Seismic Activity in Ghana: Past, Present and Future

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Activity in Ghana: Past, Present and Future View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Earth-prints Repository ANNALS OF GEOPHYSICS, VOL. 47, N. 2/3, April/June 2004 Seismic activity in Ghana: past, present and future Paulina Ekua Amponsah Geological Survey Department, Accra, Ghana Abstract Though Ghana is far away from the major earthquake zones of the world, it is prone to earthquake disaster. Ghana has records of damaging earthquakes dating as far back as 1615. The last three major events occurred in 1862, 1906 and 1939. This paper presents the main historical and current instrumental recorded earthquakes of Ghana and the steps being taken to mitigate the negative effects of such disastrous occurrences in the country. The discussion is based on historical and current data obtained from the seismological observatories in Accra and Kukurantumi. Historical earthquakes of magnitude greater than 6.0 and current local tremors with magni- tudes ranging from 1.0 to 4.8 on the Richter scale have been recorded since the establishment of the seismograph stations. Key words Ghana – seismicity mograph was in operation. In March 1973, a seismograph observatory equipped with a WorldWide Standard Seismograph Network 1. Introduction (WWSSN) system was established at Kukuran- tumi in Eastern Ghana. It operated continuous- Ghana is located on the southeastern margin ly until October 1974 and then intermittently of the West Africa craton and is far away from until continuous recording began again in 1977 the major earthquake zones that mark the pres- (Quaah, 1980). At present, there is a nine-sta- ent day lithospheric plate boundaries. However, tion radio telemetric network with a central a number of major and minor earthquakes have recording station at the Head Office of the Ge- struck the country in past and present. Earth ological Survey Department in Accra. It is an tremors of magnitude ranging from 1.0 to 4.8 analog recording system. Plans are underway to on the Richter scale have been recorded in re- procure a digital recording system. Heat pens cent times (fig. 1). (Hot-Stylus) are used for the recordings (Am- Instrumental recording of earthquakes in ponsah, 2002). Ghana began in 1914 when the colonial gov- ernment installed a Milne’s single-boom seis- mograph in the country. It operated until 1933 2. Geological setting and previous studies when it ceased recording (Banson, 1970) due to financial constraints. Several minor shocks About two thirds of the land surface of were recorded during the period when the seis- Ghana is covered by Birimian rocks that are of paleoproterozoic age. These rocks form the easternmost component of the Man Shield of West African craton that has remained stable Mailing Address: Dr. Paulina Ekua Amponsah, Geo- logical Survey Department, P.O. Box M. 80, Accra, Ghana; since 1.7 Ga. The eastern portion of the country e-mail: [email protected] is predominantly underlain by middle to late 539 Paulina Ekua Amponsah Fig. 1. Seismicity of southeastern Ghana. Proterozoic rock units that are differently boundary fault. It is evident from their results named as Dahomeyan, Togo, Buem and Voltain that there is a low level of seismic activity scat- belts (Leube, et al., 1990). tered along the Akwapim fault zone that could Work done by Bacon and Quaah (1981) in- be due to normal faulting suggested by Burke dicates that most of the earthquakes in Ghana (1969). In Quaah and Bacon’s view, the epicen- occur in the western part of Accra at the junc- tres of the located earthquakes are related to the tion of the two major fault systems namely, the level of activity of the faults. This they allege to Coastal boundary fault and Akwapim fault be due to the existence of an old thrust zone, zone. According to them most of the epicentres which has been reactivated. Burke (1971) asso- are located south of Weija suggesting that there ciated the seismic activity of Ghana with the is little activity north-eastward along the Ak- junction of the chain fracture zone and the wapim range and westward along the Coastal African continental margin. 540 Seismic activity in Ghana: past, present and future Blundell and Banson (1975), Blundell scale of India, unless otherwise stated. It ranges (1976), suggested that continuous strike – from I to X (Junner, 1941). There are no records slip movement on the Romanche fracture of earthquakes in Ghana between 1636 and zone adjacent to the West African continental 1858 but there is the possibility that there were margin may be the cause of the earthquakes. some minor shocks during the period. In 1858, Ambraseys and Adams (1986) studied the however, an earthquake was reported to have history of earthquakes in West Africa and been felt in Accra (Ambraseys and Adams, were of the view that Accra, the capital of 1986). Ghana is the most seismically active area in In 1862 a very strong earthquake struck the the region. capital city of Accra and caused considerable A recent review of geological and instru- damage to many important structures. Its maxi- mental recordings by Amponsah (2002) shows mum intensity and magnitude (ML) were esti- that earthquakes have occurred in the past and mated to be IX and 6.5 respectively (Quaah, are still liable to occur within the vicinity of the 1980). Ambraseys and Adams (1986) obtained intersection of the Akwapim fault zone and the a surface wave magnitude greater than or equal Coastal boundary fault. to 6.5 and a maximum intensity of IX (uncer- Microseismic studies in southern Ghana in- tain) on the MSK scale for this event. The cas- dicated that the seismicity is associated with ac- tle (the seat of government) and some forts were tive faulting (Essel, 1997) between the east- rendered uninhabitable, together with all stone west trending Coastal boundary fault and a buildings (Junner, 1941). Three people were northeast-southwest trending Akwapim fault killed in Accra. The earthquake shock was felt zone, defined by a number of active faults. A along the coast, east of Togo and in Benin, which geophysical study by Essel indicated that the are neighbouring countries to Ghana. An earth- seismic activity is related to deep-seated faults. quake, which was felt in Accra in 1863, appears to have been an aftershock of the 1862 earthquake but there is no detailed information on the event to 3. Earthquakes in Ghana confirm this. Two severe shocks rocked Accra in 1871 and 1872. The magnitudes of these events Junner (1941) gave a report on historical were 4.6 and 4.9 respectively and the maximum earthquakes in Ghana. Ambraseys and Adams intensities were VI and VII (Ambraseys and (1986) studied the seismicity of West Africa, Adams, 1986). The 1872 event caused damages to which included the history of earthquakes in buildings in Accra. In 1883 there was another mi- Ghana. Their findings on the history of earth- nor event, which was reported to have been felt in quakes in Ghana are presented in the paper. Accra (Junner, 1941). The first earthquake in Ghana according to Two severe shocks were felt in Eastern Ambraseys and Adams occurred in 1615. The Ghana and Togo at about 9:00 p.m. and 9:20 fortress of Sao Jorge at Elmina was destroyed. p.m. on 20 November 1906. The maximum in- This was followed by a few aftershocks a cou- tensity of the shocks was estimated to be VIII ple of months later. The earliest recorded earth- at Ho in the Eastern region of Ghana (Junner, quake in Ghana occurred at about 2:00 p.m. on 1941). The magnitude (ML) estimation was 6.2 18 December 1636 in the Axim district in (Quaah, 1980), however, Ambraseys and southwestern Ghana near the border between Adams’s estimation of the surface magnitude Ghana and the Ivory Coast. Its surface magni- (Ms) was 5.0 and the maximum intensity VIII tude (Ms) was 5.7 and the maximum intensity on the MSK scale, which they considered un- was IX on the MSK scale (Ambraseys and certain. Many buildings were greatly affected Adams, 1986). The buildings and underground by this event, some cracked and others partly workings of a gold mine at Aboasi, northeast of destroyed. No casualties were reported for this Axim collapsed burying many of the miners event, also felt by people in Togo and Benin. (Claridge, 1915). The intensities mentioned in During the same month several minor shocks the paper are based on the Modified Mercalli were felt lasting for three weeks. 541 Paulina Ekua Amponsah On 11 February 1907 a fairly strong shock events caused panic among the people in the af- was felt in Accra and Lome. An earthquake lo- fected areas (Amponsah, 2002). The National cated out to sea and accompanied by tidal Earthquake Information Centre (NEIC) in the waves destroyed the wharf at Lome in Togo on USA located the 6 March event at 5.518N, 11 May 1911. During the same day at 3:21 0.313W, body magnitude (MB) at 4.4 and at a p.m., an earthquake was felt in Accra but did depth of 10km. The local magnitude was 4.8 on not cause any damage (Junner, 1941). the Richter scale. The most destructive earthquake in Ghana Many minor tremors were recorded from that caused a lot of damage and loss of life and 1998 to 2002 with magnitudes ranging from property occurred on 22 June 1939. The earth- 1.0 to 3.0 on the Richter scale. The intensities quake occurred at about 7:20 p.m. and was felt range from I to IV. The magnitudes of the for about 20 to 30 seconds.
Recommended publications
  • Insights on the Crustal Evolution of the West African (Raton from Hf Isotopes in Detrital Zircons from the Anti-Atlas Belt
    Insights on the crustal evolution of the West African (raton from Hf isotopes in detrital zircons from the Anti-Atlas belt a b c d b ]acobo Abati ,., Abdel Mohsine Aghzer , 1 , Axel Gerdes , ,2, Nasser Ennih • Departamento de Petrologfa y Geoquimica and Instituto de Geologia Econ6mica, Universidad Comp!utense/Consejo Superior de Investigaciones Cientificas. 28040 Madrid, Spain b Departament Ge% gie. Faculte des Sciences, Universite Chouaib Doukkali, EIJadida. Morocco c InstitutftirGeowissenschaften. Minera/ogie, Goethe-UniversityFrankfurt (GUF),Altenhoferallee 1. D-60438 Frankfurt amMain, Gennany d Department of Earth Sciences, SteIIenbosch University.Private BagXl. Matieland 7602, South Africa ABSTRACT The Lu-Hf isotopic composition of detrital zircons has been used to investigate the crustal evolution of the northern part of the West African (raton (WAC). The zircons were separated from six samples of siliciclastic sedimentary rocks from the main Neoproterozic stratigraphic units of the Anti-Atlas belt, from the SiIWa and Zenaga inliers. The data suggest that the north part of the WAC formed during three cycles of juvenile crust formation with variable amount of reworking of older crust. The younger group of zircons, with a main population clustering around 610 Ma, has a predominant juvenile character and Keyworili: evidences of moderate mixing with Paleoproterozoic and Neoarchean crust, which supports that most Anti-Atlas belt igneous and metamorphic rocks where zircons originally crystallized were formed in an ensialic mag­ Morocco Hfisotopes matic arc environment. The group of zircons in the age range 1.79-2.3 Ca corresponds to the major crust Detrital zircon forming event in the WAC: the Eburnian orogeny.
    [Show full text]
  • Sa˜O Luıs Craton and Gurupi Belt (Brazil)
    Sa˜o Luı´s Craton and Gurupi Belt (Brazil): possible links with the West African Craton and surrounding Pan-African belts E. L. KLEIN1,2 & C. A. V. MOURA3 1CPRM (Companhia de Pesquisa de Recursos Minerais)/Geological Survey of Brazil, Av. Dr. Freitas, 3645, Bele´m-PA, CEP 66095-110, Brazil (e-mail: [email protected]) 2Researcher at CNPq (Conselho Nacional de Desenvolvimento Cientı´fico e Tecnolo´gico) 3Laborato´rio de Geologia Isoto´pica/Para´-Iso, Universidade Federal do Para´, Centro de Geocieˆncias, CP 1611, Bele´m-PA, Brazil, CEP 66075-900 Abstract: The Sa˜o Luı´s Craton and the Palaeoproterozoic basement rocks of the Neoproterozoic Gurupi Belt in northern Brazil are part of an orogen having an early accretionary phase at 2240– 2150 Ma and a late collisional phase at 2080 + 20 Ma. Geological, geochronological and isotopic evidence, along with palaeogeographic reconstructions, strongly suggest that these Brazilian terrains were contiguous with the West African Craton in Palaeoproterozoic times, and that this landmass apparently survived subsequent continental break-up until its incorporation in Rodinia. The Gurupi Belt is an orogen developed in the southern margin of the West African–Sa˜o Luı´s Craton at c. 750–550 Ma, after the break up of Rodinia. Factors such as present-day and possible past geographical positions, the timing of a few well-characterized events, the structural polarity and internal structure of the belt, in addition to other indirect evidence, all favour correlation between the Gurupi Belt and other Brasiliano/Pan-African belts, especially the Me´dio Coreau´ domain of the Borborema Province and the Trans-Saharan Belt of Africa, despite the lack of proven physical links between them.
    [Show full text]
  • Gold in Mali
    Acta Montanistica Slovaca Ročník 4 (1999), 4, 311-318 Gold in Mali 1 Imrich Kušnír Zlato v Mali Článok sa, okrem stručného úvodu do geológie regiónu, zaoberá popisom hlavných zlatých ložísk Mali, kde sa t.č. ťaží viac ako 20 t zlata ročne. Súčasné objavy zlata v tejto Západoafrickej krajine sú totiž príkladom, ako orientácia geologického prieskumu územia s dobrým potenciálom pre určitú nerastnú surovinu a použitie vhodnej metódy môže viesť k úspechu. Zlato sa v Mali ťaží už od nepamäti, ale ekonomicky významné ložiská (s prepočítanými zásobami 50 až 240 ton Au), sú objavované len v poslednom období. Presnejšie odvtedy, odkedy sa prieskum sústredil na zóny proterozoických epimetamorfovaých vulkano-sedimentárnych hornín (tzv. Birrimian greenstone belts) Západoafrického kratónu, s použitím geochémie, ako jednej z hlavných prieskumných metód. Keď si prieskumári uvedomili, že "Birrimian" môže mať rovnaký potenciál na zlato ako archaické "greenstones", ktoré sú hlavným zdrojom zlata na svete a že geochémia môže byt účinnou metódou pre prieskum krajiny s plochým povrchom, bez východov hornín, ktorá je charakteristická pre väčšinu územia Mali (a celej Západnej a Strednej Afriky). Key words: Mali, West Africa, West African craton, Tuareg shield, Proterozoic, Birrimian, Pan-african orogeny, precambrian greenstones, gold, lode gold, auriferous tourmalinites. Introduction Gold mining in Mali has a long history. In 1433, its renowned emperor Kanku Mussa brought 8 tons of gold on his pilgrimage to Mecca. Local population has exploited gold since immemorial times. Nowadays, several thousands of "artisan" miners exploit numerous sites and their production is estimated at more than 2 tons of gold per year. Industrial mining began in the 1970's (Kalana mine), following a large exploration programme by SONAREM with the soviet assistance (Golder et al., 1965; Boltroukevitch, 1973).
    [Show full text]
  • Bougouni-Kékoro Basin, Leo-Man Shield)
    Open Journal of Geology, 2021, 11, 105-141 https://www.scirp.org/journal/ojg ISSN Online: 2161-7589 ISSN Print: 2161-7570 Petro-Structural Study of the Paleoproterozoic Formations of the Faboula Gold Deposit (Bougouni-Kékoro Basin, Leo-Man Shield) Ousmane Wane1*, Amadou Baby Ouologuem1, Ismaïla N’diaye2, Ousmane Dao2, Mamadou Yossi3 1Laboratoire de Minéralogie et de Pétrologie, Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, BP E 3206, Colline de Badalabougou, Bamako, Mali 2Faculté des Sciences et Techniques, Université des Sciences, des Techniques et des Technologies de Bamako, BP E 3206, Colline de Badalabougou, Bamako, Mali 3Sagax Afrique S.A Geophysical Surveys and Consulting, Ouagadougou, Burkina Faso How to cite this paper: Wane, O., Ouolo- Abstract guem, A.B., N’diaye, I., Dao, O. and Yossi, M. (2021) Petro-Structural Study of the Recent petro-structural investigations on the Faboula gold deposit located in Paleoproterozoic Formations of the Fabou- the Bougouni-Kékoro basin, in southern Mali, north-west of the Leo-Man la Gold Deposit (Bougouni-Kékoro Basin, Shield, have provided new data on the nature and spatial organization of the Leo-Man Shield). Open Journal of Geology, 11, 105-141. lithostratigraphic units as well as their deformation style. The deposit is cov- https://doi.org/10.4236/ojg.2021.114007 ered by a thick lateritic layer and is hosted by a metavolcano-sedimentary se- quence of Paleoproterozoic age intersected by intrusive bodies and filled Received: March 10, 2021 fractures of various shapes and types. The lithostratigraphic units consist of Accepted: April 23, 2021 Published: April 26, 2021 metagreywackes, metasiltstones, meta-argillites, slates and schists.
    [Show full text]
  • Technical Report for the First Disclosure of a Mineral Reserve Estimate for a Material Property
    Technical Report for the First Disclosure of a Mineral Reserve Estimate for a Material Property Wassa Mine, South West Ghana prepared for Golden Star Resources Ltd. Denver, Colorado submitted by David Alexander C.Eng Bogoso Gold Limited Bogoso, Ghana 1st August 2003 Report No. 010803/DA TABLE OF CONTENTS 1 Summary .............................................................................................................................................1 2 Introduction and Terms of Reference.............................................................................................3 3 Disclaimer............................................................................................................................................4 4 Property Description and Location.................................................................................................4 5 Accessibility, Climate, Local Resources, Infrastructure and Physiography ............................6 6 History .................................................................................................................................................6 7 Geological Setting...............................................................................................................................7 7.1 Deposit Type................................................................................................................................12 7.2 Stratigraphy.................................................................................................................................12
    [Show full text]
  • The Potential for Diamonds in Liberia
    ANDS, MIN L ES F O & Y GICAL SU E R LO RV N O E T E Y E S G I R G N I Y M R E IA P R UB E LIC OF LIB The potential for diamonds in Liberia liberia diamond cover.indd 1 21/01/2016 09:33:29 Liberia — an under-explored West African diamond region: ▪▪ More than 160 known occurrences of kimberlite, with many part of a single province that includes diamondiferous kimberlites in neighbouring Sierra Leone and Guinea. ▪▪ A long history of alluvial diamond production in western and central Liberia. ▪▪ Potential for new alluvial and bedrock diamond discoveries in under-explored Archean terrane. Diamonds in West Africa Diamonds in West Africa are produced from (>300 kilometres), Archean crust with low both primary (bedrock) kimberlite sources and geothermal heat flow (c. 40 mW/m2), representing secondary (alluvial) placers in Ghana, Guinea, a favourable tectonic environment for economic Sierra Leone, Togo and Liberia. West African kimberlites (Kjarsgaard, 2007). It is host to diamonds account for approximately one per cent numerous kimberlite pipes and dykes, some of of the global production of diamonds (BGS, 2015). which are known to be diamondiferous. Published information about West African kimberlites is The Man Shield, that underlies a large part of generally sparse, with those in Sierra Leone being central and western Liberia, is an area of thick the most studied. West African kimberlites can be ¨ 13°W 12°W 11°W 10°W ¨ 9°W 8°W 7°W ¨ ¨ ¨ ¨ ¨ ¨ !¨ ¨ ¨ ! ¨ N Banankoro N ¨ ¨ Bouro 9° ¨ 9° ± Baoulé ¨ ¨ ! ¨ Koidu ! ¨ ! ! ! Mandala Droujba ! X! X
    [Show full text]
  • The Potential for Gold in Liberia
    ANDS, MIN L ES F O & Y GICAL SU E R LO RV N O E T E Y E S G I R G N I Y M R E IA P R UB E LIC OF LIB The potential for gold in Liberia liberia cover.indd 1 21/01/2016 09:28:22 Liberia — a major under-explored West African gold terrane: ▪▪ Recent exploration success and new mine development have led to a considerable increase in activity. ▪▪ 90 per cent of Liberia is underlain by the Archean and Birimian, two of the most productive gold-bearing terranes globally. ▪▪ These rocks host multi-million ounce gold deposits in neighbouring countries. ▪▪ Liberia has not been systematically explored using modern techniques and deposit models, so the potential for new discoveries is great. The geology of Liberia Liberia is located within the Man Shield, part of maps for the entire country, supported by field the West African Craton, which comprises two checking, allowed the bedrock geology and main major areas of Archean and Paleoproterozoic tectonic divisions of Liberia to be defined. rocks. Liberia was mapped during the 1970s in a joint programme between the Liberia Geological Liberian age (2.5–3.0 Ga) Archean basement, Survey (LGS) and the United States Geological extending across central and western Liberia, is Survey (USGS). Aeromagnetic and aeroradiometric characterised by a granite-greenstone association 12°W 11°W 10°W 9°W8°W 7°W Voinjama Be drock gold occurrences " ge 1New Liberty " Foya ± Mano River Ran 2Weaju zi GUINEA -Wologizi Range gi 3Ndablama SIERRA LEONE Wolo 4Innis N °N 5 Leopard Rock Masawo-Zolowo 8° 6Gondoja -Zorzor " Zorzor 7Mandingo Hill Bopolu-Wuesua A F -Tawalata O mba Range 8Mt Coffee L Ni 9 Lucky Hill YAMBESEIKpo Bea Mountain Mountains 10 Gayama 10 " Sanniquellie 11 Kle Kle " Karnplay 6 12 " 12 Toto Mountain Range 2 3 9 Ganta 13 Tortor Mountain 5 13 N8 " 14 River Cess N 7° Gbarnga " 1 Sacleapea 7° 15 Kokoya " Tubmanburg St.
    [Show full text]
  • Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana
    Prepared in cooperation with the Geological Survey Department, Minerals Commission, and Precious Minerals Marketing Company of Ghana under the auspices of the U.S. Department of State Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana Scientific Investigations Report 2010–5045 U.S. Department of the Interior U.S. Geological Survey Cover. The Bonsa River flowing west-northwest from the village of Bonsa, March 2009. Alluvial Diamond Resource Potential and Production Capacity Assessment of Ghana By Peter G. Chirico, Katherine C. Malpeli, Solomon Anum, and Emily C. Phillips Large alluvial diamond mining site at alluvial flat in Wenchi, March 2009 Prepared in cooperation with the Geological Survey Department, Minerals Commission, and Precious Minerals Marketing Company of Ghana under the auspices of the U.S. Department of State Scientific Investigations Report 2010–5045 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report.
    [Show full text]
  • West African Goldfields
    155 West African Goldfields M. Robertson1 and L. Peters2 The MSA Group, 20B Rothesay Avenue, Craighall Park, 2196, South Africa E-mail: [email protected]; [email protected] DOI: 10.18814/epiiugs/2016/v39i2/95773 The West African region has long been known for Introduction its gold endowment and gold production. Apart from The gold potential of West Africa has long been known, with the last 20 to 30 years, this production was largely informal artisanal mining having taken place for centuries. However, derived from informal artisanal workings covering modern systematic exploration and commercial scale mining have large areas of West Africa. For a period of over a only come into their own relatively recently. Ghana has long been the thousand years until 1500 AD, West Africa was the second largest gold producer on the African continent after South world’s most important supplier of gold, much of Africa, having produced 2.85 million troy ounces (Moz) in 2013. The increasing importance of West Africa as a gold producing region which formed part of the trans-Sahara trade with is reflected in Mali and Burkina Faso which have become the third the Arab world, whose monetary system was based on and fifth largest African producers respectively, the former having gold. Artisanal gold mining is still widespread across yielded 1.42 Moz and the latter 0.77 Moz in 2013. West Africa and a significant number of modern gold The majority of gold deposits on the West African Craton are hosted in Palaeoproterozoic rocks of the Birimian Supergroup, and mines in the region were founded on artisanal mining are temporally and spatially related to structures formed during the sites.
    [Show full text]
  • The Potential for Iron Ore in Liberia
    ANDS, MIN L ES F O & Y GICAL SU E R LO RV N O E T E Y E S G I R G N I Y M R E IA P R UB E LIC OF LIB The potential for iron ore in Liberia liberia ironore cover.indd 1 21/01/2016 09:37:17 Liberia – an under-explored West African iron ore region: ▪▪ A major historic iron ore producer — Africa’s leading producer in the 1970s. ▪▪ Approximately 65 per cent of Liberia is underlain by Archean rocks, the world’s main source of iron ore today. ▪▪ West Africa has world-class iron ore resources and is an expanding producer of global importance. ▪▪ Digital geological and aeromagnetic data available for the whole of Liberia. ▪▪ Significant potential for new discoveries in large, poorly known and under-explored areas. Iron ore in West Africa West Africa has numerous deposits and major important and widespread deposits are ‘banded resources of iron ore. Currently it accounts for iron formations’ (BIFs), most of which belong to a 15 per cent of African production with most mines Lower Proterozoic supracrustal sequence that rests located in supracrustal rocks in Sierra Leone, unconformably on crystalline Archean basement Guinea and Liberia (BGS, 2015). Various types of of the Man Shield, the southern part of the West iron ore deposit have been recognised. The most African craton that underlies much of the region. 13°W 12°W 11°W 10°W 9°W 8°W ! Wologizi Simandou Voinjama " ± " Foya ange e nge SIERRA LEONE ! i R GUINEA Rang N a N 8° Kpo Ra Wologiz 8° Nimb " Zorzor Western Range Mano to Cluster Western River Kpo To " ! @ Yekepa" Range Project Bea @ Sanniquellie
    [Show full text]
  • Amponsah Thesis 2015
    é Résumé L’objectif de ce travail de thèse était de réaliser une étude structurale détaillée des minéralisations et des zones d’altération associées, de trois gisements d’or situés au Nord- Ouest du Ghana, sur la marge orientale du Craton Ouest Africain: Kunche et Bepkong, situés dans la ceinture de Wa-Lawra, et Julie situé dans la ceinture de Julie. Ces trois gisements présentent de multiples différences d’ordre géologique, structural, tectonique et géochimique, mais leur caractéristique commune est que leur minéralisation est associée à un métamorphisme de faciès schiste vert. A Julie, la minéralisation aurifère est encaissée dans des granitoïdes de composition tonalite- trondhjemite-granodiorite (TTG) alors qu’à Kunche et Bepkong elle est localisée au sein de formations sédimentaires volcanoclastiques et de schistes graphiteux fortement silicifiés. Cette minéralisation est associée à un réseau de veines souvent boudinées de quartz formées en relation avec une zone de cisaillement orientée Est-Ouest à Julie, mais N à NNO à Kunche et Bepkong, constituant un couloir de déformation de 0.5 à 3,5 km de longueur et de 20 à 300 m de puissance suivant les gisements. La paragenèse d’altération dominante de la zone minéralisée est à séricite, quartz, carbonate et sulfures, et suivant la nature de la roche hôte se rajouteront par exemple la tourmaline dans les granitoïdes et la chlorite dans les schistes ou les métavolcanites. A Julie, l’or est étroitement associé à la pyrite alors qu’à Kunche et Bepkong l’or est associé à l’arsénopyrite. Deux générations d’or sont distinguées ; la première correspond à de l’or invisible associé aux zones de croissance primaire des cristaux de pyrite à Julie et d’arsénopyrite à Bepkong, et de l’or visible tardif en inclusion et plus fréquemment en remplissage de fractures.
    [Show full text]
  • Eburnean Deformation Pattern of Burkina Faso and the Tectonic Significance of Shear Zones in the West African Craton
    BSGF - Earth Sciences Bulletin 2020, 191, 2 © D. Chardon et al., Published by EDP Sciences 2020 https://doi.org/10.1051/bsgf/2020001 Available online at: www.bsgf.fr Eburnean deformation pattern of Burkina Faso and the tectonic significance of shear zones in the West African craton Dominique Chardon1,2,3,*, Ousmane Bamba1 and Kalidou Traoré1,2,4 1 Département des Sciences de la Terre, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso 2 IRD, Ouagadougou, Burkina Faso 3 GET, Université de Toulouse, IRD, CNRS, UPS, CNES, Toulouse, France 4 Laboratoire de cartographie, DER de Géologie, FST, Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali Received: 11 March 2019 / Accepted: 24 December 2019 Abstract – Shear zones of the Paleoproterozoic Eburnean accretionary Orogen (West African craton) are investigated by means of large-scale structural mapping. Regional scale (10-100 km) mapping was based on the aeromagnetic survey of Burkina Faso and craton-scale (1000 km) mapping on a compilation of fabric data. At both scales, shear zones are arranged as an anastomosed transpressional network that accommodated distributed shortening and lateral flow of the orogenic lithosphere between the converging Kénéma-Man and Congo Archean provinces. Structural interference patterns at both scales were due to three-dimensional partitioning of progressive transpressional deformation and interactions among shear zones that absorbed heterogeneities in the regional flow patterns while maintaining the connectivity of the shear zone network. Such orogen-scale kinematic patterns call for caution in using the deformation phase approach without considering the “bigger structural picture” and interpreting displacement history of individual shear zones in terms of plate kinematics.
    [Show full text]