Bone and Cartilage Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Bone and Cartilage Metabolism BONE AND CARTILAGE METABOLISM IMMUNOASSAYS Cat. No. Description Assay Format Sample Type Assay Range Sandwich ELISA, RIS021R 1,25(OH)2-Vitamin-D Total ELISA Serum 7.5 – 322.5 pg/ml HRP-labelled antibody Sandwich ELISA, RKARF1991R Free 25-OH Vitamin D ELISA Serum HRP-labelled antibody RIS024R Extraction kit for 1,25(OH)2-Vitamin-D Total ELISA Extraction Cartridges for 1,25(OH)2-Vitamin-D Total RIS023R ELISA Sandwich ELISA, RIS020R 25-OH-Vitamin-D Total ELISA Serum 0 – 180 ng/ml HRP-labelled antibody Competitive ELISA, Serum, Plasma REA300/96 25-OH-Vitamin D ELISA Immobilized antibody (EDTA, citrate, heparin) Sandwich ELISA, RIS022R 25-OH-Vitamin-D Total Rat ELISA Serum 5.3 – 133 ng/ml HRP-labelled antibody Sandwich ELISA, Serum, Synovial fluid 10 – 150 ng/ml RIS001R Aggrecan (PG) Human ELISA HRP-labelled antibody Sandwich ELISA, RIS0019R Calcitonin (CT) Human ELISA, High Sensitivity Serum 10 – 400 pg/ml HRP-labelled antibody Sandwich ELISA, Serum, Plasma RD194080200 Cartilage Oligomeric Matrix Protein Human ELISA 4 – 128 ng/ml Biotin-labelled antibody (EDTA, citrate, heparin) Sandwich ELISA, Serum, Plasma (EDTA, citrate, RD191035200R Connective Tissue Growth Factor Human ELISA Biotin-labelled antibody heparin), Urine 0.63 – 20 ng/ml Sandwich ELISA, RD191207200R Dickkopf-Related Protein 1 Human ELISA Serum Biotin-labelled antibody 0.125 – 4 ng/ml Direct ELISA, RD191124200R ENPP1 Human ELISA Serum, Plasma (citrate) Biotin-labelled antibody 0.25 – 16 ng/ml Sandwich ELISA, Serum, Plasma (EDTA, citrate, RAF013R Erythropoietin Human ELISA Biotin-labelled antibody heparin), Cell culture supernatant 1.6 – 100 mIU/ml Sandwich ELISA, RD191037100 Fetuin-A (AHSG) Human ELISA Serum, Plasma HRP-labelled antibody 2 – 100 ng/ml Bronchoalveolar lavage, Sandwich ELISA, RD194334200R Lactoferrin Human ELISA Cerebrospinal fluid, Milk, Plasma Biotin-labelled antibody 2.5 – 80 ng/ml (EDTA), Saliva, Serum, Stool, Urine Sandwich ELISA, RD191510100CS Matrix Metalloproteinase-3 (MMP-3) Human ELISA Serum, Saliva HRP-labelled antibody 0.2 – 10 ng/ml Sandwich ELISA, Cell culture supernatant, Serum, RAF079R Matrix Metalloproteinase-9 (MMP-9) Human ELISA Biotin-labelled antibody Plasma (citrate, heparin) 0.23 – 15 ng/ml Matrix Metalloproteinase-9 (MMP-9) Human ELISA, Sandwich ELISA, Serum, Plasma (EDTA, citrate, RD193439200CS High Sensitivity Biotin-labelled antibody heparin) 0.063 – 2 ng/ml BONE AND CARTILAGE METABOLISM Cat. No. Description Assay Format Sample Type Assay Range Sandwich ELISA, RIS002R Osteocalcin (OST) Human ELISA Serum 2 – 50 ng/ml HRP-labelled antibody Sandwich ELISA, Cerebrospinal fluid, Milk, Serum, RD191446200R Osteopontin Human ELISA Biotin-labelled antibody Plasma, Urine 0.25 – 16 ng/ml Sandwich ELISA, Serum, Plasma (EDTA, citrate, RD194003200 Osteoprotegerin Human ELISA Biotin-labelled antibody heparin) 1.5 – 60 pmol/l Sandwich ELISA, RIS003R Parathyroid Hormone (PTH) Human ELISA Serum, Plasma HRP-labelled antibody 15 – 1040 pg/ml Sandwich ELISA, Cell culture supernatant, Plasma, RAG019R Periostin Human ELISA HRP-labelled antibody Serum 78 – 5000 pg/ml Sandwich ELISA, Cell culture supernatant, Plasma, RAG020R Periostin Mouse ELISA HRP-labelled antibody Serum 31 – 2000 pg/ml sRANKL (total) Human ELISA Sandwich ELISA, Serum, Plasma (EDTA, citrate, RD193004200R (Osteoprotegerin Ligand) Biotin-labelled antibody heparin) 0.5 – 32 pmol/l Sandwich ELISA, Milk, Serum, Plasma RD191095200R Stanniocalcin 1 Human ELISA Biotin-labelled antibody (EDTA, citrate, heparin), Urine 15.6 – 1000 pg/ml Immunocapture enzyme RD197025000 TRAP 5 Human Assay Serum, Plasma (EDTA) activity assay 0.2 – 4 U/l PROTEINS Cat. No. Description Species Type Source RD172080100 Cartilage Oligomeric Matrix Protein Human Recombinant HEK293 RD172035100 Connective Tissue Growth Factor Human Recombinant E. coli RD172035100-HEK Connective Tissue Growth Factor Human Recombinant HEK293 RD176035025 Connective Tissue Growth Factor, Tag Free Human Recombinant HEK293 RD272589100 Connective Tissue Growth Factor Mouse Recombinant HEK293 RD172591100 CTGF C-terminus Human Recombinant E. coli RD172593100 CTGF, TSP Type-1 Domain Human Recombinant E. coli RD172265100 Cytokine-Like Protein 1 Human Recombinant E. coli RD172124100 ENPP1 Human Recombinant HEK293 RD172037100 Fetuin-A (AHSG) Human Native Human plasma RD172168100 Follistatin Human Recombinant E. coli RD172168025 Follistatin Human Recombinant E. coli RD172476100 IL-34 Human Recombinant E. coli RD1663441000 Lactoferrin Human Native Human breast milk RD164334050 Lactoferrin Human Native Human seminal plasma RD172170100 Osteoactivin/GPNMB Human Recombinant HEK293 RD172044100 Osteoblast Specific Factor 1 Human Recombinant E. coli RD172045100 Osteoblast Specific Factor 2 Human Recombinant E. coli RD172045025 Osteoblast Specific Factor 2 Human Recombinant E. coli BONE AND CARTILAGE METABOLISM Cat. No. Description Species Type Source RD172079100 Osteocrin Human Recombinant E. coli RD172111100 Osteostat Human Recombinant E. coli RD172446100 Osteopontin Human Recombinant HEK293 RD172117100 Phosphoethanolamine/phosphocholine phosphatase Human Recombinant E. coli RD172257100 Regucalcin Human Recombinant E. coli RD172244100-HEK Sclerostin Human Recombinant HEK293 RD172244100 Sclerostin Human Recombinant E. coli RD172244025 Sclerostin Human Recombinant E. coli RD172095100 Stanniocalcin 1 Human Recombinant HEK293 RD172095025 Stanniocalcin 1 Human Recombinant HEK293 RD272595100 Stanniocalcin 1 Mouse Recombinant HEK293 RD172096100 Stanniocalcin 2 Human Recombinant HEK293 RD172544100 WNT1-Inducible-Signaling Pathway Protein 1 Human Recombinant HEK293 ANTIBODIES Cat. No. Description Spec. React. Type Antigen RD182080100C4 Cartilage Oligomeric Matrix Protein (COMP) Human Mouse MAb, Clone: 12C4 Human articular cartilage RD182080100F1-01 Cartilage Oligomeric Matrix Protein (COMP) Human Mouse MAb, Clone: 16F12 Human articular cartilage RD182080100C1-01 Cartilage Oligomeric Matrix Protein (COMP) Human Mouse MAb, Clone: 17C10 Human articular cartilage RD1820741003F9 Cathepsin K Human Mouse MAb, Clone: 3F9 E. coli RD181035100 Connective Tissue Growth Factor Human Rabbit PAb HEK293 RD184035100 Connective Tissue Growth Factor Human Sheep PAb HEK293 RD184036100 Fetuin-A (AHSG) Human Goat PAb Human serum RD181036100 Fetuin-A (AHSG) Human Rabbit PAb Human serum RD181044050 Osteoblast Specific Factor 1 Human Rabbit PAb E. coli RD184044100 Osteoblast Specific Factor 1 Human Sheep PAb E. coli RD181045050 Osteoblast Specific Factor 2 Human Rabbit PAb E. coli RD184045100 Osteoblast Specific Factor 2 Human Sheep PAb E. coli RD181079100 Osteocrin Human Rabbit PAb E. coli RD182003110-01 Osteoprotegerin Human Mouse MAb, Clone: OPG-01 E. coli RD182003110-13 Osteoprotegerin Human Mouse MAb, Clone: OPG-13 Synthetic peptide RD1820741004B9 Procathepsin K Human Mouse MAb, Clone: 4B9 E. coli RD181074100 Procathepsin K Human Rabbit PAb E. coli BONE AND CARTILAGE METABOLISM Cat. No. Description Spec. React. Type Antigen RD181257100 Regucalcin Human Rabbit PAb E. coli RD184257100 Regucalcin Human Sheep PAb E. coli RD181077100 sRANK Human Rabbit PAb E. coli RD181095100 Stanniocalcin 1 Human Rabbit PAb HEK293 RD181096100 Stanniocalcin 2 Human Rabbit PAb HEK293 RD184096100 Stanniocalcin 2 Human Sheep PAb HEK293 RD182025110-01 TRAP 5 Human Mouse MAb, Clone: TRAP-01 Sf 9 cells Contact Information BioVendor − Laboratorni medicina a.s. BioVendor GesmbH Oxford Biosystems Ltd Karasek 1767/1, 621 00 Brno, Czech Republic Gaudenzdorfer Gürtel 43-45, 1120 Vienna, Austria 184B Park House, Park Drive Phone: +420 549 124 185 Phone: +43 1 890 9025 Milton Park, Abingdon, Oxfordshire Fax: +420 549 211 460 Fax: +43 1 890 5163 OX14 4SR, United Kingdom E-mail: [email protected] E-mail: [email protected] Phone: +44 (0)1235 431390 E-mail: [email protected] BioVendor GmbH BioVendor, LLC Otto-Hahn-Straße 16, 34123 Kassel, Germany 128 Bingham Rd., Suite 1300, Asheville, NC 28806, USA Phone: +49 (0)561 861 509 33 Phone: +1-800-404-7807, Phone: +1-828-575-9250 Fax: +49 (0)561 861 509 34 Fax: +1-828-575-9251 E-mail: [email protected] E-mail: [email protected] www.biovendor.com www.oxfordbiosystems.com Date of issue January 2020.
Recommended publications
  • Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle
    International Journal of Molecular Sciences Review Functions of Osteocalcin in Bone, Pancreas, Testis, and Muscle Toshihisa Komori Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan; [email protected]; Tel.: +81-95-819-7637; Fax: +81-95-819-7638 Received: 17 September 2020; Accepted: 10 October 2020; Published: 12 October 2020 Abstract: Osteocalcin (Ocn), which is specifically produced by osteoblasts, and is the most abundant non-collagenous protein in bone, was demonstrated to inhibit bone formation and function as a hormone, which regulates glucose metabolism in the pancreas, testosterone synthesis in the testis, / / and muscle mass, based on the phenotype of Ocn− − mice by Karsenty’s group. Recently, Ocn− − mice were newly generated by two groups independently. Bone strength is determined by bone / quantity and quality. The new Ocn− − mice revealed that Ocn is not involved in the regulation of bone formation and bone quantity, but that Ocn regulates bone quality by aligning biological apatite (BAp) parallel to the collagen fibrils. Moreover, glucose metabolism, testosterone synthesis and / spermatogenesis, and muscle mass were normal in the new Ocn− − mice. Thus, the function of Ocn is the adjustment of growth orientation of BAp parallel to the collagen fibrils, which is important for bone strength to the loading direction of the long bone. However, Ocn does not play a role as a hormone in the pancreas, testis, and muscle. Clinically, serum Ocn is a marker for bone formation, and exercise increases bone formation and improves glucose metabolism, making a connection between Ocn and glucose metabolism.
    [Show full text]
  • Osteocalcin Improves Outcome After Acute Ischemic Stroke
    www.aging-us.com AGING 2020, Vol. 12, No. 1 Research Paper Osteocalcin improves outcome after acute ischemic stroke Jiayan Wu1, Yunxiao Dou1, Wangmi Liu2, Yanxin Zhao1, Xueyuan Liu1 1Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200032, China 2The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China Correspondence to: Xueyuan Liu, Yanxin Zhao, Wangmi Liu; email: [email protected], [email protected], [email protected] Keywords: osteocalcin, acute ischemic stroke, NIHSS score, proline hydroxylase 1, pyroptosis Received: November 6, 2019 Accepted: December 18, 2019 Published: January 5, 2020 Copyright: Wu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Background: Osteocalcin is related to energy metabolism, memory and the acute stress response, suggesting a relationship between bone and the brain. The need to explore the effect of osteocalcin on acute ischemic stroke is therefore urgent. Results: Patients with better outcomes had higher serum osteocalcin levels than those whose NIHSS scores did not improve. Multivariable logistic regression analysis showed acceptable performance (area under the curve = 0.766). The effect of osteocalcin on the promotion of neuron survival was confirmed by Cell Counting Kit-8 experiments. In addition, osteocalcin could decrease proline hydroxylase 1 and inhibit the degradation of gasdermin D. Conclusions: We propose that osteocalcin can improve outcome after acute ischemic stroke in the acute period. By downregulating proline hydroxylase 1, osteocalcin leads glucose metabolism to the pentose phosphate pathway and therefore promotes neuronal survival through inhibiting pyroptosis.
    [Show full text]
  • Expression of Vascular Endothelial Growth Factor in Cultured Human Dental Follicle Cells and Its Biological Roles1
    Acta Pharmacol Sin 2007 Jul; 28 (7): 985–993 Full-length article Expression of vascular endothelial growth factor in cultured human dental follicle cells and its biological roles1 Xue-peng CHEN2, Hong QIAN2, Jun-jie WU2, Xian-wei MA3, Ze-xu GU2, Hai-yan SUN4, Yin-zhong DUAN2,5, Zuo-lin JIN2,5 2Department of Orthodontics, Qindu Stomatological College, Fourth Military Medical University, Xi’an 710032, China; 3Institute of Immunology, Second Military Medical University, Shanghai 200433, China; 4Number 307 Hospital of Chinese People’s Liberation Army, Beijing 100101, China Key words Abstract vascular endothelial growth factor; human Aim: To investigate the expression of vascular endothelial growth factor (VEGF) dental follicle cell; proliferation; differentia- in cultured human dental follicle cells (HDFC), and to examine the roles of VEGF in tion; apoptosis; tooth eruption; mitogen- activated protein kinase the proliferation, differentiation, and apoptosis of HDFC in vitro. Methods: Immunocytochemistry, ELISA, and RT-PCR were used to detect the expression 1 and transcription of VEGF in cultured HDFC. The dose-dependent and the time- Project supported by the National Natural Science Foundation of China (No 30400510). course effect of VEGF on cell proliferation and alkaline phosphatase (ALP) activ- 5 Correspondence to Dr Zuo-lin JIN and Prof ity in cultured HDFC were determined by MTT assay and colorimetric ALP assay, Yin-zhong DUAN. respectively. The effect of specific mitogen-activated protein kinase (MAPK) Phn 86-29-8477-6136. Fax 86-29-8322-3047. inhibitors (PD98059 and U0126) on the VEGF-mediated HDFC proliferation was E-mail [email protected] (Zuo-lin JIN) also determined by MTT assay.
    [Show full text]
  • Osteoblast-Derived Vesicle Protein Content Is Temporally Regulated
    University of Birmingham Osteoblast-derived vesicle protein content is temporally regulated during osteogenesis Davies, Owen G.; Cox, Sophie C.; Azoidis, Ioannis; McGuinness, Adam J.; Cooke, Megan; Heaney, Liam M.; Grover, Liam M. DOI: 10.3389/fbioe.2019.00092 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Davies, OG, Cox, SC, Azoidis, I, McGuinness, AJ, Cooke, M, Heaney, LM & Grover, LM 2019, 'Osteoblast- derived vesicle protein content is temporally regulated during osteogenesis: Implications for regenerative therapies', Frontiers in Bioengineering and Biotechnology, vol. 7, no. APR, 92. https://doi.org/10.3389/fbioe.2019.00092 Link to publication on Research at Birmingham portal Publisher Rights Statement: © 2019 Davies, Cox, Azoidis, McGuinness, Cooke, Heaney and Grover. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication.
    [Show full text]
  • The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns
    Concept Paper The Products of Bone Resorption and Their Roles in Metabolism: Lessons from the Study of Burns Gordon L. Klein Department of Orthopaedic Surgery and Rehabilitation, University of Texas Medical Branch, Galveston, TX 77555-0165, USA; [email protected] Abstract: Surprisingly little is known about the factors released from bone during resorption and the metabolic roles they play. This paper describes what we have learned about factors released from bone, mainly through the study of burn injuries, and what roles they play in post-burn metabolism. From these studies, we know that calcium, phosphorus, and magnesium, along with transforming growth factor (TGF)-β, are released from bone following resorption. Additionally, studies in mice from Karsenty’s laboratory have indicated that undercarboxylated osteocalcin is also released from bone during resorption. Questions arising from these observations are discussed as well as a variety of potential conditions in which release of these factors could play a significant role in the pathophysiology of the conditions. Therapeutic implications of understanding the metabolic roles of these and as yet other unidentified factors are also raised. While much remains unknown, that which has been observed provides a glimpse of the potential importance of this area of study. Keywords: bone resorption; calcium; phosphorus; TGF-β; undercarboxylated osteocalcin Citation: Klein, G.L. The Products of Bone Resorption and Their Roles in 1. Introduction Metabolism: Lessons from the Study of Burns. Osteology 2021, 1, 73–79. In recent years we have learned much about the mechanisms of bone formation and https://doi.org/10.3390/ resorption, the cells involved, and many of the factors that affect and link the two processes.
    [Show full text]
  • Zinc Pharmacotherapy for Elderly Osteoporotic Patients with Zinc Deficiency in a Clinical Setting
    nutrients Article Zinc Pharmacotherapy for Elderly Osteoporotic Patients with Zinc Deficiency in a Clinical Setting Masaki Nakano, Yukio Nakamura * , Akiko Miyazaki and Jun Takahashi Department of Orthopaedic Surgery, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan; [email protected] (M.N.); [email protected] (A.M.); [email protected] (J.T.) * Correspondence: [email protected]; Tel.: +81-263-37-2659; Fax: +81-263-35-8844 Abstract: Although there have been reported associations between zinc and bone mineral density (BMD), no reports exist on the effect of zinc treatment in osteoporotic patients. Therefore, we investigated the efficacy and safety of zinc pharmacotherapy in Japanese elderly patients. The present investigation included 122 osteoporotic patients with zinc deficiency, aged ≥65 years, who completed 12 months of follow-up. In addition to standard therapy for osteoporosis in a clinical setting, the subjects received oral administration of 25 mg zinc (NOBELZIN®, an only approved drug for zinc deficiency in Japan) twice a day. BMD and laboratory data including bone turnover markers were collected at 0 (baseline), 6, and 12 months of zinc treatment. Neither serious adverse effects nor incident fractures were seen during the observation period. Serum zinc levels were successfully elevated by zinc administration. BMD increased significantly from baseline at 6 and 12 months of zinc treatment. Percentage changes of serum zinc showed significantly positive associations with those of BMD. Bone formation markers rose markedly from the baseline values, whereas bone Citation: Nakano, M.; Nakamura, Y.; resorption markers displayed moderate or no characteristic changes.
    [Show full text]
  • Is Melatonin the Cornucopia of the 21St Century?
    antioxidants Review Is Melatonin the Cornucopia of the 21st Century? Nadia Ferlazzo, Giulia Andolina, Attilio Cannata, Maria Giovanna Costanzo, Valentina Rizzo, Monica Currò , Riccardo Ientile and Daniela Caccamo * Department of Biomedical Sciences, Dental Sciences, and Morpho-Functional Imaging, Polyclinic Hospital University, Via C. Valeria 1, 98125 Messina, Italy; [email protected] (N.F.); [email protected] (G.A.); [email protected] (A.C.); [email protected] (M.G.C.); [email protected] (V.R.); [email protected] (M.C.); [email protected] (R.I.) * Correspondence: [email protected]; Tel.: +39-090-221-3386 or +39-090-221-3389 Received: 21 September 2020; Accepted: 3 November 2020; Published: 5 November 2020 Abstract: Melatonin, an indoleamine hormone produced and secreted at night by pinealocytes and extra-pineal cells, plays an important role in timing circadian rhythms (24-h internal clock) and regulating the sleep/wake cycle in humans. However, in recent years melatonin has gained much attention mainly because of its demonstrated powerful lipophilic antioxidant and free radical scavenging action. Melatonin has been proven to be twice as active as vitamin E, believed to be the most effective lipophilic antioxidant. Melatonin-induced signal transduction through melatonin receptors promotes the expression of antioxidant enzymes as well as inflammation-related genes. Melatonin also exerts an immunomodulatory action through the stimulation of high-affinity receptors expressed in immunocompetent cells. Here, we reviewed the efficacy, safety and side effects of melatonin supplementation in treating oxidative stress- and/or inflammation-related disorders, such as obesity, cardiovascular diseases, immune disorders, infectious diseases, cancer, neurodegenerative diseases, as well as osteoporosis and infertility.
    [Show full text]
  • Evaluation of Osteonectin As a Diagnostic Marker of Osteogenic Bone Tumors
    Original Research Article DOI: 10.18231/2456-9267.2018.0019 Evaluation of osteonectin as a diagnostic marker of osteogenic bone tumors Murad Ahmad1, Sadaf Mirza2, Kafil Akhtar3,*, Rana K. Sherwani4, Khalid A Sherwani5 1Assistant Professor, 2Resident, 3,4Professor, 1-4Dept. of Pathology, Jawaharlal Nehru Medical College, Aligarh Muslim 5 University, Aligarh, Uttar Pradesh, Professor, Dept. of Orthopaedics Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India *Corresponding Author: Email: [email protected] Abstract Introduction: Immunohistochemistry plays an important but limited role in the diagnosis of primary bone tumors. Sometimes it is very difficult to differentiate osteosarcomas histologically from other tumors with similar morphology but with different malignant potential and treatment protocol. The correct diagnosis of OSA relies on identification of osteoid production by malignant cells which can be detected by the use of osteonectin. Materials and Methods: The present study was carried out on 200 patients of benign and malignant lesions of bone. After a detailed clinical history and local examination, paraffin section of resected specimens were studied by hematoxylin and eosin and immunohistochemical stain, osteonectin and matrix was graded on a four-tiered grading system with statistical analysis of osteonectin positivity in osteogenic bone tumours and tumour-like lesions. Results: Benign and malignant tumours accounted for 74.6% and 25.0% of the total cases. Osteoid production were seen in 36 cases (100.0%) of osteosarcomas, followed by fibrous dysplasia in 18 cases (100.0%) and osteoid osteoma in 10 cases (100.0%). Both polygonal and spindle shaped tumour cells in osteosarcoma showed Grade 4 positivity with osteonectin.
    [Show full text]
  • Leptin Mediated Pathways Stabilize Posttraumatic Insulin And
    International Journal of Molecular Sciences Article Leptin Mediated Pathways Stabilize Posttraumatic Insulin and Osteocalcin Patterns after Long Bone Fracture and Concomitant Traumatic Brain Injury and Thus Influence Fracture Healing in a Combined Murine Trauma Model Anja Garbe 1,*, Frank Graef 1 , Jessika Appelt 1,2 , Katharina Schmidt-Bleek 2 , Denise Jahn 1,2, Tim Lünnemann 1, Serafeim Tsitsilonis 1 and Ricarda Seemann 1 1 Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; [email protected] (F.G.); [email protected] (J.A.); [email protected] (D.J.); [email protected] (T.L.); [email protected] (S.T.); [email protected] (R.S.) 2 Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected] Received: 24 October 2020; Accepted: 28 November 2020; Published: 30 November 2020 Abstract: Recent studies on insulin, leptin, osteocalcin (OCN), and bone remodeling have evoked interest in the interdependence of bone formation and energy household. Accordingly, this study attempts to investigate trauma specific hormone changes in a murine trauma model and its influence on fracture healing. Thereunto 120 female wild type (WT) and leptin-deficient mice underwent either long bone fracture (Fx), traumatic brain injury (TBI), combined trauma (Combined), or neither of it and therefore served as controls (C). Blood samples were taken weekly after trauma and analyzed for insulin and OCN concentrations.
    [Show full text]
  • Nutritional Zinc Plays a Pivotal Role in Bone Health and Osteoporosis Prevention
    Edorium J Nutr Diet 2015;1:1–8. Yamaguchi 1 www.edoriumjournals.com/ej/nd EDITORIAL OPEN ACCESS Nutritional zinc plays a pivotal role in bone health and osteoporosis prevention Masayoshi Yamaguchi Bone homeostasis is maintained through a delicate cardiovascular diseases, cancer and diabetesaffecting the balance between osteoblastic bone formation and aging population [6–8]. osteoclastic bone resorption [1, 2]. Bone mass is reduced Osteoporosis has also been shown to induce after by decrease in osteoblastic bone formation and increase diabetes (type I and II), obesity, inflammatory disease, and in osteoclastic bone resorption. Numerous pathological various pathophysiological states. Diabetic osteoporosis processes have the capacity to disrupt this equilibrium is noticed in recent years [7, 8]. Diabetes is frequent leading to conditions where the rate of bone resorption in the elderly, and therefore frequently coexists with outpaces the rate of bone formation. Osteoporosis is osteoporosis. Furthermore, there has also been a global induced with decrease in bone mass. The most dramatic increase in the prevalence of obesity, with obesity-related expression of osteoporosis is represented by fractures of diabetes currently affecting over 366 million adults the proximal femur for which the number increases as worldwide and projections that this will reach 552 million the population ages [3, 4]. Osteoporosis is characterized by 2030 [9]. Type 1 diabetes, and more recently type 2 by reduced bone strength and an increased risk for low- diabetes, has been associated with increased fracture risk. trauma fractures. Bone mass is dramatically reduced In Western societies, mean body weight has dramatically after menopause, which depresses the secretion of increased in older people, and a similar trend exists in ovarian hormone (estrogen) in women [5].
    [Show full text]
  • Gene Expression Profiling of Differentiated Thyroid Neoplasms: Diagnostic and Clinical Implications
    6586 Vol. 10, 6586–6597, October 1, 2004 Clinical Cancer Research Gene Expression Profiling of Differentiated Thyroid Neoplasms: Diagnostic and Clinical Implications Sylvie Chevillard,1 Nicolas Ugolin,1 entiation, adhesion, immune response, and proliferation as- Philippe Vielh,2 Katherine Ory,1 Ce´line Levalois,1 sociated pathways. Quantitative real-time reverse transcrip- Danielle Elliott,4 Gary L. Clayman,3 and tion-PCR analysis of selected genes corroborated the 4 microarray expression results. Adel K. El-Naggar Conclusions: Our study show the following: (1) differ- 1 Laboratoire de Cance´rologie Expe´rimentale, Commissariat a´ ences in gene expression between tumor and nontumor bear- L’Energie Atomique, Direction des Sciences du Vivant, De´partement ing normal thyroid tissue can be identified, (2) a set of genes du Radiobiologie et Radiopathologie, Fontenay-aux-Roses Cedex France; 2De´partement de Pathologie, Institut Gustave Roussy, differentiate follicular neoplasm from follicular variant of Villejuif Cedex, France; Departments of 3Head and Neck Surgery and papillary carcinoma, (3) follicular adenoma and carcinoma 4Pathology, The University of Texas M.D. Anderson Cancer Center, share many of the differentiated genes, and (4) gene expres- Houston, Texas sion differences identify conventional papillary carcinoma from the follicular variant. ABSTRACT Purpose: The purpose of this research was to identify INTRODUCTION novel genes that can be targeted as diagnostic and clinical Differentiated thyroid epithelial tumors represent a spec- markers of differentiated thyroid tumors. trum of morphologically and biologically diverse lesions. The Experimental Design: Gene expression analysis using follicular-derived neoplasms (adenoma, carcinoma, and the fol- microarray platform was performed on 6 pathologically licular variant of papillary carcinoma) manifest overlapping normal thyroid samples and 12 primary follicular and pap- cytomorphologic features and not infrequently pose diagnostic illary thyroid neoplasms.
    [Show full text]
  • Accelerated Bone Resorption, Due to Dietary Calcium Deficiency, Promotes Breast Cancer Tumor Growth in Bone
    Research Article Accelerated Bone Resorption, Due to Dietary Calcium Deficiency, Promotes Breast Cancer Tumor Growth in Bone Yu Zheng, Hong Zhou, James R.K. Modzelewski, Robert Kalak, Julie M. Blair, Markus J. Seibel, and Colin R. Dunstan Bone Research Program, ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia Abstract erating tumor cells, increase osteoclastic bone destruction by acting on osteoblasts to increase expression of receptor activator of The skeleton is a major site of breast cancer metastases. High n bone turnover increases risk of disease progression and death. nuclear factor- B ligand. As bone breaks down, growth factors, such as transforming growth factor-h and insulin-like growth factors, are However, there is no direct evidence that high bone turnover is causally associated with the establishment and progression of released from the bone matrix in active forms to stimulate tumor metastases. In this study, we investigate the effects of high growth leading in turn to further bone destruction (4). In animal bone turnover in a model of breast cancer growth in bone. models of breast cancer metastasis, antiresorptive treatment with Female nude mice commenced a diet containing normal (0.6%; either bisphosphonates or osteoprotegerin has shown skeletal ‘Normal-Ca’) or low (0.1%; ‘Low-Ca’) calcium content. Mice protection and reduced tumor growth (5–8). Therefore, bone were concurrently treated with vehicle or osteoprotegerin resorption seems to provide the cellular microenvironment that (1 mg/kg/d s.c; n = 16per group). Three days later (day 0), enhances growth of breast cancer metastases in bone. 50,000 Tx-SA cells (variant of MDA-MB-231 cells) were Several clinical studies showed that in patients with newly implanted by intratibial injection.
    [Show full text]