Causes Medium-Chain 3

Total Page:16

File Type:pdf, Size:1020Kb

Causes Medium-Chain 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433634; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Murine deficiency of peroxisomal L-bifunctional protein (EHHADH) causes medium-chain 3- hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis Pablo Ranea-Robles1, Sara Violante1,2, Carmen Argmann1, Tetyana Dodatko1, Dipankar Bhattacharya3, Hongjie Chen1,4, Chunli Yu1,4, Scott L. Friedman3, Michelle Puchowicz5,6, Sander M. Houten1 1Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA 2The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. 3Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. 4Mount Sinai Genomics, Inc, Stamford, CT 06902, USA. 5Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA. 6Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA. Short title: The role of peroxisomal L-bifunctional protein Address for correspondence: Sander Houten, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Box 1498, New York, NY 10029, USA. Phone: +1 212 659 9222, E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433634; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Peroxisomes play an essential role in the β-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA β-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA β-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L- bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA β-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA β-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA β-oxidation is a regulator of hepatic cholesterol biosynthesis. Keywords multifunctional enzyme 1; fatty acid oxidation; omega-oxidation; dodecanedioic acid; hexadecanedioic acid 2 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433634; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Introduction Fatty acid β-oxidation (FAO) constitutes the primary source of energy during metabolically demanding conditions such as fasting or exercise (Houten et al. 2016). The major FAO pathway is mitochondrial, but peroxisomes also harbor FAO pathways that metabolize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids and long-chain dicarboxylic acids (DCAs) (Wanders & Waterham 2006). These DCAs are products of fatty acid ω-oxidation, an alternative pathway for fatty acid metabolism initiated by microsomal cytochrome P450 enzymes of the CYP4A family (Hardwick et al. 1987; PREISS & BLOCH 1964). CYP4A enzymes catalyze the ω-hydroxylation of long-chain fatty acids that are subsequently converted into long-chain DCAs by the successive action of an alcohol and an aldehyde dehydrogenase. Peroxisomal β-oxidation of DCAs generates unique products such as adipic and succinic acid (Jin et al. 2015; Rusoff et al. 1960; Tserng & Jin 1991a), the latter being able to enter the TCA cycle. In addition, peroxisomal β-oxidation yields acetyl-CoA units, which have a variety of fates including lipogenesis, ketogenesis, or oxidation in the TCA cycle. These metabolic pathway connections suggest an important role for DCA β-oxidation in intermediary metabolism. Mitochondrial and peroxisomal FAO as well as ω-oxidation are usually induced in parallel, particularly in the liver and the kidney, under conditions of high lipid flux such as during fasting (Mortensen & Gregersen 1981; Pettersen et al. 1972). Notably, medium-chain dicarboxylic aciduria; i.e. the excretion of C6-, C8-, and C10-DCAs (adipic, suberic and sebacic acids, respectively) in the urine, is a feature shared between fasting individuals (ketosis) and patients with inherited defects in mitochondrial FAO (Fontaine et al. 1998; Gregersen et al. 1980; Karpati et al. 1975; Przyrembel et al. 1976; Röschinger et al. 2000; Vianey-Saban et al. 1998). These findings further illustrate the important role of fatty acid ω- oxidation and subsequent DCA β-oxidation under lipid metabolic stress. However, the physiological roles of DCA metabolism remain largely to be established. 3 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433634; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DCA metabolism begins with their activation by a dicarboxylyl-CoA synthetase (Vamecq et al. 1985). Subsequent DCA β-oxidation is thought to occur in peroxisomes (Dirkx et al. 2007; Ferdinandusse et al. 2004; Kølvraa & Gregersen 1986; Suzuki et al. 1989). Both EHHADH (also known as peroxisomal L-bifunctional protein, LBP) and HSD17B4 (also known as D-bifunctional protein, DBP) can catalyze the second and third steps of peroxisomal FAO. We and others have demonstrated that EHHADH plays a prominent role in the oxidation of long-chain DCAs (Ding et al. 2013; Dirkx et al. 2007; Ferdinandusse et al. 2004; Houten et al. 2012; Nguyen et al. 2008). Other peroxisomal proteins that participate in DCA metabolism are the ABCD3 transporter (van Roermund et al. 2014), ACOX1 (acyl-CoA oxidase 1) (Ferdinandusse et al. 2004; Poosch & Yamazaki 1989), and the thiolases ACAA1 (3-ketoacyl-CoA thiolase) and SCPx (sterol carrier protein X) (Ferdinandusse et al. 2004). In many cases, genetic evidence that links the encoding genes to DCA β-oxidation is lacking. In summary, ω-oxidation and subsequent peroxisomal DCA β-oxidation is an alternate pathway for fatty acid metabolism that does not rely on the classic mitochondrial FAO pathway. In this study, we assessed the contribution of candidate peroxisomal proteins to DCA β-oxidation using KO HEK-293 cell lines created by CRISPR-Cas9 genome editing. We also examined the physiological role of DCA β-oxidation through the study of the Ehhadh KO mouse model. Finally, we assessed the relevance of peroxisomal DCA metabolism in mouse models with mitochondrial FAO defects. The results of our study further highlight an important role for peroxisomal DCA β-oxidation in intermediary metabolism. 4 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433634; this version posted March 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Material and Methods Materials HEK-293 cells (ATCC® CRL-1573™) were obtained from the American Type Culture Collection (Manassas, VA, USA). Dulbecco’s modified Eagle’s medium (DMEM), Krebs–Henseleit buffer, William’s E Medium with GlutaMAX™ Supplement (WEGG), heat-inactivated fetal bovine serum (FBS), penicillin, streptomycin, and Lipofectamine 2000 were purchased from Thermo Fisher Scientific (Waltham, MA, USA). CRISPR-Cas9 plasmid [pSpCas9(BB)-2A–green fluorescent protein (GFP); PX458] (Ran et al. 2013) was obtained from Addgene (Watertown, MA, USA). The blocking buffer and the fluorescent secondary anti-rabbit and anti-mouse IgG antibodies were obtained from LI-COR 2 2 Biosciences (Lincoln, NE, USA). [ H]-water (99% enriched), the L-carnitine internal standard ( H9- 2 2 carnitine) and the acylcarnitine internal standard mix containing H9-carnitine, H3-acetylcarnitine (C2), 2 2 2 2 H3-propionylcarnitine (C3), H3-butyrylcarnitine (C4), H9-isovalerylcarnitine (C5), H3- 2 2 octanoylcarnitine (C8), H9-myristoylcarnitine (C14), and H3-palmitoylcarnitine (C16), were from Cambridge Isotope Laboratories (Tewksbury, MA, USA). Minimal essential medium, bovine serum albumin (fatty acid free), L-carnitine, lauric acid (C12:0), [U-13C]-dodecanedioic acid ([U-13C]-C12- DCA, 99 atom % 13C), dodecanedioic acid (C12-DCA), and hexadecanedioic
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Functional Significance of the Two ACOX1 Isoforms and Their
    Laboratory Investigation (2010) 90, 696–708 & 2010 USCAP, Inc All rights reserved 0023-6837/10 $32.00 Functional significance of the two ACOX1 isoforms and their crosstalks with PPARa and RXRa Aurore Vluggens1,2,3, Pierre Andreoletti1,2, Navin Viswakarma3, Yuzhi Jia3, Kojiro Matsumoto3, Wim Kulik4, Mushfiquddin Khan5, Jiansheng Huang3, Dongsheng Guo3, Sangtao Yu3, Joy Sarkar3, Inderjit Singh5, M Sambasiva Rao3, Ronald J Wanders4, Janardan K Reddy3 and Mustapha Cherkaoui-Malki1,2 Disruption of the peroxisomal acyl-CoA oxidase 1 (Acox1) gene in the mouse results in the development of severe microvesicular hepatic steatosis and sustained activation of peroxisome proliferator-activated receptor-a (PPARa). These mice manifest spontaneous massive peroxisome proliferation in regenerating hepatocytes and eventually develop hepatocellular carcinomas. Human ACOX1, the first and rate-limiting enzyme of the peroxisomal b-oxidation pathway, has two isoforms including ACOX1a and ACOX1b, transcribed from a single gene. As ACOX1a shows reduced activity toward palmitoyl-CoA as compared with ACOX1b, we used adenovirally driven ACOX1a and ACOX1b to investigate their efficacy in the reversal of hepatic phenotype in Acox1(À/À) mice. In this study, we show that human ACOX1b is markedly effective in reversing the ACOX1 null phenotype in the mouse. In addition, expression of human ACOX1b was found to restore the production of nervonic (24:1) acid and had a negative impact on the recruitment of coactivators to the PPARa-response unit, which suggests that nervonic acid might well be an endogenous PPARa antagonist, with nervonoyl-CoA probably being the active form of nervonic acid. In contrast, restoration of docosahexaenoic (22:6) acid level, a retinoid-X-receptor (RXRa) agonist, was dependent on the concomitant hepatic expression of both ACOX1a and ACOX1b isoforms.
    [Show full text]
  • Novel Alternative Splicing Variants of ACOX1 and Their Differential Expression Patterns in Goats
    Arch. Anim. Breed., 61, 59–70, 2018 https://doi.org/10.5194/aab-61-59-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Archives Animal Breeding Novel alternative splicing variants of ACOX1 and their differential expression patterns in goats Xian-Feng Wu1,*, Yuan Liu1,*, Cheng-Fang Gao1, Xin-Zhu Chen1, Xiao-Pei Zhang1, and Wen-Yang Li1 1Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China *These authors contributed equally to this work. Correspondence: Wen-Yang Li ([email protected]) Received: 6 August 2017 – Revised: 29 October 2017 – Accepted: 14 November 2017 – Published: 24 January 2018 Abstract. As the first and rate-limiting enzyme of the peroxisomal β-oxidation pathway, acyl-coenzyme A ox- idase 1 (ACOX1), which is regulated by peroxisome proliferator-activated alfa (PPARα), is vital for fatty acid oxidation and deposition, especially in the lipid metabolism of very long-chain fatty acids. Alternative splicing events of ACOX1 have been detected in rodents, Nile tilapia, zebra fish and humans but not in goats. Herein, we identified a novel splice variant of the ACOX1 gene, which was designated as ACOX1-SV1, in addition to the complete transcript, ACOX1, in goats. The length of the ACOX1-SV1 coding sequence was 1983 bp, which presented a novel exon 2 variation owing to alternative 50-splice site selection in exon 2 and partial in- tron 1, compared to that in ACOX1. The protein sequence analysis indicated that ACOX1-SV1 was conserved across different species.
    [Show full text]
  • Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
    CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs.
    [Show full text]
  • Original Article OXPAT/PAT-1 Is a PPAR-Induced Lipid Droplet Protein That Promotes Fatty Acid Utilization Nathan E
    Original Article OXPAT/PAT-1 Is a PPAR-Induced Lipid Droplet Protein That Promotes Fatty Acid Utilization Nathan E. Wolins,1 Benjamin K. Quaynor,1 James R. Skinner,1 Anatoly Tzekov,1 Michelle A. Croce,2 Matthew C. Gropler,2 Vijayalakshmi Varma,3 Aiwei Yao-Borengasser,3 Neda Rasouli,3 Philip A. Kern,3 Brian N. Finck,2 and Perry E. Bickel1,4 Lipid droplet proteins of the PAT (perilipin, adipophilin, and TIP47) family regulate cellular neutral lipid stores. We have studied a new member of this family, PAT-1, and found ost mammalian cells have the capacity to that it is expressed in highly oxidative tissues. We refer to store fatty acids as triacylglycerol (TAG) for this protein as “OXPAT.” Physiologic lipid loading of subsequent use as substrates for membrane mouse liver by fasting enriches OXPAT in the lipid droplet Msynthesis, ATP production, and gene regula- tissue fraction. OXPAT resides on lipid droplets with the tion. How and to what extent cells and tissues store, PAT protein adipophilin in primary cardiomyocytes. Ec- mobilize, and utilize fatty acids is influenced by the family topic expression of OXPAT promotes fatty acid–induced of PAT (perilipin, adipophilin, and TIP47) proteins (1–5), triacylglycerol accumulation, long-chain fatty acid oxida- which share regions of sequence similarity and a propen- tion, and mRNAs associated with oxidative metabolism. sity to coat lipid droplets. As components of the lipid Consistent with these observations, OXPAT is induced in droplet coat, PAT proteins lie at the interface between the mouse adipose tissue, striated muscle, and liver by physi- ological (fasting), pathophysiological (insulin deficiency), neutral lipid core and the aqueous cytosol, and therefore pharmacological (peroxisome proliferator–activated re- are positioned to regulate lipid storage and mobilization.
    [Show full text]
  • Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Suppression of Fatty Acid Oxidation by Thioesterase Superfamily Member 2 in Skeletal Muscle Promotes Hepatic Steatosis and Insulin Resistance Norihiro Imai1, Hayley T. Nicholls1, Michele Alves-Bezerra1, Yingxia Li1, Anna A. Ivanova2, Eric A. Ortlund2, and David E. Cohen1 1Division of Gastroenterology and Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, NY 10021 USA 2Department of Biochemistry, Emory University, Atlanta, GA 30322 USA Current addresses: Norihiro Imai - Department of Gastroenterology and Hepatology, Nagoya University School of Medicine, Aichi 4668560 Japan Michele Alves-Bezerra - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030 USA bioRxiv preprint doi: https://doi.org/10.1101/2021.04.21.440732; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Figure number: 8 Supplemental figure number: 10 Supplemental table number: 2 References: 48 Keywords: Hepatic steatosis, obesity, acyl-CoA thioesterase, fatty acid oxidation, insulin resistance Conflict of interest: The authors have declared that no conflict of interest exists. Author contributions: N.I.: designed research studies, conducted experiments, acquired data, analyzed data and wrote manuscript. H.T.N.: conducted experiments and analyzed data, M.A.B.: designed research studies and conducted experiments, Y.L.: acquired data, A.A.I.: conducted experiments and analyzed data, E.A.O.: analyzed data, D.E.C.: designed research studies, analyzed data and wrote manuscript.
    [Show full text]
  • Peroxisomal Acyl-Coa Oxidase Deficiency
    Peroxisomal acyl-CoA oxidase deficiency Description Peroxisomal acyl-CoA oxidase deficiency is a disorder that causes deterioration of nervous system functions (neurodegeneration) beginning in infancy. Newborns with peroxisomal acyl-CoA oxidase deficiency have weak muscle tone (hypotonia) and seizures. They may have unusual facial features, including widely spaced eyes ( hypertelorism), a low nasal bridge, and low-set ears. Extra fingers or toes (polydactyly) or an enlarged liver (hepatomegaly) also occur in some affected individuals. Most babies with peroxisomal acyl-CoA oxidase deficiency learn to walk and begin speaking, but they experience a gradual loss of these skills (developmental regression), usually beginning between the ages of 1 and 3. As the condition gets worse, affected children develop exaggerated reflexes (hyperreflexia), increased muscle tone ( hypertonia), more severe and recurrent seizures (epilepsy), and loss of vision and hearing. Most children with peroxisomal acyl-CoA oxidase deficiency do not survive past early childhood. Frequency Peroxisomal acyl-CoA oxidase deficiency is a rare disorder. Its prevalence is unknown. Only a few dozen cases have been described in the medical literature. Causes Peroxisomal acyl-CoA oxidase deficiency is caused by mutations in the ACOX1 gene, which provides instructions for making an enzyme called peroxisomal straight-chain acyl- CoA oxidase. This enzyme is found in sac-like cell structures (organelles) called peroxisomes, which contain a variety of enzymes that break down many different substances. The peroxisomal straight-chain acyl-CoA oxidase enzyme plays a role in the breakdown of certain fat molecules called very long-chain fatty acids (VLCFAs). Specifically, it is involved in the first step of a process called the peroxisomal fatty acid beta-oxidation pathway.
    [Show full text]
  • The Emerging Role of Acyl-Coa Thioesterases and Acyltransferases in Regulating Peroxisomal Lipid Metabolism☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1822 (2012) 1397–1410 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbadis Review The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism☆ Mary C. Hunt a,⁎, Marina I. Siponen b,1, Stefan E.H. Alexson c a Dublin Institute of Technology, School of Biological Sciences, College of Sciences & Health, Kevin Street, Dublin 8, Ireland b Department of Medical Biochemistry and Biophysics, Structural Genomics Consortium, Karolinska Institutet, SE-171 77 Stockholm, Sweden c Karolinska Institutet, Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska University Hospital at Huddinge, SE-141 86 Stockholm, Sweden article info abstract Article history: The importance of peroxisomes in lipid metabolism is now well established and peroxisomes contain approx- Received 15 November 2011 imately 60 enzymes involved in these lipid metabolic pathways. Several acyl-CoA thioesterase enzymes Received in revised form 3 March 2012 (ACOTs) have been identified in peroxisomes that catalyze the hydrolysis of acyl-CoAs (short-, medium-, Accepted 16 March 2012 long- and very long-chain), bile acid-CoAs, and methyl branched-CoAs, to the free fatty acid and coenzyme Available online 23 March 2012 A. A number of acyltransferase enzymes, which are structurally and functionally related to ACOTs, have also been identified in peroxisomes, which conjugate (or amidate) bile acid-CoAs and acyl-CoAs to amino acids, Keywords: Acyl-CoA thioesterase resulting in the production of amidated bile acids and fatty acids.
    [Show full text]
  • Downloaded Per Proteome Cohort Via the Web- Site Links of Table 1, Also Providing Information on the Deposited Spectral Datasets
    www.nature.com/scientificreports OPEN Assessment of a complete and classifed platelet proteome from genome‑wide transcripts of human platelets and megakaryocytes covering platelet functions Jingnan Huang1,2*, Frauke Swieringa1,2,9, Fiorella A. Solari2,9, Isabella Provenzale1, Luigi Grassi3, Ilaria De Simone1, Constance C. F. M. J. Baaten1,4, Rachel Cavill5, Albert Sickmann2,6,7,9, Mattia Frontini3,8,9 & Johan W. M. Heemskerk1,9* Novel platelet and megakaryocyte transcriptome analysis allows prediction of the full or theoretical proteome of a representative human platelet. Here, we integrated the established platelet proteomes from six cohorts of healthy subjects, encompassing 5.2 k proteins, with two novel genome‑wide transcriptomes (57.8 k mRNAs). For 14.8 k protein‑coding transcripts, we assigned the proteins to 21 UniProt‑based classes, based on their preferential intracellular localization and presumed function. This classifed transcriptome‑proteome profle of platelets revealed: (i) Absence of 37.2 k genome‑ wide transcripts. (ii) High quantitative similarity of platelet and megakaryocyte transcriptomes (R = 0.75) for 14.8 k protein‑coding genes, but not for 3.8 k RNA genes or 1.9 k pseudogenes (R = 0.43–0.54), suggesting redistribution of mRNAs upon platelet shedding from megakaryocytes. (iii) Copy numbers of 3.5 k proteins that were restricted in size by the corresponding transcript levels (iv) Near complete coverage of identifed proteins in the relevant transcriptome (log2fpkm > 0.20) except for plasma‑derived secretory proteins, pointing to adhesion and uptake of such proteins. (v) Underrepresentation in the identifed proteome of nuclear‑related, membrane and signaling proteins, as well proteins with low‑level transcripts.
    [Show full text]
  • A Multi-Omics Approach to Liver Diseases: Integration of Single Nuclei Transcriptomics with Proteomics and Hicap Bulk Data in Human Liver
    OMICS A Journal of Integrative Biology Volume 24, Number 4, 2020 Research Articles Mary Ann Liebert, Inc. DOI: 10.1089/omi.2019.0215 A Multi-Omics Approach to Liver Diseases: Integration of Single Nuclei Transcriptomics with Proteomics and HiCap Bulk Data in Human Liver Marco Cavalli,1,* Klev Diamanti,2,* Gang Pan,1 Rapolas Spalinskas,3 Chanchal Kumar,4,5 Atul Shahaji Deshmukh,6 Matthias Mann,6 Pelin Sahle´n,3 Jan Komorowski,2,7 and Claes Wadelius1 Abstract The liver is the largest solid organ and a primary metabolic hub. In recent years, intact cell nuclei were used to perform single-nuclei RNA-seq (snRNA-seq) for tissues difficult to dissociate and for flash-frozen archived tissue samples to discover unknown and rare cell subpopulations. In this study, we performed snRNA-seq of a liver sample to identify subpopulations of cells based on nuclear transcriptomics. In 4282 single nuclei, we detected, on average, 1377 active genes and we identified seven major cell types. We integrated data from 94,286 distal interactions ( p < 0.05) for 7682 promoters from a targeted chromosome conformation capture technique (HiCap) and mass spectrometry proteomics for the same liver sample. We observed a reasonable correlation between proteomics and in silico bulk snRNA-seq (r = 0.47) using tissue-independent gene-specific protein abundancy estimation factors. We specifically looked at genes of medical importance. The DPYD gene is involved in the pharmacogenetics of fluoropyrimidine toxicity and some of its variants are analyzed for clinical purposes. We identified a new putative polymorphic regulatory element, which may contribute to variation in toxicity.
    [Show full text]
  • Thioesterase-Mediated Control of Cellular Calcium Homeostasis Enables Hepatic ER Stress
    Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress Baran A. Ersoy, … , Ipek Alpertunga, David E. Cohen J Clin Invest. 2018;128(1):141-156. https://doi.org/10.1172/JCI93123. Research Article Cell biology Metabolism The incorporation of excess saturated free fatty acids (SFAs) into membrane phospholipids within the ER promotes ER stress, insulin resistance, and hepatic gluconeogenesis. Thioesterase superfamily member 2 (Them2) is a mitochondria- associated long-chain fatty acyl-CoA thioesterase that is activated upon binding phosphatidylcholine transfer protein (PC- TP). Under fasting conditions, the Them2/PC-TP complex directs saturated fatty acyl-CoA toward β-oxidation. Here, we showed that during either chronic overnutrition or acute induction of ER stress, Them2 and PC-TP play critical roles in trafficking SFAs into the glycerolipid biosynthetic pathway to form saturated phospholipids, which ultimately reduce ER membrane fluidity. The Them2/PC-TP complex activated ER stress pathways by enhancing translocon-mediated efflux of ER calcium. The increased cytosolic calcium, in turn, led to the phosphorylation of calcium/calmodulin-dependent protein kinase II, which promoted both hepatic insulin resistance and gluconeogenesis. These findings delineate a mechanistic link between obesity and insulin resistance and establish the Them2/PC-TP complex as an attractive target for the management of hepatic steatosis and insulin resistance. Find the latest version: https://jci.me/93123/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Thioesterase-mediated control of cellular calcium homeostasis enables hepatic ER stress Baran A. Ersoy, Kristal M. Maner-Smith, Yingxia Li, Ipek Alpertunga, and David E. Cohen Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York, USA.
    [Show full text]
  • Loss of the E3 Ubiquitin Ligase MKRN1 Represses Diet-Induced Metabolic Syndrome Through AMPK Activation
    ARTICLE DOI: 10.1038/s41467-018-05721-4 OPEN Loss of the E3 ubiquitin ligase MKRN1 represses diet-induced metabolic syndrome through AMPK activation Min-Sik Lee1, Hyun-Ji Han2, Su Yeon Han2, Il Young Kim3,4, Sehyun Chae5, Choong-Sil Lee2, Sung Eun Kim2, Seul Gi Yoon4, Jun-Won Park4, Jung-Hoon Kim2, Soyeon Shin2, Manhyung Jeong2, Aram Ko2, Ho-Young Lee6, Kyoung-Jin Oh 7, Yun-Hee Lee 8, Kwang-Hee Bae7, Seung-Hoi Koo9, Jea-woo Kim10, Je Kyung Seong3,4, Daehee Hwang5 & Jaewhan Song 2 1234567890():,; AMP-activated protein kinase (AMPK) plays a key role in controlling energy metabolism in response to physiological and nutritional status. Although AMPK activation has been pro- posed as a promising molecular target for treating obesity and its related comorbidities, the use of pharmacological AMPK activators has been met with contradictory therapeutic challenges. Here we show a regulatory mechanism for AMPK through its ubiquitination and degradation by the E3 ubiquitin ligase makorin ring finger protein 1 (MKRN1). MKRN1 depletion promotes glucose consumption and suppresses lipid accumulation due to AMPK stabilisation and activation. Accordingly, MKRN1-null mice show chronic AMPK activation in both liver and adipose tissue, resulting in significant suppression of diet-induced metabolic syndrome. We demonstrate also its therapeutic effect by administering shRNA targeting MKRN1 into obese mice that reverses non-alcoholic fatty liver disease. We suggest that ubiquitin-dependent AMPK degradation represents a target therapeutic strategy for meta- bolic disorders. 1 Harvard Medical School, Boston Children’s Hospital, 3 Blackfan Circle CLS-16060.2, Boston, MA 02115, USA. 2 Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
    [Show full text]