori Giovanni Paolo II, 70124 Bari, Italy; [email protected] * Correspondence: [email protected] † Co-senior authors. Abstract: Prostate cancer is one of the most common malignancies in men. It is characterized by a high molecular genomic heterogeneity and, thus, molecular subtypes, that, to date, have not been used in clinical practice. In the present paper, we aimed to better stratify prostate cancer patients through the selection of robust long non-coding RNAs. To fulfill the purpose of the study, a bioinformatic approach focused on feature selection applied to a TCGA dataset was used. In such a way, LINC00668 and long non-coding(lnc)-SAYSD1-1, able to discriminate ERG/not-ERG subtypes, Citation: De Summa, S.; Palazzo, A.; were demonstrated to be positive prognostic biomarkers in ERG-positive patients. -
Supplementary Tables S1-S3
Supplementary Table S1: Real time RT-PCR primers COX-2 Forward 5’- CCACTTCAAGGGAGTCTGGA -3’ Reverse 5’- AAGGGCCCTGGTGTAGTAGG -3’ Wnt5a Forward 5’- TGAATAACCCTGTTCAGATGTCA -3’ Reverse 5’- TGTACTGCATGTGGTCCTGA -3’ Spp1 Forward 5'- GACCCATCTCAGAAGCAGAA -3' Reverse 5'- TTCGTCAGATTCATCCGAGT -3' CUGBP2 Forward 5’- ATGCAACAGCTCAACACTGC -3’ Reverse 5’- CAGCGTTGCCAGATTCTGTA -3’ Supplementary Table S2: Genes synergistically regulated by oncogenic Ras and TGF-β AU-rich probe_id Gene Name Gene Symbol element Fold change RasV12 + TGF-β RasV12 TGF-β 1368519_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 42.22 5.53 75.28 1373000_at sushi-repeat-containing protein, X-linked 2 (predicted) Srpx2 19.24 25.59 73.63 1383486_at Transcribed locus --- ARE 5.93 27.94 52.85 1367581_a_at secreted phosphoprotein 1 Spp1 2.46 19.28 49.76 1368359_a_at VGF nerve growth factor inducible Vgf 3.11 4.61 48.10 1392618_at Transcribed locus --- ARE 3.48 24.30 45.76 1398302_at prolactin-like protein F Prlpf ARE 1.39 3.29 45.23 1392264_s_at serine (or cysteine) peptidase inhibitor, clade E, member 1 Serpine1 ARE 24.92 3.67 40.09 1391022_at laminin, beta 3 Lamb3 2.13 3.31 38.15 1384605_at Transcribed locus --- 2.94 14.57 37.91 1367973_at chemokine (C-C motif) ligand 2 Ccl2 ARE 5.47 17.28 37.90 1369249_at progressive ankylosis homolog (mouse) Ank ARE 3.12 8.33 33.58 1398479_at ryanodine receptor 3 Ryr3 ARE 1.42 9.28 29.65 1371194_at tumor necrosis factor alpha induced protein 6 Tnfaip6 ARE 2.95 7.90 29.24 1386344_at Progressive ankylosis homolog (mouse)