Freeform Reflector Design with Extended Sources
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mirrors Or Lenses) Can Produce an Image of the Object by 4.2 Mirrors Redirecting the Light
Object-Image • A physical object is usually observed by reflected light that diverges from the object. • An optical system (mirrors or lenses) can produce an image of the object by 4.2 Mirrors redirecting the light. • Images – Real Image • Image formation by mirrors – Virtual Image • Plane mirror • Curved mirrors. Real Image Virtual Image Optical System ing diverging erg converging diverging diverging div Object Object real Image Optical System virtual Image Light appears to come from the virtual image but does not Light passes through the real image pass through the virtual image Film at the position of the real image is exposed. Film at the position of the virtual image is not exposed. Each point on the image can be determined Image formed by a plane mirror. by tracing 2 rays from the object. B p q B’ Object Image The virtual image is formed directly behind the object image mirror. Light does not A pass through A’ the image mirror A virtual image is formed by a plane mirror at a distance q behind the mirror. q = -p 1 A mirror reverses front and back Parabolic Mirrors Optic Axis object mirror image mirror The mirror image is different from the object. The z direction is reversed in the mirror image. Parallel rays reflected by a parabolic mirror are focused at a point, called the Focal Point located on the optic axis. Your right hand is the mirror image of your left hand. Parabolic Reflector Spherical mirrors • Spherical mirrors can be used to form images • Spherical mirrors are much easier to fabricate than parabolic mirrors • A spherical mirror is an approximation of a parabolic mirror for small curvatures. -
Intro to Light Fixtures
Intro to Light Fixtures IN THE BEGINNING PRIMITIVE LAMPS - (c 13,000 BC to 3,000 BC) Prehistoric man, used primitive lamps to illuminate his cave. These lamps, made from naturally occurring materials, such as rocks, shells, horns and stones, were filled with grease and had a fiber wick. Lamps typically used animal or vegetable fats as fuel. In the ancient civilizations of Babylonian and Egypt, light was a luxury. The Arabian Nights were far from the brilliance of today. The palaces of the wealthy were lighted only by flickering flames of simple oil lamps. These were usually in the form of small open bowls with a lip or spout to hold the wick. Animal fats, fish oils or vegetable oils (palm and olive) furnished the fuels. Early Developments Early Developments Rush lights: Candles: Tall, grass-like plant dipped in fat Most expensive candles made of beeswax Most common in churches and homes of nobility Snuffers cut the wick while maintaining the flame Early Developments Early Developments New Developments There was a need to improve the light several ways: 1. The need for a constant flame, which could me left unattended for a longer period of time 2. Decrease heat and smoke for interior use 3. To increase the light output 4. An easier way to replenish the source….thus, the development of gas and electricity 5. Produce light with little waste or conserve energy Page 1 Intro to Light Fixtures Industrial Revolution - Europe Gas lamps developed: London well known for gas lamps Argand Lamp Eiffel Tower (1889) originally used gas lamps The Argand burner, which was introduced in 1784 by the Swiss inventor Argand, was a major improvement in brightness compared to traditional open-flame oil lamps. -
Simulating Headlamp Illumination Using Photometric Light Clusters
2009-01-0110 Simulating Headlamp Illumination Using Photometric Light Clusters William T.C. Neale, David R. Hessel Kineticorp, LLC Copyright © 2009 SAE International ABSTRACT which and the degree to which something is visible. Current methods exist fore evaluating the limits of Assessing the ability of a driver to see objects, visibility which rely on replicating as closely as possible pedestrians, or other vehicles at night is a necessary the conditions present at the time of the accident and precursor to determining if that driver could have performing an in situ evaluation, through observation avoided a nighttime crash. The visibility of an object at and light measurement (Adrian, 1998, pp. 181-88; Klein, night is largely due to the luminance contrast between 1992; Owens, 1989). the object and its background. This difference depends on many factors, one of which is the amount of However, replicating the lighting conditions under which illumination produced by a vehicle’s headlamps. This an accident occurred can be difficult and expensive and paper focuses on a method for digitally modeling a may be impossible if the accident site no longer exists or vehicle headlamp, such that the illumination produced by has changed significantly. If one were able to digitally the headlamps can be evaluated. The paper introduces simulate the accident environment these constraints the underlying concepts and a methodology for could, in many cases, be eliminated. However, creating simulating, in a computer environment, a high-beam a simulated environment would have its own obstacles, headlamp using a computer generated light cluster. In including the need to accurately model the various light addition, the results of using this methodology are sources in that environment. -
Street Light/Traffic Signal Crew Supervisor
CITY OF SALINAS STREET LIGHT/TRAFFIC SIGNAL CREW SUPERVISOR BARGAINING UNIT/CLASS CODE: SEIU SUPV. / P06 DEFINITION To assume substantial responsibilities for the daily supervision of a crew in the Street Division of the Maintenance Services Department; and to perform a variety of skilled electrical work in the installation, maintenance, and repair of signal systems and street lights; performs other related work as required. DISTINGUISHING CHARACTERISTICS This is the advanced journey and hands on, supervisory class. Positions in this class exercise daily supervision of assigned personnel under the direction of Street Maintenance Manager. It is distinguished from the Public Service Maintenance Worker IV by the greater extent of the supervisory responsibility and lead supervision over a crew. This position is expected to perform many of the advanced technical skill activities in the repair and maintenance of streetlights and traffic signals. It is distinguished from the Street Maintenance Manager in that it does not have full responsibilities for organizing and assigning work, and changing work procedures, program development and recommending employee selections, promotions or discipline. SUPERVISION RECEIVED AND EXERCISED Receives direction from the Street Maintenance Manager. Exercises functional supervision over assigned staff. ESSENTIAL JOB FUNCTIONS OF THE POSITION Duties may include, but are not limited to the following: Coordinate with the Street Maintenance Manager in organizing and planning work assignments. Supervise, train and evaluate subordinate employees. Assign specific tasks to individuals and crew to accomplish assigned work. Lead a street light/traffic signal maintenance and installation crew. Assist the Street Maintenance Manager with administration of division activities; keep records, prepare reports, estimate job costs, order materials, evaluate work procedures. -
Rushlight Index 1980-2006
Rushlight Cumulative Index, 1980 – 2006 Vol. 46 – 72 (Pages 2305 – 3951) Part 1: Subject Index Page 2 Part 2: Author Index Page 21 Part 3: Illustration Index Page 25 Notes: The following conventions are used in this index: a slash (/) after the page number indicates the item is an illustration with little or no text. MA before an entry indicates a notice of a magazine article; BR indicates a book review. Please note that if issues were mispaginated, the corrected page numbers are used in this index. The following chart lists the range of pages in each volume of the Rushlight covered by this index. Volume Range of Pages Volume Range of Pages 46 (1980) 2305-2355 60 (1994) 3139-3202 47 (1981) 2356-2406a 61 (1995) 3203-3261 48 (1982) 2406b-2465 62 (1996) 3262-3312 49 (1983) 2465a-2524 63 (1997) 3313-3386 50 (1984) 2524a-2592 64 (1998) 3387-3434 51 (1985) 2593-2679 65 (1999) 3435-3512 52 (1986) 2680-2752 66 (2000) 3513-3569 53 (1987) 2753-2803 67 (2001) 3570-3620 54 (1988) 2804-2851 68 (2002) 3621-3687 55 (1989) 2852-2909 69 (2003) 3688-3745 56 (1990) 2910-2974 70 (2004) 3746-3815 57 (1991) 2974a-3032 71 (2005) 3816-3893 58 (1992) 3033-3083 72 (2006) 3894-3951 59 (1993) 3084-3138 1 Rushlight Subject Index Subject Page Andrews' burning fluid vapor lamps 3400-05 Abraham Gesner: Father of Kerosene 2543-47 Andrews patent vapor burner 3359/ Accessories for decorating lamps 2924 Andrews safety lamp, award refused 3774 Acetylene bicycle lamps, sandwich style 3071-79 Andrews, Solomon, 1831 gas generator 3401 Acetylene bicycle lamps, Solar 2993-3004 -
On the Burning Mirrors of Archimedes, with Some Propositions Relating to the Concentration of Light Produced by Reectors of Different Forms
Transactions of the Royal Society of Edinburgh http://journals.cambridge.org/TRE Additional services for Transactions of the Royal Society of Edinburgh: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here Terms of use : Click here IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reectors of different forms John Scott Transactions of the Royal Society of Edinburgh / Volume 25 / Issue 01 / January 1868, pp 123 - 149 DOI: 10.1017/S0080456800028143, Published online: 17 January 2013 Link to this article: http://journals.cambridge.org/abstract_S0080456800028143 How to cite this article: John Scott (1868). IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reectors of different forms. Transactions of the Royal Society of Edinburgh, 25, pp 123-149 doi:10.1017/S0080456800028143 Request Permissions : Click here Downloaded from http://journals.cambridge.org/TRE, IP address: 129.93.16.3 on 13 Apr 2015 ( 123 ) IV.—On the Burning Mirrors of Archimedes, with some Propositions relating to the concentration of Light produced by Reflectors of different forms. By JOHN SCOTT, Esq., Tain. (Plate III.) (Bead 6th January 1868). As the reputed fact of ARCHIMEDES having burned the Roman ships engaged in the siege of Syracuse, by concentrating on them the solar rays, has not only been doubted but disbelieved by some of the most eminent scientific men, I shall briefly give the evidence on both sides. The burning of the ships of MARCELLUS is mentioned by most of the ancient writers who refer to the machines which ARCHIMEDES employed in the defence of his native city, and their statements have been repeated by succeeding authors, without any doubts having been expressed until comparatively recent times. -
Caliper Application Summary Report 20: LED PAR38 Lamps
Application Summary Report 20: LED PAR38 Lamps November 2012 Addendum September 2013 Prepared for: Solid-State Lighting Program Building Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Pacific Northwest National Laboratory 1 Preface The U.S. Department of Energy (DOE) CALiPER program has been purchasing and testing general illumination solid-state lighting (SSL) products since 2006. CALiPER relies on standardized photometric testing (following the 1 Illuminating Engineering Society of North America [IES] approved method LM-79-08 ) conducted by accredited, 2 independent laboratories. Results from CALiPER testing are available to the public via detailed reports for each product or through summary reports, which assemble data from several product tests and provide comparative 3 analyses. It is not possible for CALiPER to test every SSL product on the market, especially given the rapidly growing variety of products and changing performance characteristics. Starting in 2012, each CALiPER summary report focuses on a single product type or application. Products are selected with the intent of capturing the current state of the market—a cross section ranging from expected low to high performing products with the bulk characterizing the average of the range. The selection does not represent a statistical sample of all available 4 products. To provide further context, CALiPER test results may be compared to data from LED Lighting Facts, 5 ™ ENERGY STAR® performance criteria, technical requirements for the DesignLights Consortium (DLC) Qualified 6 Products List (QPL), or other established benchmarks. CALiPER also tries to purchase conventional (i.e., non- SSL) products for comparison, but because the primary focus is SSL, the program can only test a limited number. -
Streamlight Flashlights
STREAMLIGHT FLASHLIGHTS Streamlight™ STINGER® Streamlight™ STINGER DS® LED Lightweight, powerful, safety-rated, This all-purpose flashlight is designed for the broadest range of rechargeable flashlight with durable lighting needs at the best value. aluminum construction that makes it DUAL SWITCH TECHNOLOGY – Access three lighting modes and strobe virtually indestructible. via the tail cap or the head-mounted • Xenon gas-filled bi-pin bulb; spare switch. Switches operate independently. bulb in tailcap Three modes and strobe: • Adjustable focus beam ˃ High for a bright super-bright beam - 350 lumens; 24,000 candela • Up to 11,000 candela (peak beam intensity); 90 lumens peak beam intensity; 310 meter beam distance; runs 2 hours • 3-cell, 3.6 Volt Ni-Cd sub-C battery, rechargeable up to 1000 times ˃ Medium for bright light and longer run times – 175 lumens; • 3-cell, 3.6 Volt Ni-MH sub-C battery, rechargeable up to 1000 times. 12,000 candela peak beam intensity; 219 meter beam distance; • Up to 1.25 hours continuous use runs 3.75 hours • 7.38” ˃ Low for light without glare and extended run times – 85 lumens; • 10 oz. 6,000 candela peak beam intensity; 155 meter beam distance; • Assembled in USA runs 7.25 hours 75014 Black .................................................................$139.50 each ˃ Strobe for disorienting or signaling your location; runs 5.5 hours 75914 Replacement Bulb .................................................$8.95 each 76090 Deluxe Nylon Holster ...........................................$17.50 each • Deep-dish parabolic reflector produces a concentrated beam with optimum peripheral illumination Streamlight™ Jr.® LED • C4® LED technology, impervious to shock with a 50,000 hour lifetime Don’t let the name “Junior” fool you. -
Technology Meets Art: the Wild & Wessel Lamp Factory in Berlin And
António Cota Fevereiro Technology Meets Art: The Wild & Wessel Lamp Factory in Berlin and the Wedgwood Entrepreneurial Model Nineteenth-Century Art Worldwide 19, no. 2 (Autumn 2020) Citation: António Cota Fevereiro, “Technology Meets Art: The Wild & Wessel Lamp Factory in Berlin and the Wedgwood Entrepreneurial Model,” Nineteenth-Century Art Worldwide 19, no. 2 (Autumn 2020), https://doi.org/10.29411/ncaw.2020.19.2.2. Published by: Association of Historians of Nineteenth-Century Art Notes: This PDF is provided for reference purposes only and may not contain all the functionality or features of the original, online publication. License: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License Creative Commons License. Accessed: October 30 2020 Fevereiro: The Wild & Wessel Lamp Factory in Berlin and the Wedgwood Entrepreneurial Model Nineteenth-Century Art Worldwide 19, no. 2 (Autumn 2020) Technology Meets Art: The Wild & Wessel Lamp Factory in Berlin and the Wedgwood Entrepreneurial Model by António Cota Fevereiro Few domestic conveniences in the long nineteenth century experienced such rapid and constant transformation as lights. By the end of the eighteenth century, candles and traditional oil lamps—which had been in use since antiquity—began to be superseded by a new class of oil-burning lamps that, thanks to a series of improvements, provided considerably more light than any previous form of indoor lighting. Plant oils (Europe) or whale oil (United States) fueled these lamps until, by the middle of the nineteenth century, they were gradually replaced by a petroleum derivative called kerosene. Though kerosene lamps remained popular until well into the twentieth century (and in some places until today), by the late nineteenth century they began to be supplanted by gas and electrical lights. -
Advanced Progress of Optical Wireless Technologies for Power Industry: an Overview
applied sciences Review Advanced Progress of Optical Wireless Technologies for Power Industry: An Overview Jupeng Ding 1,* , Wenwen Liu 1 , Chih-Lin I 2, Hui Zhang 3 and Hongye Mei 1 1 Key Laboratory of Signal Detection and Processing in Xinjiang Uygur Autonomous Region, School of Information Science and Engineering, Xinjiang University, Urumqi 830046, Xinjiang, China; [email protected] (W.L.); [email protected] (H.M.) 2 China Mobile Research Institute, Beijing 100053, China; [email protected] 3 Xinjiang Vocational & Technical College of Communications, Urumqi 831401, Xinjiang, China; [email protected] * Correspondence: [email protected] Received: 12 August 2020; Accepted: 9 September 2020; Published: 16 September 2020 Abstract: Optical wireless communications have attracted widespread attention in the traditional power industry because of the advantages of large spectrum resources, strong confidentiality, and freedom from traditional electromagnetic interference. This paper mainly summarizes the major classification and frontier development of power industry optical wireless technologies, including the indoor and outdoor channel characteristics of power industry optical wireless communication system, modulation scheme, the performance of hybrid power line, and indoor wireless optical communications system. Furthermore, this article compares domestic and foreign experiments, analyzes parameters for instance transmission rate, and reviews different application scenarios such as power wireless optical positioning and monitoring. In addition, in view of the shortcomings of traditional power technology, optical wireless power transfer technology is proposed and combined with unmanned aerial vehicles to achieve remote communication. At last, the main challenges and possible solutions faced by power industry wireless optical technologies are proposed. Keywords: optical wireless technologies; power industry; power line communications; indoor wireless optical communications; optical wireless power transfer 1. -
THE MYSTERY of FLASH REVEALED by Charlie Borland All Text and Images Copyright © Charlie Borland
THE MYSTERY OF FLASH REVEALED by Charlie Borland All text and images Copyright © Charlie Borland LESSON 1 UNDERSTANDING FLASH In a perfect world for photography, every photograph we take would have perfect light, the perfect subject, perfect exposure, resulting in the perfect photograph. However, as you know there is nothing perfect in our world including the conditions, in which we photograph. Fortunately, there are tools available that allow us to capture pictures that may appear close to perfect and flash is one of them. Flash has so many useful applications in photography. It can be the dominant light source or a secondary light source. Here it is secondary as the flash is set for flash fill to lower the contrast created by the sun. We will cover flash fill coming up. In this course, we will closely examine how flash works in conjunction with your camera and explore techniques that will improve your photographs, and even open up creative options you may not have been aware. Once you understand the principals behind flash, you will find that using one is really quite simple. You can then take these fundamentals, and apply them to your particular flash and camera system. There are many makes and models available today and they change literally on a daily basis. We cannot possibly cover how each and every flash unit works, but with the basic understanding of flash theory and technique, you should easily be able to revisit your owner’s manual and gain a thorough understanding of how your flash and camera system work together. -
2455-2240, Volume 19 Issue 1,April 2020
International Journal of Research, Science, Technology & Management ISSN Online: 2455-2240, Volume 19 Issue 1,April 2020 A STUDY OF SOLAR STREET LIGHT AND OPTIMIZATION FOR SPACING IN POLES AND COST Abhigyan Singh, Dayanand Saraswati ABSTRACT In this paper we are studding the convectional led light of renewable energy of electrification. Now the India has been using the remote control of energy in solar power. Solar electrification is the most important part of the developing in India as it is urban area or rural area. In this paper, we are focusing the optimization of solar electrification to charge of power, cost efficient and efficiency effect. Also discuss the how LED light is more efficiently as compare to the CFL light in solar street light. We will discuss the study of LED light and CFL light about access the energy in solar project. Solar street light project has developed by new technology as automated control system, tubular battery, panel’s type. India is using the solar street light in rural areas because of the less transportation of electricity in rural areas. We are studding the rural street light in Rajasthan to generate the solar electric light in road. Solar Street light is friendly behavior of human being to save the energy and reduces the criminal cases on road in night and also reduced the accident in night. Street light optimization is discussing the sufficient of street light in an area of road in INDIA. We are discussing the population of rural area and use the street light to evaluate the effect on environment by the different type of light.