Molecular Mechanisms Implicated in Bone Resorption Dan Georgess

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Mechanisms Implicated in Bone Resorption Dan Georgess Molecular mechanisms implicated in bone resorption Dan Georgess To cite this version: Dan Georgess. Molecular mechanisms implicated in bone resorption. Cellular Biology. Ecole normale supérieure de lyon - ENS LYON, 2013. English. NNT : 2013ENSL0838. tel-00954294 HAL Id: tel-00954294 https://tel.archives-ouvertes.fr/tel-00954294 Submitted on 1 Mar 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE en vue de l'obtention du grade de Docteur de l’Université de Lyon, délivré par l’École Normale Supérieure de Lyon Discipline : Sciences de la vie Laboratoire de biologie cellulaire et physiopathologie osseuse École Doctorale de Biologie Moléculaire Intégrative et Cellulaire présentée et soutenue publiquement le 01/10/2013 par Monsieur Dan GEORGESS _____________________________________________ Mécanismes moléculaires impliqués dans la résorption osseuse ______________________________________________ Directeur de thèse : Dr. Pierre JURDIC Après l'avis de : Pr. Stefan LINDER Dr. Isabelle MARIDONNEAU-PARINI Devant la commission d'examen formée de : Dr. Elisabeth GENOT Directeur de recherche, INSERM Membre Dr. Pierre JURDIC Directeur de recherche, INSERM Directeur Pr. Vincent LAUDET Professeur, ENS de Lyon Président Pr. Stefan LINDER Professeur, UKE Rapporteur Dr. Isabelle MARIDONNEAU-PARINI Directeur de recherche, INSERM Rapporteur 2 Acknowledgments Achievement is impossible without opportunity. First and foremost, I would like to express my gratitude to my mentor, Dr. Pierre Jurdic, for opening the gates of research when many would not and for his openness, patience and advice over the past years. Pierre, you have been a formidable boss and an exemplary role model. Thank you for all the discussions, stories and collaboration opportunities. The undeniable cornerstone of my doctoral training and accomplishments was my co- mentor, Dr. Irma Machuca-Gayet. Irma, thank you for your relentless support, constant honesty, thoughtful mentoring and continuously reliable solutions. To Pierre and Irma, I will be forever grateful for sculpting the scientist and person I am today. I would like to extend my thanks to Dr. Marlène Mazzorana for laying down the foundations of my thesis project, sharing her valuable knowledge and taking time to discuss and enlighten. Thanks are also enjoyably due to Mrs. Chantal Domenget for sharing her indispensable expertise and for listening to a student with open ears and, more importantly, an open heart. Over the years, I have greatly appreciated the healthy, friendly and supportive environment created by the members of the Jurdic lab: Dr. Marlène Gallet and the “Marlenettes” Pauline & Margot, Dr. Subramanya Pandruvada, Dr. Romain Daquin, Dr. Justine Bacchetta, Dr. Fabienne Coury, Dr. Kelig Pernelle, Mr. Jean Wach, Mrs. Lise Allard and Ms. Nathalie Demoncheaux. You have all been magnificent colleagues. I have also much enjoyed the dynamic environment of the IGFL which is first owed to our director, Pr. Vincent Laudet, and to young and friendly colleagues. I give my sincere thanks to Ms. Julie Carnesechi, Ms. Juliana Guttierez, Dr. Juliette Sailland, Dr. Cyrielle Billon, Ms. Alexa Sadier and Mr. Damien Curton. If being apart of a superb lab wasn’t in itself a wonderful experience, being apart of a community was beyond amazing. The T3-Net was more than a network of exceptional experts; it was the extended scientific family every student wishes for. I would like to particularly acknowledge Pr. Stefan Linder for his never-ending guidance and encouragement. I would also like to thank Dr. Elisabeth Genot for trusting me as a collaborator, for hosting me in Bordeaux and for her constant support. The T3-Net experience was extremely pleasant also thanks to young peers that have become friends. Thank you Mr. Pascuale Cervero, Mr. Karima Azouzi, Mr. Franco Klingberg, Mr. Nilesh Talele, Dr. Filipa Curado, Ms. Isabel Egana, Dr. Vineetha Vijayakumar, Mr. Paolo Ciufici and Dr. Vinoth Khandelwal. Together with Dr. Linder, I would like to specially acknowledge Dr. Isabelle Maridonneau-Parini, whom I admire for seminal work in the podosome field, for critical revision leading to significant enhancement of this manuscript. I would like to specially acknowledge Pr. Georg Schett, Dr. Jose Terrado-Vicente and Dr. Jean-Christophe Geminard for trusting me with wonderful collaborations. These experiences have not only been pleasant and fruitful, but also giant leaps in my scientific career. Before this thesis, I would only dream of applying for a doctoral position. These dreams became reality thanks to Dr. Andrei Popov who has taught me the essentials in 3 experimental biology along with the proactive perseverance necessary for a professional life. I would also like to thank Pr. Stefan Nonchev for seeing potential in me and for defending it. On a personal level, I would like to thank my parents Hossam and Penka Georgess. I owe everything I am to you. Thank you for your unconditional love and limitless belief in me. Thank you for teaching me hope and installing in me the means to realize my dreams. Samar, thank you for hope, love, support, motivation and inspiration. You are my sunshine in the storm. Aunt Salam, uncle Daher and Heba, thank you for all your support, encouragement and love. The Mediterranean-Far East connection – Olimpia, Imtiaz and Esber – thank you for being my home-away-from-home. The Welcome Committee co-founders – François and Florent – with its star artist Emilien and big sister Delphine, your friendship has brought much needed balance to my life. L’ancien and Super G – Laurent and Audrey – thank you for continuous support, heartfelt friendship and smiles. 4 Contents Abstract 7 Abbreviations 9 List of introductory figures 11 CHAPTER 1: INTRODUCTION I. BONE REMODELING 15 I.1. THE SKELETON: CELLS AND MATRIX 15 I.1.1. OSTEOBLASTS 15 I.1.2. OSTEOCLASTS 15 I.1.3. OSTEOCYTES 16 I.2. BONE PATHOLOGIES: THE PREVALENCE OF OSTEOPOROSIS 18 I.3. OSTEOIMMUNOLOGY 18 I.4. AUTOIMMUNITY IN BONE DISEASES: THE CASE OF RHEUMATOID ARTHRITIS 19 II. OSTEOCLAST DIFFERENTIATION 22 II.1. IDENTIFICATION OF OSTEOCLAST PRECURSORS: DATA FROM HUMAN AND MURINE MODELS 22 II.2. THE SITE OF OSTEOCLAST DIFFERENTIATION 25 II.3. RELEVANT CYTOKINES INVOLVED IN OSTEOCLAST DIFFERENTIATION 26 II.3.1. M‐CSF 26 II.3.2. RANKL/RANK/OPG TRIAD: 27 II.3.3. TNF‐Α/IL‐1 29 II.4. TRANSCRIPTION FACTORS INVOLVED IN OC DIFFERENTIATION AND FUNCTION 30 II.4.1. PU.1 30 II.4.2. PAX5 30 II.4.3. MITF 31 II.4.4. NF‐ΚB 31 II.4.5. C‐FOS AND AP‐1 COMPLEX 31 II.4.6. NFATC1 32 II.5. MATRIX­CYTOKINE CONVERGING PATHWAYS IN OSTEOCLASTOGENESIS 37 II.5.1. OSCAR‐RANKL AXIS: 37 II.5.2. INTEGRIN‐RANK AND INTEGRIN‐ MCSF AXES: 38 II.5.3. IS ADHESION REQUIRED FOR DIFFERENTIATION? 39 III. PODOSOME ORGANIZATION IN OSTEOCLASTS 42 III.1. GENERAL PRINCIPLES OF INTEGRIN ACTIVATION 42 III.2. RECRUITMENT OF ADHESION PLAQUE MOLECULES 44 III.3. THE PODOSOME SUBDOMAINS 45 III.3.1. THE PODOSOME CORE DEFINED BY CD44 45 III.3.2. THE PODOSOME CLOUD DEFINED BY SRC 45 III.3.3. THE PODOSOME CAP 46 III.4. UNCERTAINTY ABOUT SPATIO­TEMPORAL ORDER OF PODOSOME FORMATION 46 III.5. PODOSOME INTERNAL DYNAMICS: INTERPLAY BETWEEN POLYMERIZATION AND CONTRACTILITY 48 III.6. OC­SPECIFIC PODOSOME PROPERTIES 50 III.7. PODOSOME PATTERNING IN OSTEOCLASTS 51 III.7.1. STRUCTURAL AND KINETIC PROPERTIES 51 III.7.2. MOLECULAR MECHANISMS IMPLICATED IN PATTERNING 55 5 IV. BONE RESORPTION PROCESSES 59 IV.1. TRANSMIGRATION 59 IV.2. BONE DEGRADATION: TRAFFICKING, ACIDIFICATION, PROTEOLYSIS 60 IV.3. THE RESORPTION­MIGRATION CYCLE 63 CHAPTER 2: RESULTS 63 I. OC MIGRATION 69 I.1. INTRODUCTION AND RATIONALE: HOW DO PODOSOMES DRIVE OC MIGRATION? 69 I.2. PUBLICATION: PODOSOME RINGS DRIVE SALTATORY OSTEOCLAST MIGRATION 71 II. NOVEL REGULATORS OF BONE RESORPTION: FOCUS ON RHOE 79 II.1. INTRODUCTION AND RATIONALE: FINDING NEW REGULATORS OF THE ACTIN CYTOSKELETON IN OSTEOCLAST­MEDIATED BONE RESORPTION 79 II.2. PUBLICATION: COMPARATIVE TRANSCRIPTOMICS REVEALS RHOE AS A NOVEL REGULATOR OF BONE RESOPTION BY OCS 81 CHAPTER 3: DISCUSSION AND PERSPECTIVES 121 REFERENCES 131 ANNEX PUBLICATION 143 6 Abstract Bone remodeling is a physiological process by which old bone is replaced by new bone. Osteoclasts are multinucleated giant cells of the monocytic lineage. Their function is bone resorption, the first step of bone remodeling. The work of this thesis is in continuity with a theme long developed in our laboratory, that of the actin cytoskeleton organization in bone- resorbing osteoclasts. Our first study investigated the role of the podosome organization in osteoclast spreading, adhesion and migration. Our results showed that podosome patterning into rings exerted outward tension upon the substrate and thereby triggered cell migration. Through cycles of assembly, growth and alternating disassembly, rings promote a saltatory mode of migration universal to all osteoclasts. The main objective of this thesis, however, was dedicated to finding new genes that govern podosome patterning in resorption-related processes such as osteoclast migration and sealing zone formation. To find such new genes, we employed a differential transcriptomic analysis of osteoclasts and osteoclast-like cells that exhibit podosomes but are unable to resorb bone. Among a list of six genes highly and exclusively expressed in osteoclasts, we chose to investigate RhoE, a constitutively active GTP-binding protein known for its regulation of actin structures. We provided evidence, using primary RhoE-deficient osteoclasts, that RhoE activity is essential to bone resorption. We unveiled a new role for RhoE in the control of actin turnover in podosomes through a Rock-antagonistic function.
Recommended publications
  • Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle
    International Journal of Molecular Sciences Review Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle Toshihisa Komori Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; [email protected]; Tel.: +81-95-819-7637; Fax: +81-95-819-7638 Received: 17 September 2020; Accepted: 10 October 2020; Published: 12 October 2020 Abstract: Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, / / and muscle mass, based on the phenotype of Ocn− − mice by Karsenty’s group. Recently, Ocn− − mice were newly generated by two groups independently. Bone strength is determined by bone / quantity and quality. The new Ocn− − mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and / spermatogenesis, and muscle mass were normal in the new Ocn− − mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.
    [Show full text]
  • Supp Table 1.Pdf
    Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading
    [Show full text]
  • 140503 IPF Signatures Supplement Withfigs Thorax
    Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network.
    [Show full text]
  • Osteocalcin Improves Outcome After Acute Ischemic Stroke
    www.aging-us.com AGING 2020, Vol. 12, No. 1 Research Paper Osteocalcin improves outcome after acute ischemic stroke Jiayan Wu1, Yunxiao Dou1, Wangmi Liu2, Yanxin Zhao1, Xueyuan Liu1 1Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200032, China 2The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China Correspondence to: Xueyuan Liu, Yanxin Zhao, Wangmi Liu; email: [email protected], [email protected], [email protected] Keywords: osteocalcin, acute ischemic stroke, NIHSS score, proline hydroxylase 1, pyroptosis Received: November 6, 2019 Accepted: December 18, 2019 Published: January 5, 2020 Copyright: Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Background: Osteocalcin is related to energy metabolism, memory and the acute stress response, suggesting a relationship between bone and the brain. The need to explore the effect of osteocalcin on acute ischemic stroke is therefore urgent. Results: Patients with better outcomes had higher serum osteocalcin levels than those whose NIHSS scores did not improve. Multivariable logistic regression analysis showed acceptable performance (area under the curve = 0.766). The effect of osteocalcin on the promotion of neuron survival was confirmed by Cell Counting Kit-8 experiments. In addition, osteocalcin could decrease proline hydroxylase 1 and inhibit the degradation of gasdermin D. Conclusions: We propose that osteocalcin can improve outcome after acute ischemic stroke in the acute period. By downregulating proline hydroxylase 1, osteocalcin leads glucose metabolism to the pentose phosphate pathway and therefore promotes neuronal survival through inhibiting pyroptosis.
    [Show full text]
  • Expression of Vascular Endothelial Growth Factor in Cultured Human Dental Follicle Cells and Its Biological Roles1
    Acta Pharmacol Sin 2007 Jul; 28 (7): 985–993 Full-length article Expression of vascular endothelial growth factor in cultured human dental follicle cells and its biological roles1 Xue-peng CHEN2, Hong QIAN2, Jun-jie WU2, Xian-wei MA3, Ze-xu GU2, Hai-yan SUN4, Yin-zhong DUAN2,5, Zuo-lin JIN2,5 2Department of Orthodontics, Qindu Stomatological College, Fourth Military Medical University, Xi’an 710032, China; 3Institute of Immunology, Second Military Medical University, Shanghai 200433, China; 4Number 307 Hospital of Chinese People’s Liberation Army, Beijing 100101, China Key words Abstract vascular endothelial growth factor; human Aim: To investigate the expression of vascular endothelial growth factor (VEGF) dental follicle cell; proliferation; differentia- in cultured human dental follicle cells (HDFC), and to examine the roles of VEGF in tion; apoptosis; tooth eruption; mitogen- activated protein kinase the proliferation, differentiation, and apoptosis of HDFC in vitro. Methods: Immunocytochemistry, ELISA, and RT-PCR were used to detect the expression 1 and transcription of VEGF in cultured HDFC. The dose-dependent and the time- Project supported by the National Natural Science Foundation of China (No 30400510). course effect of VEGF on cell proliferation and alkaline phosphatase (ALP) activ- 5 Correspondence to Dr Zuo-lin JIN and Prof ity in cultured HDFC were determined by MTT assay and colorimetric ALP assay, Yin-zhong DUAN. respectively. The effect of specific mitogen-activated protein kinase (MAPK) Phn 86-29-8477-6136. Fax 86-29-8322-3047. inhibitors (PD98059 and U0126) on the VEGF-mediated HDFC proliferation was E-mail [email protected] (Zuo-lin JIN) also determined by MTT assay.
    [Show full text]
  • Osteoblast-Derived Vesicle Protein Content Is Temporally Regulated
    University of Birmingham Osteoblast-derived vesicle protein content is temporally regulated during osteogenesis Davies, Owen G.; Cox, Sophie C.; Azoidis, Ioannis; McGuinness, Adam J.; Cooke, Megan; Heaney, Liam M.; Grover, Liam M. DOI: 10.3389/fbioe.2019.00092 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Davies, OG, Cox, SC, Azoidis, I, McGuinness, AJ, Cooke, M, Heaney, LM & Grover, LM 2019, 'Osteoblast- derived vesicle protein content is temporally regulated during osteogenesis: Implications for regenerative therapies', Frontiers in Bioengineering and Biotechnology, vol. 7, no. APR, 92. https://doi.org/10.3389/fbioe.2019.00092 Link to publication on Research at Birmingham portal Publisher Rights Statement: © 2019 Davies, Cox, Azoidis, McGuinness, Cooke, Heaney and Grover. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns
    Concept Paper The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns Gordon L. Klein Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555-0165, USA; [email protected] Abstract: Surprisingly little is known about the factors released from bone during resorption and the metabolic roles they play. This paper describes what we have learned about factors released from bone, mainly through the study of burn injuries, and what roles they play in post-burn metabolism. From these studies, we know that calcium, phosphorus, and magnesium, along with transforming growth factor (TGF)-β, are released from bone following resorption. Additionally, studies in mice from Karsenty’s laboratory have indicated that undercarboxylated osteocalcin is also released from bone during resorption. Questions arising from these observations are discussed as well as a variety of potential conditions in which release of these factors could play a significant role in the pathophysiology of the conditions. Therapeutic implications of understanding the metabolic roles of these and as yet other unidentified factors are also raised. While much remains unknown, that which has been observed provides a glimpse of the potential importance of this area of study. Keywords: bone resorption; calcium; phosphorus; TGF-β; undercarboxylated osteocalcin Citation: Klein, G.L. The Products of Bone Resorption and Their Roles in 1. Introduction Metabolism: Lessons from the Study of Burns. Osteology 2021, 1, 73–79. In recent years we have learned much about the mechanisms of bone formation and https://doi.org/10.3390/ resorption, the cells involved, and many of the factors that affect and link the two processes.
    [Show full text]
  • Zinc Pharmacotherapy for Elderly Osteoporotic Patients with Zinc Deficiency in a Clinical Setting
    nutrients Article Zinc Pharmacotherapy for Elderly Osteoporotic Patients with Zinc Deficiency in a Clinical Setting Masaki Nakano, Yukio Nakamura * , Akiko Miyazaki and Jun Takahashi Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; [email protected] (M.N.); [email protected] (A.M.); [email protected] (J.T.) * Correspondence: [email protected]; Tel.: +81-263-37-2659; Fax: +81-263-35-8844 Abstract: Although there have been reported associations between zinc and bone mineral density (BMD), no reports exist on the effect of zinc treatment in osteoporotic patients. Therefore, we investigated the efficacy and safety of zinc pharmacotherapy in Japanese elderly patients. The present investigation included 122 osteoporotic patients with zinc deficiency, aged ≥65 years, who completed 12 months of follow-up. In addition to standard therapy for osteoporosis in a clinical setting, the subjects received oral administration of 25 mg zinc (NOBELZIN®, an only approved drug for zinc deficiency in Japan) twice a day. BMD and laboratory data including bone turnover markers were collected at 0 (baseline), 6, and 12 months of zinc treatment. Neither serious adverse effects nor incident fractures were seen during the observation period. Serum zinc levels were successfully elevated by zinc administration. BMD increased significantly from baseline at 6 and 12 months of zinc treatment. Percentage changes of serum zinc showed significantly positive associations with those of BMD. Bone formation markers rose markedly from the baseline values, whereas bone Citation: Nakano, M.; Nakamura, Y.; resorption markers displayed moderate or no characteristic changes.
    [Show full text]
  • Is Melatonin the Cornucopia of the 21St Century?
    antioxidants Review Is Melatonin the Cornucopia of the 21st Century? Nadia Ferlazzo, Giulia Andolina, Attilio Cannata, Maria Giovanna Costanzo, Valentina Rizzo, Monica Currò , Riccardo Ientile and Daniela Caccamo * Department of Biomedical Sciences, Dental Sciences, and Morpho-Functional Imaging, Polyclinic Hospital University, Via C. Valeria 1, 98125 Messina, Italy; [email protected] (N.F.); [email protected] (G.A.); [email protected] (A.C.); [email protected] (M.G.C.); [email protected] (V.R.); [email protected] (M.C.); [email protected] (R.I.) * Correspondence: [email protected]; Tel.: +39-090-221-3386 or +39-090-221-3389 Received: 21 September 2020; Accepted: 3 November 2020; Published: 5 November 2020 Abstract: Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.
    [Show full text]
  • Bone and Cartilage Metabolism
    BONE AND CARTILAGE METABOLISM IMMUNOASSAYS Cat. No. Description Assay Format Sample Type Assay Range Sandwich ELISA, RIS021R 1,25(OH)2-Vitamin-D Total ELISA Serum 7.5 – 322.5 pg/ml HRP-labelled antibody Sandwich ELISA, RKARF1991R Free 25-OH Vitamin D ELISA Serum HRP-labelled antibody RIS024R Extraction kit for 1,25(OH)2-Vitamin-D Total ELISA Extraction Cartridges for 1,25(OH)2-Vitamin-D Total RIS023R ELISA Sandwich ELISA, RIS020R 25-OH-Vitamin-D Total ELISA Serum 0 – 180 ng/ml HRP-labelled antibody Competitive ELISA, Serum, Plasma REA300/96 25-OH-Vitamin D ELISA Immobilized antibody (EDTA, citrate, heparin) Sandwich ELISA, RIS022R 25-OH-Vitamin-D Total Rat ELISA Serum 5.3 – 133 ng/ml HRP-labelled antibody Sandwich ELISA, Serum, Synovial fluid 10 – 150 ng/ml RIS001R Aggrecan (PG) Human ELISA HRP-labelled antibody Sandwich ELISA, RIS0019R Calcitonin (CT) Human ELISA, High Sensitivity Serum 10 – 400 pg/ml HRP-labelled antibody Sandwich ELISA, Serum, Plasma RD194080200 Cartilage Oligomeric Matrix Protein Human ELISA 4 – 128 ng/ml Biotin-labelled antibody (EDTA, citrate, heparin) Sandwich ELISA, Serum, Plasma (EDTA, citrate, RD191035200R Connective Tissue Growth Factor Human ELISA Biotin-labelled antibody heparin), Urine 0.63 – 20 ng/ml Sandwich ELISA, RD191207200R Dickkopf-Related Protein 1 Human ELISA Serum Biotin-labelled antibody 0.125 – 4 ng/ml Direct ELISA, RD191124200R ENPP1 Human ELISA Serum, Plasma (citrate) Biotin-labelled antibody 0.25 – 16 ng/ml Sandwich ELISA, Serum, Plasma (EDTA, citrate, RAF013R Erythropoietin Human ELISA Biotin-labelled
    [Show full text]
  • Evaluation of Osteonectin As a Diagnostic Marker of Osteogenic Bone Tumors
    Original Research Article DOI: 10.18231/2456-9267.2018.0019 Evaluation of osteonectin as a diagnostic marker of osteogenic bone tumors Murad Ahmad1, Sadaf Mirza2, Kafil Akhtar3,*, Rana K. Sherwani4, Khalid A Sherwani5 1Assistant Professor, 2Resident, 3,4Professor, 1-4Dept. of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim 5 University, Aligarh, Uttar Pradesh, Professor, Dept. of Orthopaedics Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India *Corresponding Author: Email: [email protected] Abstract Introduction: Immunohistochemistry plays an important but limited role in the diagnosis of primary bone tumors. Sometimes it is very difficult to differentiate osteosarcomas histologically from other tumors with similar morphology but with different malignant potential and treatment protocol. The correct diagnosis of OSA relies on identification of osteoid production by malignant cells which can be detected by the use of osteonectin. Materials and Methods: The present study was carried out on 200 patients of benign and malignant lesions of bone. After a detailed clinical history and local examination, paraffin section of resected specimens were studied by hematoxylin and eosin and immunohistochemical stain, osteonectin and matrix was graded on a four-tiered grading system with statistical analysis of osteonectin positivity in osteogenic bone tumours and tumour-like lesions. Results: Benign and malignant tumours accounted for 74.6% and 25.0% of the total cases. Osteoid production were seen in 36 cases (100.0%) of osteosarcomas, followed by fibrous dysplasia in 18 cases (100.0%) and osteoid osteoma in 10 cases (100.0%). Both polygonal and spindle shaped tumour cells in osteosarcoma showed Grade 4 positivity with osteonectin.
    [Show full text]