Amponsah Thesis 2015

Total Page:16

File Type:pdf, Size:1020Kb

Amponsah Thesis 2015 é Résumé L’objectif de ce travail de thèse était de réaliser une étude structurale détaillée des minéralisations et des zones d’altération associées, de trois gisements d’or situés au Nord- Ouest du Ghana, sur la marge orientale du Craton Ouest Africain: Kunche et Bepkong, situés dans la ceinture de Wa-Lawra, et Julie situé dans la ceinture de Julie. Ces trois gisements présentent de multiples différences d’ordre géologique, structural, tectonique et géochimique, mais leur caractéristique commune est que leur minéralisation est associée à un métamorphisme de faciès schiste vert. A Julie, la minéralisation aurifère est encaissée dans des granitoïdes de composition tonalite- trondhjemite-granodiorite (TTG) alors qu’à Kunche et Bepkong elle est localisée au sein de formations sédimentaires volcanoclastiques et de schistes graphiteux fortement silicifiés. Cette minéralisation est associée à un réseau de veines souvent boudinées de quartz formées en relation avec une zone de cisaillement orientée Est-Ouest à Julie, mais N à NNO à Kunche et Bepkong, constituant un couloir de déformation de 0.5 à 3,5 km de longueur et de 20 à 300 m de puissance suivant les gisements. La paragenèse d’altération dominante de la zone minéralisée est à séricite, quartz, carbonate et sulfures, et suivant la nature de la roche hôte se rajouteront par exemple la tourmaline dans les granitoïdes et la chlorite dans les schistes ou les métavolcanites. A Julie, l’or est étroitement associé à la pyrite alors qu’à Kunche et Bepkong l’or est associé à l’arsénopyrite. Deux générations d’or sont distinguées ; la première correspond à de l’or invisible associé aux zones de croissance primaire des cristaux de pyrite à Julie et d’arsénopyrite à Bepkong, et de l’or visible tardif en inclusion et plus fréquemment en remplissage de fractures. Abstract The objective of this thesis was to perform a detailed structural, mineralization and associated alteration studies of three gold deposits located in northwest Ghana, on the eastern margin of the West African Craton. Thus, the Kunche and Bepkong deposits, located in the Wa-Lawra belt and Julie deposit located in the Julie belt. These three deposits have multiple differences interms of geological, structural, tectonic and geochemical characteristics but gold mineralization in these deposits are all associated with a green schist facies metamorphism. In Julie, the gold mineralization is hosted in granitoids with its composition akin to tonalite- granodiorite-trondhjemite (TTG) where as in the Kunche and Bepkong deposits, the gold mineralization are localized within volcaniclastic sedimentary formations and strongly silicified graphitic schists. The gold mineralization is associated with a network of quartz veins often boudinaged and formed in connection with a shear zones, oriented E-W in the Julie deposit and N to NNW at Kunche and Bepkong deposits. The dominant alteration in the mineralized zone is sericite, quartz, carbonate and sulfides with influences from the host rock. For example, the granitoid is influenced by tourmaline and chlorite in the schists or in themetavolcanic rocks. At Julie, gold is closely associated with pyrite whereas Kunche and Bepkong gold is associated with arsenopyrite. Two generations of gold are distinguished; the first corresponds to the invisible gold associated with primary growth areas in the pyrite crystals in Julie and arsenopyrite in Kunche and Bepkong, and late visible gold inclusions which are frequently found in fracture fillings. In Julie, the mineralizing fluid is rich in CO2, and has low to moderate salinity (NaCl-H2O- CO2 system), trapped in P / T conditions around 220 ° C and <1 kbar; whilst in Bepkong, the mineralizing fluid is associated with quartz are rich in CH4, with a low salinity (CH4- CO2-SO2-H2O system) which indicates that the visible trapping temperatures is around 320°C. Acknowledgement My sincerest gratitude goes to Azumah Resources Limited, the owners of Julie, Bepkong and Kunche gold deposits in NW Ghana, for allowing me to you use their deposits as the focus of my study and also financing the field work. This thesis would not have been possible without the support of the WAXI (West African Exploration Initiative) project. Many people near and afar supported me in immeasurable ways throughout this PhD. It is impossible to keep track of their generosity, hospitality and kindness. I am greatly indebted to Prof. Mark Walter Jessell for the confidence he had in me, proposing this PhD project and further went ahead to take me on as his student and nurturing my interest in metallogeny. I would like to thank Stefano Salvi, Didier Béziat, Lenka Baratoux and Luc Siebenaller for taking me on as their student and imparting some of their colossal knowledge in Geology on to me. I cannot thank them enough for their patience, excellent supervision, extraordinary insight, guidance and critical revision of my thesis. Special thanks goes to John Miller, Sylvain Block, Prosper Mackenzie Nude and the entire geological staff of Azumah Resources Limited for their insightful geological discussions about the various deposits I was dealing with. I will like to extent my gratitude to Nick Franey and Stephen Stone for taking the great risk to support and finance this work even with the downturn of global gold prices. I say “kudos” to Andrew Chubb for his valuable contributions towards my manuscripts. I would like to thank my family, especially my parents Peter Ofori Amponsah and Dorothy Akoi-Appiah, my sisters, my auntie Esther Akoi-Appiah and my in-laws Mr and Mrs Laud Mansfield Baddoo and their entire family for their immense support and prayers. I would also want to thank all the staff and workers of Azumah Resources Limited for their enormous support towards making this work a reality. Thanks to all my dear friends Manuel Dela Eli, Miriam Yahaya-Shiru, Wendy Annan, Kofi Eghan-Ekuban, Jennifer Agbetsoamedo, Emmanuel Abitty and Daniel Kwayisi for their support. Finally, I say ‘ayekoo’ to my dear and lovely wife, Mrs. Laudetta Amponsah for her steadfast love, support, patience and for providing me the motivation to complete this work. This thesis is dedicated to God almighty and my loving wife, Laudetta Awulaa Naa Lamiley Amponsah in appreciation of her love, patience and encouragement. Table of Contents Résumé ................................................................................................................................................... i Abstract ................................................................................................................................................. ii Acknowledgement ............................................................................................................................... iii Introduction ........................................................................................................................................... 1 Cadre général de la thèse ....................................................................................................................... 3 Géographie ............................................................................................................................................ 6 La zone d'étude et accessibilité Relief et réseau hydrographique Végétation, sols et climat Cartographie de terrain Background and Justification ............................................................................................................... 10 Geography ........................................................................................................................................... 12 Study area and Accessibility Relief and Drainage Vegetation, Soils and Climate Field work References ............................................................................................................................................ 14 Chapter 1 ............................................................................................................................................. 17 1.0 Overview of Orogenic Gold mineralization ................................................................................... 19 1.1 Introduction ................................................................................................................................... 19 1.2 Spatial and temporal distribution of Orogenic gold ...................................................................... 21 1.3 Control on relative and absolute timing ........................................................................................ 23 1.4 Global gold grade and tonnages associated with metamorphic gold .............................................. 26 1.5 Tectonic controls on Orogenic Gold mineralization ..................................................................... 28 1.6 Orogenic gold ore body geometry and ore body controls .............................................................. 30 1.7 Metamorphic grade ....................................................................................................................... 32 1.8 Hydrothermal alteration ................................................................................................................ 34 1.9 Sources of Gold ............................................................................................................................. 35 1.10 Fluid chemistry ...........................................................................................................................
Recommended publications
  • A Review of the Birimian Supergroup- and Tarkwaian Group-Hosted Gold Deposits of Ghana
    177 A review of the Birimian Supergroup- and Tarkwaian Group-hosted gold deposits of Ghana Albertus J. B. Smith1,2*, George Henry1,2 and Susan Frost-Killian3 1 DST-NRF Centre of Excellence for Integrated Mineral and Energy Resource Analysis, Department of Geology, University of Johannesburg, Auckland Park, 2006, South Africa. *Corresponding author e-mail address: [email protected] 2 Palaeoproterozoic Mineralisation Research Group, Department of Geology, University of Johannesburg, Auckland Park, 2006, South Africa 3 The MSA Group, 20B Rothesay Avenue, Craighall Park, 2196, South Africa DOI: 10.18814/epiiugs/2016/v39i2/95775 Ghana is the largest producer of gold in West Africa, veins. The vein- and sulphide-hosted gold is strongly a region with over 2,500 years of history with regards to associated with deformational fabrics formed by the gold production and trade. Modern exploration for and Eburnean extensional and compressional events, mining of gold in Ghana dates from 1874 with the respectively, suggesting that disseminated sulphide establishment of the British Gold Coast Colony, which mineralisation predates quartz vein-hosted was followed in 1957 by the independence of Ghana and mineralisation. The fluid from which the gold precipitated increased gold production since the early 1980s through is believed to have been of metamorphic origin and Ghana’s Economic Recovery Plan. At the time of writing, carbon dioxide (CO2) dominated, with lesser water (H2O) gold production (108.2 tonnes or 3.48 million ounces and nitrogen (N2) and minor methane (CH4). Gold [Moz] in 2014) accounted for approximately one-third precipitation was probably caused by decrease in of Ghana’s export revenues, with 36% of gold production pressure, temperature and CO2-H2O immiscibility, at coming from small-scale mining.
    [Show full text]
  • The Geology of the Gold Deposits of Prestea Gold Belt of Ghana*
    The Geology of the Gold Deposits of Prestea Gold Belt of Ghana* K. Dzigbodi-Adjimah and D. Nana Asamoah Dzigbodi-Adjimah, K. and Nana Asamoah, D., (2009), “The Geology of the Gold Deposits of Prestea Gold Belt of Ghana”, Ghana Mining Journal, Vol. 11, pp. 7 - 18. Abstract This paper presents the geology of the gold deposits along the Prestea gold belt of Ghana to assist exploration work for new orebodies along the belt. Prestea district is the third largest gold producer in West Africa after Obuasi and Tarkwa districts (over 250 metric tonnes Au during the last century). The gold deposits are structurally controlled and occur in a deep-seated fault or fissure zone that is regarded as the ore channel. This structure, which lies at the contact between metavolcanic and metasedimentary rocks in Birimian rocks, is more open (and contains more quartz lodes) at the southern end around Prestea than at Bogoso to the north. The gold deposits consist of the Quartz Vein Type, (QVT) and the Dis- seminated Sulphide Type (DST). The QVT orebodies, which generally carry higher Au grades, lie within a graphitic gouge in the fissure zones whilst the DST is found mostly in sheared or crushed rocks near the fissure zones. Deposits were grouped into three in terms of geographic location and state of development; The deposits south of Prestea are the least developed but have been extensively explored by Takoradi Gold Company. Those at Prestea have been worked exclusively as underground mines on QVT orebodies by Prestea Goldfields Limited and its forerunners; Ariston and Ghana Main Reef companies until 1998 whilst the deposits north of Prestea, which were first worked as surface mines (on DST orebodies) by Marlu Mines up to 1952, were revived by Billiton Bogoso Gold in 1990.
    [Show full text]
  • I U R E P Orientation Phase R E P O R T G H a 1\F A
    International Atomic Energy Agency DRAFT I U R E P ORIENTATION PHASE REPORT G H A 1\F A MR. JEW-PAUL GUELPA MR. WOLFRAM TO GEL December 1982 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document UTTEENATIOITAL URANIBK RESOURCES. EVALUATION PROJECT -IURBP- IUSSP ORIENTATION FHAS3 MISSION REPORT BSPTOLIC OP GHANA Dr. J.Fo Guelpa December, 1982. Dro "W. Vogel PREFACE mission, was undertaken, by two consultants, Dr. JoP. Guelpa and Dr. W, Vogel, both, commenced the investigations in Ghana on 5th November, 1982 and completed their work on 16th December, 1982. A total of three days was spent in the field by the consultants* 1. Terse of Ilsferenie .. ., 5 2. General Geography .. .. 4 3. Clirate .. ... 7 4. Population aril I-lain Cities .. .. 9 5. Administrative Regions .. .. S- 6. Official Language, Public Holidays and System of Eeasureaervfc .. ., ll 7. Transport and Consronicatipn .. .. 11 8. Available "aps and Air Photographs .. 12 c. ITCK UB^ITK ICIITIKG n; GH^A • .. .. 13 1. Overview .. .. 13 2. Dianond .. ,. 15 3. Gold .. .. 17 . • 4. Batfzite .. • .. 'IS 5. Manganese .. .. 18 D. IBGI3LATICH ON UEAiTITJK EXPLCHASCtf AlTD XIIIDTG 19 3. KATIOKAL CAFACITI PCS URAFIUI! SXPLORATIC1T AIT3 D272L0P- 1. Ghana Atoiaic Energy CoEE&ssion .. 20 2. Ghana Geological Survey .. .. 22 3. Universities .. .. 24 F. GnOL'OGIC/i 3ST.12r.7 . .. 25 1. Introduction .. ' .. 25 2. The 'vest African Shield Area .. .. 27 2.1 Birician Systec .. .. 27 2.2 Eburnean Granites .. .. 32 2.3 Taria-;aian System .. .. 35 3. Sie Kobile Belt ... .. 3S 3.1 Dahoneyan System •• •• 35 3.2 ?cgc Series •• •• 4C 3 .3 Buen.
    [Show full text]
  • Insights on the Crustal Evolution of the West African (Raton from Hf Isotopes in Detrital Zircons from the Anti-Atlas Belt
    Insights on the crustal evolution of the West African (raton from Hf isotopes in detrital zircons from the Anti-Atlas belt a b c d b ]acobo Abati ,., Abdel Mohsine Aghzer , 1 , Axel Gerdes , ,2, Nasser Ennih • Departamento de Petrologfa y Geoquimica and Instituto de Geologia Econ6mica, Universidad Comp!utense/Consejo Superior de Investigaciones Cientificas. 28040 Madrid, Spain b Departament Ge% gie. Faculte des Sciences, Universite Chouaib Doukkali, EIJadida. Morocco c InstitutftirGeowissenschaften. Minera/ogie, Goethe-UniversityFrankfurt (GUF),Altenhoferallee 1. D-60438 Frankfurt amMain, Gennany d Department of Earth Sciences, SteIIenbosch University.Private BagXl. Matieland 7602, South Africa ABSTRACT The Lu-Hf isotopic composition of detrital zircons has been used to investigate the crustal evolution of the northern part of the West African (raton (WAC). The zircons were separated from six samples of siliciclastic sedimentary rocks from the main Neoproterozic stratigraphic units of the Anti-Atlas belt, from the SiIWa and Zenaga inliers. The data suggest that the north part of the WAC formed during three cycles of juvenile crust formation with variable amount of reworking of older crust. The younger group of zircons, with a main population clustering around 610 Ma, has a predominant juvenile character and Keyworili: evidences of moderate mixing with Paleoproterozoic and Neoarchean crust, which supports that most Anti-Atlas belt igneous and metamorphic rocks where zircons originally crystallized were formed in an ensialic mag­ Morocco Hfisotopes matic arc environment. The group of zircons in the age range 1.79-2.3 Ca corresponds to the major crust Detrital zircon forming event in the WAC: the Eburnian orogeny.
    [Show full text]
  • Sa˜O Luıs Craton and Gurupi Belt (Brazil)
    Sa˜o Luı´s Craton and Gurupi Belt (Brazil): possible links with the West African Craton and surrounding Pan-African belts E. L. KLEIN1,2 & C. A. V. MOURA3 1CPRM (Companhia de Pesquisa de Recursos Minerais)/Geological Survey of Brazil, Av. Dr. Freitas, 3645, Bele´m-PA, CEP 66095-110, Brazil (e-mail: [email protected]) 2Researcher at CNPq (Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico) 3Laborato´rio de Geologia Isoto´pica/Para´-Iso, Universidade Federal do Para´, Centro de Geocieˆncias, CP 1611, Bele´m-PA, Brazil, CEP 66075-900 Abstract: The Sa˜o Luı´s Craton and the Palaeoproterozoic basement rocks of the Neoproterozoic Gurupi Belt in northern Brazil are part of an orogen having an early accretionary phase at 2240– 2150 Ma and a late collisional phase at 2080 + 20 Ma. Geological, geochronological and isotopic evidence, along with palaeogeographic reconstructions, strongly suggest that these Brazilian terrains were contiguous with the West African Craton in Palaeoproterozoic times, and that this landmass apparently survived subsequent continental break-up until its incorporation in Rodinia. The Gurupi Belt is an orogen developed in the southern margin of the West African–Sa˜o Luı´s Craton at c. 750–550 Ma, after the break up of Rodinia. Factors such as present-day and possible past geographical positions, the timing of a few well-characterized events, the structural polarity and internal structure of the belt, in addition to other indirect evidence, all favour correlation between the Gurupi Belt and other Brasiliano/Pan-African belts, especially the Me´dio Coreau´ domain of the Borborema Province and the Trans-Saharan Belt of Africa, despite the lack of proven physical links between them.
    [Show full text]
  • Asanko Report
    Technical Report on Asanko Gold Project, Ashanti Region Ghana 1 An Independent Qualified Persons’ Report On ASANKO GOLD MINE in the Ashanti Region, Ghana Effective Date: 30 September 2014 Issue Date: 24 October 2014 Reference: AGM_001 Authors: CJ Muller (Director): B.Sc. (Hons) (Geol.) Pr. Sci. Nat A. Umpire (Geology Manager) B.Sc. (Hons.) (Geol. Eng.), Pr.Sci.Nat B.Sc. Hons. (IT) MBA Suite 4 Coldstream Office Park Cnr Hendrik Potgieter & Van Staden Streets Little Falls, Roodepoort, South Africa Tel: +27 │ Fax: +27 Directors:, CJ Muller Registration CJM Consulting Technical Report on Asanko Gold Project, Ashanti Region Ghana 2 INFORMATION RISK This Report was prepared by CJM Consulting (Pty) Ltd (“CJM”). In the preparation of the Report, CJM has utilised information relating to operational methods and expectations provided to them by various sources. Where possible, CJM has verified this information from independent sources after making due enquiry of all material issues that are required in order to comply with the requirements of the NI 43-101 and SAMREC Reporting Codes. OPERATIONAL RISKS The business of mining and mineral exploration, development and production by their nature contain significant operational risks. The business depends upon, amongst other things, successful prospecting programmes and competent management. Profitability and asset values can be affected by unforeseen changes in operating circumstances and technical issues. POLITICAL AND ECONOMIC RISK Factors such as political and industrial disruption, currency fluctuation and interest rates could have an impact on future operations, and potential revenue streams can also be affected by these factors. The majority of these factors are, and will be, beyond the control of any operating entity.
    [Show full text]
  • Petrography of Detrital Zircons from Sandstones of the Lower Devonian Accraian Formation, SE Ghana: Implications on Provenance
    Received: 13 February 2019 Revised: 19 June 2019 Accepted: 4 August 2019 DOI: 10.1002/gj.3633 RESEARCH ARTICLE Petrography of detrital zircons from sandstones of the Lower Devonian Accraian Formation, SE Ghana: Implications on provenance Chris Y. Anani1 | Richard O. Anim1 | Benjamin N. Armah1 | Joseph F. Atichogbe1 | Patrick Asamoah Sakyi1 | Edem Mahu2 | Daniel K. Asiedu1 1 Department of Earth Science, University of Ghana, Accra, Ghana Integrated petrographic studies entailing quartz‐type analysis and zircon typologic 2 Department of Marine Fisheries Sciences, studies were carried out on sandstones of the Lower Devonian Accraian Formation University of Ghana, Accra, Ghana of southern Ghana to constrain their provenance and tectonic setting. The stratigraphic Correspondence succession of the Devonian Accraian Group consists mainly of sandstones in the Lower Chris Y. Anani, Department of Earth Science, – University of Ghana, PO Box LG 58, Legon, Accraian Formation, shales in the Middle Accraian Formation, and sandstone shale Accra, Ghana. intercalations in the Upper Accraian Formation. Systematic sampling of sandstones Email: [email protected]; agbekoen@yahoo. com was conducted in the Lower Devonian Accraian Formation. Modal petrographic analy- sis indicates that the sandstones are quartz arenites with their framework grains Funding information Department of Earth Science Capacity Building consisting on average of, 99.8% quartz, 0.14% lithics with little or no feldspars. They Project, University of Ghana are subangular to subrounded in shape. Modal mineralogy of the sandstones suggests Handling Editor: I. Somerville that they are of craton interior origin with an affinity to recycled orogenic provenance. Quartz‐type analysis was used to unravel distinct characteristic features of the quartz grain, namely its polycrystallinity, nonundulose, and undulose nature to constrain the source rock.
    [Show full text]
  • Gold in Mali
    Acta Montanistica Slovaca Ročník 4 (1999), 4, 311-318 Gold in Mali 1 Imrich Kušnír Zlato v Mali Článok sa, okrem stručného úvodu do geológie regiónu, zaoberá popisom hlavných zlatých ložísk Mali, kde sa t.č. ťaží viac ako 20 t zlata ročne. Súčasné objavy zlata v tejto Západoafrickej krajine sú totiž príkladom, ako orientácia geologického prieskumu územia s dobrým potenciálom pre určitú nerastnú surovinu a použitie vhodnej metódy môže viesť k úspechu. Zlato sa v Mali ťaží už od nepamäti, ale ekonomicky významné ložiská (s prepočítanými zásobami 50 až 240 ton Au), sú objavované len v poslednom období. Presnejšie odvtedy, odkedy sa prieskum sústredil na zóny proterozoických epimetamorfovaých vulkano-sedimentárnych hornín (tzv. Birrimian greenstone belts) Západoafrického kratónu, s použitím geochémie, ako jednej z hlavných prieskumných metód. Keď si prieskumári uvedomili, že "Birrimian" môže mať rovnaký potenciál na zlato ako archaické "greenstones", ktoré sú hlavným zdrojom zlata na svete a že geochémia môže byt účinnou metódou pre prieskum krajiny s plochým povrchom, bez východov hornín, ktorá je charakteristická pre väčšinu územia Mali (a celej Západnej a Strednej Afriky). Key words: Mali, West Africa, West African craton, Tuareg shield, Proterozoic, Birrimian, Pan-african orogeny, precambrian greenstones, gold, lode gold, auriferous tourmalinites. Introduction Gold mining in Mali has a long history. In 1433, its renowned emperor Kanku Mussa brought 8 tons of gold on his pilgrimage to Mecca. Local population has exploited gold since immemorial times. Nowadays, several thousands of "artisan" miners exploit numerous sites and their production is estimated at more than 2 tons of gold per year. Industrial mining began in the 1970's (Kalana mine), following a large exploration programme by SONAREM with the soviet assistance (Golder et al., 1965; Boltroukevitch, 1973).
    [Show full text]
  • Bougouni-Kékoro Basin, Leo-Man Shield)
    Open Journal of Geology, 2021, 11, 105-141 https://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 Petro-Structural Study of the Paleoproterozoic Formations of the Faboula Gold Deposit (Bougouni-Kékoro Basin, Leo-Man Shield) Ousmane Wane1*, Amadou Baby Ouologuem1, Ismaïla N’diaye2, Ousmane Dao2, Mamadou Yossi3 1Laboratoire de Minéralogie et de Pétrologie, Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, BP E 3206, Colline de Badalabougou, Bamako, Mali 2Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, BP E 3206, Colline de Badalabougou, Bamako, Mali 3Sagax Afrique S.A Geophysical Surveys and Consulting, Ouagadougou, Burkina Faso How to cite this paper: Wane, O., Ouolo- Abstract guem, A.B., N’diaye, I., Dao, O. and Yossi, M. (2021) Petro-Structural Study of the Recent petro-structural investigations on the Faboula gold deposit located in Paleoproterozoic Formations of the Fabou- the Bougouni-Kékoro basin, in southern Mali, north-west of the Leo-Man la Gold Deposit (Bougouni-Kékoro Basin, Shield, have provided new data on the nature and spatial organization of the Leo-Man Shield). Open Journal of Geology, 11, 105-141. lithostratigraphic units as well as their deformation style. The deposit is cov- https://doi.org/10.4236/ojg.2021.114007 ered by a thick lateritic layer and is hosted by a metavolcano-sedimentary se- quence of Paleoproterozoic age intersected by intrusive bodies and filled Received: March 10, 2021 fractures of various shapes and types. The lithostratigraphic units consist of Accepted: April 23, 2021 Published: April 26, 2021 metagreywackes, metasiltstones, meta-argillites, slates and schists.
    [Show full text]
  • Technical Report for the First Disclosure of a Mineral Reserve Estimate for a Material Property
    Technical Report for the First Disclosure of a Mineral Reserve Estimate for a Material Property Wassa Mine, South West Ghana prepared for Golden Star Resources Ltd. Denver, Colorado submitted by David Alexander C.Eng Bogoso Gold Limited Bogoso, Ghana 1st August 2003 Report No. 010803/DA TABLE OF CONTENTS 1 Summary .............................................................................................................................................1 2 Introduction and Terms of Reference.............................................................................................3 3 Disclaimer............................................................................................................................................4 4 Property Description and Location.................................................................................................4 5 Accessibility, Climate, Local Resources, Infrastructure and Physiography ............................6 6 History .................................................................................................................................................6 7 Geological Setting...............................................................................................................................7 7.1 Deposit Type................................................................................................................................12 7.2 Stratigraphy.................................................................................................................................12
    [Show full text]
  • The Potential for Diamonds in Liberia
    ANDS, MIN L ES F O & Y GICAL SU E R LO RV N O E T E Y E S G I R G N I Y M R E IA P R UB E LIC OF LIB The potential for diamonds in Liberia liberia diamond cover.indd 1 21/01/2016 09:33:29 Liberia — an under-explored West African diamond region: ▪▪ More than 160 known occurrences of kimberlite, with many part of a single province that includes diamondiferous kimberlites in neighbouring Sierra Leone and Guinea. ▪▪ A long history of alluvial diamond production in western and central Liberia. ▪▪ Potential for new alluvial and bedrock diamond discoveries in under-explored Archean terrane. Diamonds in West Africa Diamonds in West Africa are produced from (>300 kilometres), Archean crust with low both primary (bedrock) kimberlite sources and geothermal heat flow (c. 40 mW/m2), representing secondary (alluvial) placers in Ghana, Guinea, a favourable tectonic environment for economic Sierra Leone, Togo and Liberia. West African kimberlites (Kjarsgaard, 2007). It is host to diamonds account for approximately one per cent numerous kimberlite pipes and dykes, some of of the global production of diamonds (BGS, 2015). which are known to be diamondiferous. Published information about West African kimberlites is The Man Shield, that underlies a large part of generally sparse, with those in Sierra Leone being central and western Liberia, is an area of thick the most studied. West African kimberlites can be ¨ 13°W 12°W 11°W 10°W ¨ 9°W 8°W 7°W ¨ ¨ ¨ ¨ ¨ ¨ !¨ ¨ ¨ ! ¨ N Banankoro N ¨ ¨ Bouro 9° ¨ 9° ± Baoulé ¨ ¨ ! ¨ Koidu ! ¨ ! ! ! Mandala Droujba ! X! X
    [Show full text]
  • Investigating Gold Mineralization Potentials in Part of the Kibi-Winneba Belt of Ghana Using Airborne Magnetic and Radiometric D
    INVESTIGATING GOLD MINERALIZATION POTENTIALS IN PART OF THE KIBI-WINNEBA BELT OF GHANA USING AIRBORNE MAGNETIC AND RADIOMETRIC DATA By CHRISTOPHER AKULGA, BSc Applied Physics (Hons) A Thesis Submitted to the Department of Physics, Kwame Nkrumah University of Science and Technology in partial fulfillment of the requirements for the degree of MASTER OF PHILOSOPHY (GEOPHYSICS) College of Science Supervisor: Dr. K. Preko ©Department of Physics JUNE, 2013 Certification I hereby certify that this thesis work is my own work as part of the requirements for the award of a Master of philosophy degree, and that it contains no material previously published by another person or material which has been accepted for the award of any other degree by the university, except where due acknowledgement has been made in the text. …………………… …………… ………………. Student name & ID Signature Date Certified by: …………………… …………… ………………. Supervisor(s) Name Signature Date Certified by: …………………… …………… ………………. Head of Dept. Name Signature Date ii Abstract Gold is an important resource located within the subsurface, and its mineralization is controlled by geology, structures and hydrothermal alteration within rock formations. The search for gold is therefore the search for structures within hydrothermally altered zones in the subsurface. For this reason two geophysical surveys namely airborne magnetic and radiometric, proven to be excellent in mapping structures, geology and hydrothermally altered zones were employed in the Birimian formation in the Eastern region of Ghana. The airborne magnetic and radiometric data obtained were processed into grids with Geosoft. Data enhancement filters such as reduction to the pole, vertical integral, analytical signal, first and second vertical derivatives and continuation filters were applied to the total magnetic intensity grid to enhance anomalies.
    [Show full text]