Antenna Types
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
5.1 Optical Nanostrip Antenna
Copyright Undertaking This thesis is protected by copyright, with all rights reserved. By reading and using the thesis, the reader understands and agrees to the following terms: 1. The reader will abide by the rules and legal ordinances governing copyright regarding the use of the thesis. 2. The reader will use the thesis for the purpose of research or private study only and not for distribution or further reproduction or any other purpose. 3. The reader agrees to indemnify and hold the University harmless from and against any loss, damage, cost, liability or expenses arising from copyright infringement or unauthorized usage. IMPORTANT If you have reasons to believe that any materials in this thesis are deemed not suitable to be distributed in this form, or a copyright owner having difficulty with the material being included in our database, please contact [email protected] providing details. The Library will look into your claim and consider taking remedial action upon receipt of the written requests. Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong http://www.lib.polyu.edu.hk INVENSTIGATION OF SOLAR ELECTRIC SYSTEMS BASED ON NANO RECTENNA WANG JIAJIE, IVAN Ph.D The Hong Kong Polytechnic University 2014 I II The Hong Kong Polytechnic University Department of Building Services Engineering Investigation of Solar Electric Systems Based on Nano Rectenna WANG Jiajie, Ivan A thesis submitted in partial fulfillment of the requirements for the Degree of Doctor of Philosophy September 2013 III IV CERTIFICATE OF ORIGINALITY I hereby declare that this thesis is my own work and that, to the best of my knowledge and belief, it produces no material previously published or written nor material which has been accepted for the award of any other degree or diploma, except where due acknowledgement has been made in the text. -
"Eggbeater"Antenna Vhf/Uhf ~ Part 1
"EGGBEATER"ANTENNA VHF/UHF ~ PART 1 ON6WG / F5VIF For the enthusiastic listeners or the licensed amateur station wishing to experiment with satellite transmissions without investing a large sum of money in rotators and tracking systems, here is a very competitive antenna. It will appeal to those with no space for large arrays, or for those who simply wish to experiment with circular polarization for terrestrial transmissions. Introduction This antenna was conceived mainly for high-speed digital transmission via satellite. Another reason was the need for a compact system due to the local environment of my station (mountainous region with high hills and obstacles too close to my station, no space to safely place rotative YAGI antennas). If the horizon is unreachable for RF signals , that leaves only the sky above us. To use the high-speed digital satellites, the level of signal reaching the TNC must be high enough to correctly decode the packets. For example, I mainly use an AEA/PK-96 TNC which requires at least 200 millivolts p-p at the input. To have this level when receiving 9600 Bd packets, there must be at least an S-3 showing on the S-Meter of my receiver. Design The antenna is made of two full waves loops , mounted at right angles to each other. Then coupled together, 90 degrees out of phase over a horizontal circular reflector. With this configuration the antenna is omni directional and circularly polarized. Changing the feeder connection from one loop to the other loop will effectively change the polarization between RHCP and LHCP. -
Performance Analysis of Helical Antenna for Different Physical Structure
International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 5, Issue 4, 2018, PP 21-25 ISSN 2349-4050 (Online) & ISSN 2349-4042 (Print) DOI: http://dx.doi.org/10.20431/2349-4050.0504004 www.arcjournals.org Performance Analysis of Helical Antenna for Different Physical Structure Rahul koshti1, Simran Yadav2, Shikha Sharma3 MPSTME, NMIMS, Shirpur *Corresponding Author: Rahul koshti, MPSTME, NMIMS, Shirpur Abstract: Wireless technology is such of the potent areas of scan in the presence of communication systems today and a design of communication systems is incomplete without a perspective of the activity and fabricatio n of antennas. Helical antenna is used as easily done and shrewd radiators completely the get by few decades, this antenna can be utilized as an encourage for an explanatory dish for higher additions.. So in this we have varied various parameters of helical antenna. Manipulations for this helical antenna antenna have been done with the assist of Matlab softwar Keywords: helical antennas, Antenna gain, Directivity. 1. INTRODUCTION In 1946 Kraus invented the helix form of antenna that is helical antenna. For longer period of time this helical antenna gets famous. [1] Helical antennas are further called as unfiled helix. By the all of diameter D in large helical antenna is revitalizing by a coaxial line along the little ground plane. In communication system helical antenna have a very large approach, so there is a foist of broadband circular polarized antennas [2].This antenna is most significantly used nowadays in point communications, telephone, and television and Information communication. The normal mode helical antenna is particularly attractive for mobile communication and adaptable equipment [3].The shape of helix antenna is a cross breed of two straightforward emanating essentials, the dipole and circle reception apparatuses. -
Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application
RADIOENGINEERING, VOL. 25, NO. 2, JUNE 2016 275 Reconfigurable Plasma Antenna Array by Using Fluorescent Tube for Wi-Fi Application Hajar JA’AFAR1, Mohd Tarmizi ALI 2, Ahmad Nazri DAGANG3, Idnin Pasya IBRAHIM2, Nur Aina HALILI2, Hanisah MOHD ZALI2 1Faculty of Electrical Engineering, Universiti Teknologi MARA (Terengganu), Sura Hujung 23000 Dungun, Malaysia 2Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor, Malaysia 3 School of Ocean Engineering, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia [email protected] Manuscript received March 19, 2016 Abstract. This paper presents a new design of reconfigura- generated by UV laser irradiation, or by laser initiated pre- ble plasma antenna array using commercial fluorescent ionization followed by high voltage break down to form tube. A round shape reconfigurable plasma antenna array the main conducting channel or by simply using commer- is proposed to collimate beam radiated by an omnidirec- cial fluorescence tube to serve as reflector, or by much tional antenna (monopole antenna) operating at 2.4 GHz more expensive electron beam [2]. There were also exotic in particular direction. The antenna design consists of methods like explosion generating plasma antenna for a monopole antenna located at the center of a circular alu- fusion research. The plasma will be present when electron minum ground. The monopole antenna is surrounded by and nucleus that form the atom is no longer able to stay a cylindrical shell of conducting plasma. The plasma shield together due to high kinetic energy. It happens due to the consists of 12 commercial fluorescent tubes aligned in electrons are stripped out from the atoms. -
Performance and Radiation Patterns of a Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond
Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond To cite this version: Mohd Taufik Jusoh Tajudin, Mohamed Himdi, Franck Colombel, Olivier Lafond. Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna. IEEE Antennas and Wireless Propagation Letters, Institute of Electrical and Electronics Engineers, 2013, pp.1. 10.1109/LAWP.2013.2281221. hal-00862667 HAL Id: hal-00862667 https://hal-univ-rennes1.archives-ouvertes.fr/hal-00862667 Submitted on 17 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Performance and Radiation Patterns of A Reconfigurable Plasma Corner-Reflector Antenna Mohd Taufik Jusoh, Olivier Lafond, Franck Colombel, and Mohamed Himdi [9] and reactively controlled CRA in [10] were proposed to Abstract—A novel reconfigurable plasma corner reflector work at 2.4GHz. A mechanical approach of achieving variable antenna is proposed to better collimate the energy in forward beamwidth by changing the included angle of CRA was direction operating at 2.4GHz. Implementation of a low cost proposed in [11]. The design was simulated and measured plasma element permits beam shape to be changed electrically. -
Analysis of Crossed Dipole to Obtain Circular Polarization Applying Characteristic Modes Techniques
Analysis of crossed dipole to obtain circular polarization applying Characteristic Modes techniques Juan Pablo Ciafardini (1), Eva Antonino Daviu (2), Marta Cabedo Fabrés (2), Nora Mohamed Mohamed-Hicho (2), José Alberto Bava (1), Miguel Ferrando Bataller (2). (1) Dpto. de Electrotecnia. Facultad de Ingeniería, Universidad Nacional de La Plata. Calle 48 y 116 - La Plata (1900), Argentina. [email protected] (2) Instituto de Telecomunicaciones y Aplicaciones Multimedia. Edificio 8G. Planta 4ª, acceso D. Universidad Politécnica Valencia. Camino de Vera, s/n46022 Valencia. España. [email protected] Abstract— The crossed dipole is a common type of antenna developed to achieve wider bandwidth impedance compared that is used to generate circularly polarized radiation in a wide to the original design. In 1961 a new type of crossed dipole frequency range. This antenna was originally developed in the antenna, which used a single feed, was developed for 1930s and today is used in many wireless communication circular polarization radiation [5], Bolster demonstrated systems, including broadcast services, satellite theoretically and experimentally that single-feed crossed communications, mobile communications, global navigation systems satellite system (GNSS), radio frequency identification dipoles connected in parallel if the lengths of the dipoles (RFID), wireless local area networks (WLANs) and global were such that the real parts of their input admittances were interoperability for microwave access (WiMAX). equal and the phase angles of their input admittances This paper shows that it is possible to obtain circular differed by 90º. Based on these conditions, numerous polarization with two cross dipoles with different lengths and single-feed circularly polarized crossed dipole antennas connected in parallel by applying the Theory of Characteristic have been designed [5] - [25]. -
AU0019429 PLASMA ANTENNAS: DYNAMICALLY CONFIGURABLE ANTENNAS for COMMUNICATIONS Gerard Borg, David Miljak*, Jeffrey Harris and N
AU0019429 PLASMA ANTENNAS: DYNAMICALLY CONFIGURABLE ANTENNAS FOR COMMUNICATIONS Gerard Borg, David Miljak*, Jeffrey Harris and Noel Martin* Plasma Research Laboratory "'• Research School of Physical Sciences ".v Australian National University Canberra ACT 0200 Australia Wills Plasma Physics Department School of Physics, University of Sydney Sydney, New South Wales, 2006 Australia * Defence Science and Technology Organisation P.O. Box 1500, Salisbury, South Australia , 5108 Australia In recent years, the rapid growth in both communications and radar systems has led to a concomitant growth in the possible applications and requirements of antennas. These new requirements include compactness and conformality, rapid reconfigurability for directionality and frequency agility. For military applications, antennas should also allow low absolute or out-of-band radar cross-section and facilitate low probability of intercept communications. Investigations have recently begun worldwide on the use of ionised gases or plasmas as the conducting medium in antennas that could satisfy these requirements. Such plasma antennas may even offer a viable alternative to metal in existing applications when overall technical requirements are considered. A recent patent for ground penetrating radar claims the invention of a plasma antenna for the transmission of pulses shorter than 100 ns in which it is claimed that current ringing is avoided and signal processing simplified compared with a metal antenna. A recent US ONR tender has been issued for the design and construction of a compact and rapidly reconfigurable antenna for dynamic signal reception over the frequency range 1 - 45 GHz based on plasma antennas. Recent basic physics experiments at ANU have demonstrated that plasma antennas can attain adequate efficiency, predictable radiation patterns and low base-band noise for HF and VHF communications. -
Broadband Antenna 1
Broadband Antenna Broadband Antenna Chapter 4 1 Broadband Antenna Learning Outcome • At the end of this chapter student should able to: – To design and evaluate various antenna to meet application requirements for • Loops antenna • Helix antenna • Yagi Uda antenna 2 Broadband Antenna What is broadband antenna? • The advent of broadband system in wireless communication area has demanded the design of antennas that must operate effectively over a wide range of frequencies. • An antenna with wide bandwidth is referred to as a broadband antenna. • But the question is, wide bandwidth mean how much bandwidth? The term "broadband" is a relative measure of bandwidth and varies with the circumstances. 3 Broadband Antenna Bandwidth Bandwidth is computed in two ways: • (1) (4.1) where fu and fl are the upper and lower frequencies of operation for which satisfactory performance is obtained. fc is the center frequency. • (2) (4.2) Note: The bandwidth of narrow band antenna is usually expressed as a percentage using equation (4.1), whereas wideband antenna are quoted as a ratio using equation (4.2). 4 Broadband Antenna Broadband Antenna • The definition of a broadband antenna is somewhat arbitrary and depends on the particular antenna. • If the impendence and pattern of an antenna do not change significantly over about an octave ( fu / fl =2) or more, it will classified as a broadband antenna". • In this chapter we will focus on – Loops antenna – Helix antenna – Yagi uda antenna – Log periodic antenna* 5 Broadband Antenna LOOP ANTENNA 6 Broadband Antenna Loops Antenna • Another simple, inexpensive, and very versatile antenna type is the loop antenna. -
Plasma Antennas: Survey of Techniques and the Current State of the Art
NPS-CRC-03-001 MONTEREY, CALIFORNIA Plasma Antennas: Survey of Techniques and the Current State of the Art by D. C. Jenn September 29, 2003 Approved for public release; distribution is unlimited. Prepared for: SPAWAR PMW 189 San Diego, CA REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED blank) September 29, 2003 Technical Report (July 2003 to September 2003) 4. TITLE AND SUBTITLE: 5. FUNDING NUMBERS Plasma Antennas: Survey of Techniques and Current State of the Art 6. AUTHOR(S) David C. Jenn 7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING ADDRESS(ES) ORGANIZATION REPORT Naval Postgraduate School NUMBER Monterey, CA 93943-5000 NPS-CRC-03-001 9. SPONSORING / MONITORING AGENCY NAME(S) AND 10. SPONSORING / MONITORING ADDRESS(ES) AGENCY REPORT NUMBER SPAWAR PMW 189 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. -
Helical Feed Manipulation for Parabolic Reflector Antenna Gain Control
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-4 Issue-2, December 2014 Helical Feed Manipulation for Parabolic Reflector Antenna Gain Control Zohair Mohammed Elhassan Hussein, Abdelrasoul jabar kizar alzubaidi Abstract Helical antennas have long been popular in A sketch of a typical helical antenna is shown in Figure (1). applications from VHF to microwaves requiring circular The radiating element is a helix of wire, driven at one end polarization, since they have the unique property of naturally and radiating along the axis of the helix. A ground plane at providing circularly polarized radiation. One area that takes the driven end makes the radiation unidirectional from the advantage of this property is satellite communications. Where far (open) end. There are also configurations that radiate more gain is required than can be provided by a helical antenna alone, a helical antenna can also be used as a feed for perpendicular to the axis, with an unidirectional pattern. a parabolic dish for higher gains. The helical antenna can be W e shall only consider the axial-mode configuration. an excellent feed for a dish, with the advantage of circular Typical helix dimensions for an axial-mode helical antenna polarization. One limitation is that the usefulness of the have a helix circumference of one wavelength at the center circular polarization is limited since it cannot be easily frequency, with a helix pitch of 12 to 14 degrees. Kraus reversed to the other sense, left- handed to right-handed or defines the pitch angle α as: vice-versa. This paper deals with applying an electronic technique to control the helical feed of the parabolic reflector = ………………..(1) feed. -
AB Antenna Family.Qxp
WIRELESS PRODUCTS Airborne™ Antenna Product Family ACH2-AT-DP000 series ACH0-CD-DP000 series (other accessories) Airborne™ Antennas are designed for connection to 802.11 wireless devices operating in the 2.4GHz ISM band. These antennas fully support the entire line of Airborne™ wireless 802.11 products. This assortment of antennas is intended to provide OEMs with solutions that meet the demanding and diverse requirements for transportation, medical, warehouse logistics, POS, industrial, military and scientific applications. Applications The Airborne™ Antenna family offers antennas for embedded applications, fixed stations, mobile operation and client side devices, and for indoor and outdoor applications. The antennas feature RP-SMA, N-type and U.FL connectors that provide the designer with flexible ways to connect to Airborne wireless products. A wide range of antenna types and gain options enable an OEM to select the antenna that best matches their application requirements. The Recommended for AirborneTM 802.11 lower gain and smaller antennas, such as the “rubber duck” antennas, would fit applications embedded and system bridge products where the range is not required to exceed 200- 400m while the higher gain directional antennas Made for Embedded or External mounting, would be suitable for extended range that require greater than 800m reach. Embedded antennas Mobile or Fixed station, and Indoor and/or provide ranges from 50m up to 300m. Outdoor operation Specialty Antenna Embedded antenna options are intended for Select from Omni Directional, Highly applications where it is not desirable to use an Directional, or Corner Reflector external antenna, or where the enclosure or application does not allow for an external antenna. -
Various Types of Antenna with Respect to Their Applications: a Review
INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY SCIENCES AND ENGINEERING, VOL. 7, NO. 3, MARCH 2016 Various Types of Antenna with Respect to their Applications: A Review Abdul Qadir Khan1, Muhammad Riaz2 and Anas Bilal3 1,2,3School of Information Technology, The University of Lahore, Islamabad Campus [email protected], [email protected], [email protected] Abstract– Antenna is the most important part in wireless point to point communication where increase gain and communication systems. Antenna transforms electrical signals lessened wave impedance are required [45]. into radio waves and vice versa. The antennas are of various As the knowledge about antennas along with its application kinds and having different characteristics according to the need is particularly less thus this review is essential for determining of signal transmission and reception. In this paper, we present various antennas and their applications in different systems. comparative analysis of various types of antennas that can be differentiated with respect to their shapes, material used, signal In this paper a detailed review of various types of antenna bandwidth, transmission range etc. Our main focus is to classify which developed to perform useful task of communication in these antennas according to their applications. As in the modern different field of communication network is presented. era antennas are the basic prerequisites for wireless communications that is required for fast and efficient II. WIRE ANTENNA communications. This paper will help the design architect to choose proper antenna for the desired application. A. Biconical Dipole Antenna Keywords– Antenna, Communications, Applications and Signal There is no restriction to the data transfer capacity of an Transmission infinite constant-impedance transmission line however any pragmatic execution of the biconical dipole has appendages of constrained extend forming an open-circuit stub in the same I.