Study and design of reconfigurable antennas using medium Mohd Taufik Jusoh Tajudin

To cite this version:

Mohd Taufik Jusoh Tajudin. Study and design of reconfigurable antennas using plasma medium. Electronics. Université Rennes 1, 2014. English. ￿NNT : 2014REN1S019￿. ￿tel-01060295￿

HAL Id: tel-01060295 https://tel.archives-ouvertes.fr/tel-01060295 Submitted on 3 Sep 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ANNÉE 2014

THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne

pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale MATISSE

présentée par Mohd Taufik JUSOH TAJUDIN

préparée à l’unité de recherche I.E.T.R – UMR 6164 Institut d’Electronique et de Télécommunications de Rennes Université de Rennes 1

Thèse soutenue à Rennes le 04 avril 2014 Study and Design of devant le jury composé de : Mme. Paola RUSSO Reconfigurable Professeur, Università Politecnica delle Marche, Ancona, Italy / rapporteur Antennas Using M. Olivier PASCAL Professeur, Université de Toulouse, Toulouse, France / Plasma Medium rapporteur M. Christian PERSON Professeur, Institut Telecom/Télécom Bretagne, Rennes, France / examinateur M. Philippe POULIGUEN HDR, Ingénieur DGA-MI, Bruz, France / examinateur M. Olivier LAFOND Maitre de Conférences HDR, IETR, Université de Rennes 1, Rennes, France / co-directeur de thèse M. Franck COLOMBEL Maitre de Conférences HDR, IETR, Université de Rennes 1, Rennes, France / co-directeur de thèse M. Mohamed HIMDI Professeur, IETR, Université de Rennes 1, Rennes, France / directeur de thèse

Acknowlegement Bismillahirahmanirahim,

FirstofallIwouldliketorendermyentireappreciationtomyrespectedsupervisors, Prof.MohamedHimdi,Assc.Prof.OlivierLafondandAssc.Prof.FranckColombelfor theirguidance,helpandinsightmotivationthroughouttwoandhalfyearsworkingwith thematIETR.Theircontinuoussupporthadhelpedmetoexcelinfinishingmyresearch work.Allofyouhavebeenmyrolemodelsandinspiration.

Itispleasuretoacknowledgemygratitudetothereviewers,Prof.PaolaRussoandProf. Olivier Pascal for accepting my thesis work.Not to forget for the othersjuries, Prof. ChristianPersonandEng.PhilippePouliguen.Thecommentsandsuggestionsbefore andduringmydefenseareveryusefultoimprovemyworkinthefutureendeavors.

I also would like to mention my thousand thank to Mr. Laurent Cronier and Mr. ChristopheGuitonforhelpingmetocomeoutwithexcellentprototypes.The sweetmemorieswhenwewereworkingtogethertocompletemyprototypewillalways remaininmyheart.ThanksatontoMr.JeromeSolandDr.LaurentLeCoqfortheir excellentworksinantennameasurements.Thesuggestionsandideasfrombothofyou aremuchappreciated.

Tomyofficemates,Dr.LiliaManach’,JonathanBorandCaroleLeduc,thankyoufor yourfriendship,supportsandhelpthroughoutmydaysatIETR.Thesweetmemories thatwehadsharedaresafelyembeddedinmyheartanditwillnotbeerasedovertime. AdditionalthanktoDr.Hamzawhohadintroducedmetothisexcellentgroup.Notto forgettoDr.NgocTinhNguyenforbeingmysilentadvisor.

Utmost,Iwouldliketoaddressmygratefulfeelingtomyparents(Mr.JusohTajudin andMdm.CheTom),parents’inlaw(Dr.JalalandMdm.Yuha)fortheirbeliefinme andtheirprayers.Tomysiblings,thesupportandtheprayerswillneverbepaidbyme.

Words unable to describe how thankful I am to my wife Dr. Fariha Hanim for her unconditionalsupportthroughthethickandthinandalsotomybelovedsons,Abdullah AqilandFawwazZaki.‘Mama,thanksforbeingtherewhenIneededyou.Abiwillnot beabletoattainthisPhdwithoutyourexistencebymyside.’

Lastbutnotleast,IwouldliketopaymytributetoMinistryofEducationofMalaysia andNationalDefenseUniversityofMalaysiaforprovidingmethescholarship.

...... speciallydedicatedtomybelovedwife,DrFarihaHanim,ourgiftedsons,Abdullah Aqil,FawwazZakiandtomyhonorablefamily

RESUMEENFRANÇAIS

Résuméenfrançais

Tabledesmatières 1.0 Introduction...... i 2.0 Modélisationduplasma...... i 3.0 Réflecteurd’antennereconfigurable...... iv a. Antenneàréflecteurcirculaire...... iv b. Antenneàréflecteurtriangulaire...... v 4.0 Antennaplasma...... vi 5.0 SurfaceEquivalentedesantennesplasmareconfigurables...... viii 6.0 Conclusion...... ix

RESUMEENFRANÇAIS

1.0 Introduction

Leplasmaestle4èmeétatdelamatièrequiestnaturellementdisponible.Leplasma diffère des métamatériaux qui ont une permittivité et une perméabilité négative. En effet, le plasma conserve une perméabilité positive alors que sa perméabilité est négative.C’estlaprincipalecaractéristiqueduplasmaquiprésenteunintérêtpourla conception des antennes. De manière générale, le plasma se comporte comme un matériauconducteuretcettecaractéristiquepeutdisparaîtrelorsqueleplasman’estplus excité. Ce caractère reconfigurable du plasma est utilisé dans ces travaux pour la conception d’antennes. La caractéristique conducteur/nonconducteur du plasma est contrôléeélectriquementetleplasmaestutilisésoitcommeunélémentrayonnant,soit comme un réflecteur ou bien comme un absorbant. Dans certains cas, le plasma peut alorsremplaceravantageusementdesmatériauxmétalliques.

Lanotiondeplasmaaétéintroduiteenphysiqueaudébutdesannées20.Dansun premiertemps,leplasmaaétéutilisécommeunélémentrayonnantpourtransmettredes signauxélectromagnétiques.En1919,leconceptd’antenneplasmaaétébrevetéparJ. Hettinger.Lesdéveloppementssignificatifsdesplasmasontdémarrédanslesannées60 lorsquecesderniersontétéintroduitsdansdessystèmesdecommunication.

2.0 Modélisationduplasma

L’unedesprincipalestâchesdecestravauxconcernelacaractérisationduplasma.Si lafréquenceplasmaetlafréquencedecollisionpeuventêtreestiméesalorsdifférentes zones de fonctionnement des antennes plasmas peuvent être identifiées. Dans ces travaux, le modèle du plasma a été défini en ce basant sur des mesures. La première mesurepermetdedéterminerlafréquenceduplasmaetladeuxièmepermetd’évaluerla fréquencedecollision.

Pourdéterminercescaractéristiques,nousavonsutiliséledispositifsuivant:Nous avonsplacéentredeuxcornetssuffisammentéloignésl’undel’autre,d’unepartunmur deplasmaréaliséàl’aidedetubesnéonetd’autrepartunefeuilledemétal.Onnoteque lafeuilledemétalestsoitpleine,soitmuniedefentesreprésentantl’espacementprésent entredeuxtubesnéonadjacents(figure1).

i RESUMEENFRANÇAIS

(a)(b) Figure1–Photographiedumurdeplasma(a)Plasmaréaliséàl’aidede6lampes fluorescentesenparallèles(lamesureaétéfaiteavec20lampesfluorescentes)etlemur métallique(b)munidefentes.

La figure 2 montre le dispositif de caractérisation du plasma. La mesure du coefficientdetransmissionentrelesdeuxcornetsaétéeffectuéedanscinqcas:

Enespacelibre(pasd’obstaclesituéentrelescornets). Avecunmurmétalliquepleinentrelesdeuxcornets. Avecunmurmétalliquemunidefentesentrelesdeuxcornets. Avecunmurdetubesfluorescents(plasma)excitésentrelesdeuxcornets. Avecunmurdetubesfluorescents(plasma)nonexcitésentrelesdeuxcornets. Lamesureacommencéavecaucunobstaclesituéentrelesdeuxcornets.Cecisertde référence.Danslesautrescas,undesobstaclesdécritsprécédemmentestdisposéentre lesdeuxcornets.Lamesureducoefficientdetransmissionpermetdecomprendreles caractéristiquesduplasma.

Plasmawall Transmitter(hornantenna) 100

100 Receiver(hornantenna)

Figure 2 – Dispositif de mesure avec un mur de tubes fluorescents disposé entre deux cornets.Ladistanceentrelesdeuxcornetsestde100cm.

ii RESUMEENFRANÇAIS

Les résultats expérimentaux sont décrits sur la figure 3. Sur la figure 3a, on remarquequ’endessousde8GHz,lecoefficientdetransmissionestsimilairelorsque qu’il n’y a pas d’obstacle (espace libre) ou lorsque l’on place un mur de tubes fluorescentsnonexcités.Onestimequelapropagationdesondesestatténuéeàpartirde 7GHzlorsquelemurdetubesfluorescentsestexcité(figure3b).Onendéduitquele plasmapassealorsd’unétatnonconducteuràunétatconducteur.Cetravailsefocalise en dessous de cette fréquence caractéristique, où le plasma possède alors une permittiviténégativeetsecomportecommeunmétalavecuneconductivitéfaible.

0 0 5 S plasmaOFF 5 S plasmaON 21 21 S freespace 10 S freespace 10 21 21 15 15 20 20 25 25

(dB) 30 (dB) 30 21 21 S 35 S 35 40 40 45 45 50 50 55 55

60 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Frequency(GHz) Frequency(GHz) (a)(b)

0

5 S plasmaON 21 10 S plasmaOFF 21 15 20 25

(dB) 30 21 S 35 40 45 50 55

60 1 2 3 4 5 6 7 8 9 10 Frequency(GHz) (c) Figure3–Coefficientsdetransmissionmesurés.(a)murdetubesfluorescentsnonexcités (PlasmaOFF)etespacelibre,(b)murdetubesfluorescentsexcités(PlasmaON)etespace libre,(c)murdetubesfluorescentsexcités(PlasmaON)etmurdetubesfluorescentsnon excités(PlasmaOFF).

Lafigure3cmontrelesrésultatsducoefficientdetransmissionsurunebandeplus étroitelorsquelemurdetubesfluorescentsest excitéounonexcité.Cecipermetde représenterlesétatsONetOFFduplasma.Entre2et2,5GHz,ladifférenceentreces deux états varie entre 8 et 15 dB avec un maximum à 2 GHz. En se référant à cette

iii RESUMEENFRANÇAIS dernièremesure,ondéduitquelafréquenceduplasmasesitueentre7et9GHz.Pourla suitedutravail,onprendra7GHz.

Ensebasantsurcettefréquenceplasma,uneétudeparamétriquesurlafréquencede collisionduplasmaestconduitesousCSTentre0,1et3GHz.Lesrésultatssimulésont étécomparésauxrésultatsexpérimentauxetontpermisdeconclurequelafréquencede collisionduplasmaconsidéré(tubesfluorescents)estde900MHz.

3.0 Réflecteurd’antennereconfigurable

Danscetravail,deuxtypesd’antennesmuniesderéflecteursréalisésavecdestubes fluorescents(Plasma)ontétéétudiées:

Antenneàréflecteurcirculaire(RRA) Antenneàréflecteurtriangulaire(CRA)

Ces antennes fonctionnant à 2,4 GHz ont toutes été conçues, simulées, réalisées et mesurées.

a. Antenneàréflecteurcirculaire Surlafigure4,onmontreuneantenneàréflecteurcirculaire(RRA).L’antenneest constituéed’unmonopolemétalliquerésonnantà2,4GHzsituéaucentred’unréflecteur circulaire réalisé à l’aide de 15 tubes fluorescents (CFLs). Les performances de cette antenneontétémesuréesetontmontrésqu’ilétaitpossibledeformerlediagrammede rayonnementdel’antenneenexcitantounonunepartiedestubesfluorescents.Onnote égalementquel’accordentrelathéorieetlamesureestsatisfaisant.

(a)(b)

iv RESUMEENFRANÇAIS

(c)(d) Figure4–Antenneàréflecteurcirculaire(RRA).(a)15CFLsavecunplandemassede300 mmdecoté,(b)Switchesetballastspermettantlacommandedestubesfluorescents,(c) dispositifdecommande,(d)Antenneàréflecteurcirculaire(RRA)avecunquartdestubes fluorescentsexcités. Une telle antenne permet de réaliser un nombre important de configurations de réflecteur en excitant ou non une partie des tubesfluorescents. Dans ce travail, trois configurationsontététestéesenexcitant7,9ou11tubesfluorescents.Danslecasoù9 tubessontexcitésà2,4GHz,l’ouverturemesuréedudiagrammederayonnementdans leplanHestde52°etlegainmesuréestde9dBi.Danslalittérature,ontrouvedes résultatsobtenusà2,8GHzpourunréseausimilaireréaliséavecdestubesmétalliques analoguesàceuxtrouvéspourunréflecteurfaitavecdestubesfluorescents(Plasma).

La mesure montre également la capacité d’une telle antenne à balayer son diagramme de rayonnement sur 360° d’azimut. Le pas de balayage du diagramme horizontalpeutêtrediminuéenutilisantdestubesfluorescentsdeplusfaiblerayon.

b. Antenneàréflecteurtriangulaire Aucoursdecestravaux,unautretyped’antenneàréflecteuraétéétudié.Ils’agit d’uneantenneàplanréflecteurtriangulaire(figure5a)appeléeCRA.

(a)(b) Figure5–AntenneCRA.(a)plandemasse500mmx500mm.(b)antenneàréflecteur triangulaireréaliséeavecdeuxarrangementsdetubesfluorescents(24éléments).Un monopolemétalliquerésonantà2,4GHzestplacéaucœurdudispositif.

v RESUMEENFRANÇAIS L’antenneprésentéesurlafigure5aétésimuléeetoptimiséeà2,4GHz.L’influence del’arrangementdestubesfluorescentsdisposésenVsurlediagrammederayonnement aétéétudiée.

Pourl’antenneconstituéed’unréflecteurenVàuneseulerangée(CRA1),legain mesuréestde10,9dBietlegainsimuléestde11,8dBi.Onpeutcomparercegainà celuiobtenuparl’antenneconstituéedumonopoleetdestubesfluorescentsnonexcités. Danscecas,legainestlogiquementvoisindeceluid’unmonopolepuisqu’ilvaut5,4 dBi.

4.0 Antennaplasma

Toujoursenutilisantlestubesfluorescents(CFLs),cestravauxsesontégalement intéressés aux antennes plasma. Dans ce contexte, deux antennes plasma ont été réaliséesetleursperformancesradioélectriquesontétéévaluéesà450et900MHz.

Les prototypes ont été fabriqués avec un tube fluorescent (CFLs) couplé électromagnétiquementavecuneboucleréaliséeenmétal.Cecipermetdetransférerle signal du connecteur de l’antenne vers le tube fluorescent (plasma). Le dispositif est présentésurlafigure6.

17.5mm

(a)

vi RESUMEENFRANÇAIS

(b) Figure6–Photographiesdespartiesbassesdel’antenneplasmafabriquée.(a)Antenne

plasmaavecHrayonnante=77mm.Unetigeencuivredelongueur17,5mmrelieleconnetceur

SMAàlabouclemétallique.(b)AntenneplasmaavecHrayonnante=35,7mm. Surlafigure7sontprésentéesplusieursphotographiesdel’antenneplasmalorsdes mesures dans la base compacte SATIMO. L’antenne est alors placée sur un support (figure7a).Lafigure7bmontrel’antennelorsqueleplasmaestionisé(allumé).

(a)(b)

Figure7–Photodel’antenneplasmadanslabasecompacteSATIMO(Hrayonnante=77mm). (a)L’antenneestéteinte(plasmanonionisé).(b)L’antenneestallumée–plasmaionisé) Surlabasedesmesureseffectuéesdurantcestravaux,ilestpossibledeconclureque les tubes fluorescents peuvent être utilisés comme éléments rayonnants. Desantennes plasmaavecdeshauteursrayonnantesdifférentesontétéfabriquéesetmesuréesà900et 450MHz.A900MHz,lesdeuxantennesprésententdesdiagrammesdifférentsentreles états éteints et allumés, ce qui démontre bien le fonctionnement. A l’inverse, à 450 MHz, seul le tube fluorescent avec la plus petite longueur rayonnante présente un meilleur rayonnement lorsqu’il est allumé. Ceci peut s’expliquer par la très faible distance qu’il existe entre l’alimentation AC du tube et la partie de couplage électromagnétiquecequiinduitdesperturbationsdanslefonctionnement.

Un rayonnement arrière important a été mesuré à 900 MHz pour ces antennes plasma en dépit de la présence d’un plan réflecteur. Ce rayonnement parasite est dû

vii RESUMEENFRANÇAIS vraisemblablement à la partie alimentation de l’antenne, ce rayonnement arrière étant beaucoupplusatténué(15dB)à450MHzquandletubeestéteint.

5.0 Surface Equivalente Radar des antennes plasma reconfigurables

Des simulations (CST Microwave Studio) de la SER de l’antenne à réflecteur circulaire(RRA)ontétéeffectuéespourdeuxconfigurationsavecrespectivement7et9 tubesfluorescentsexcités(Chapitre3).Aceteffet,leréflecteurestilluminéparuneonde planeselonl’axexcommemontrésurlafigure8.

y

x Figure8–LasimulationdelaSERduréflecteurcirculaireavec9tubesactifs.L’illumination sefaitparuneondeplaneselonl’axexetpolariséeselonl’axez.(Enbleusontreprésentésles tubesallumés). PourmieuxappréhenderlessimulationsdeSERdesréflecteurscirculaires,3cas distinctsontétéétudiés:Touslestubeséteints,les7ou9tubesallumés,etundesign identiqueenremplaçantlestubespardesélémentsmétalliquesencuivre.

A2.4GHz,laSERduRR4avec7tubesallumésest5dBplusforte(10dBsm)que pour le RRA avec 9 tubes (14,5 dBsm). La SER globale est due à la sommation (amplitudeetphase)desdifférentescontributionsdestubesfluorescents,ceciexpliquant les différences de SER pour les deux cas. Pour les deux configurations, la SER du réflecteur avec tubes en cuivre donne un résultat proche de son équivalent en tubes fluorescents.Parcontre,lorsqueleplasmaestdéionisé,laSERdel’antenneréflecteur estaumaximumde22,5dBsmcequilarendbeaucoupplusdiscrèted’unpointdevue radarquel’antenneéquivalentemétallique.

A8GHz,quelestubessoientionisésoupas,laSERdesRRAssontcomparableset prochesde10dBsmmaisdenouveaubeaucoupplusfaibles(10dB)quelesantennes

viii RESUMEENFRANÇAIS équivalentesavecdestubesmétalliques.Cecidémontreungrandavantagedesantennes plasmapuisqu’ellessontbeaucoupplusfurtivesàcettefréquence.

Des simulations de SER ont également été effectuées pour l’antenne à réflecteur triangulaire(CRA)etcecipourdifférentesconfigurations,CRA1allumé,CRA2allumé etCRA1etCRA2alluméssimultanément.Commeprécédemment,cesréflecteurssont illuminésparuneondeplaneselonXetunchampélectriquepolariséselonzcomme présentéfigure9.

y

x Figure9–LeCRA2estactivéetilluminéparuneondeplaneselonxavecunchampélectrique polariséselonz(enbleusontreprésentéslestubesallumés). Alafréquencede2,4GHz,etpourles3configurations,lesSERdesCRAsont équivalentesàcellesdesantennesavectubesmétalliquesetlesniveauxmaximumsde SERsontglobalementsituésentre1et10dBsm.Lorsquelestubesfluorescentssont éteints,laSERseréduitde20dB.

Siunradarilluminecesantennesà8GHz,lesCRAactivés(CRA1ouCRA2)seront trèsdifficilementdétectablespuisqueleursSERsonttrèsfaibles (5dBsm)sionles compareauxSERdesantennesmétalliqueséquivalentes(autourde10dBsm).

6.0 Conclusion

L’utilisation de milieux plasma est très intéressante dans les systèmes de communications, car ilsprésentent l’avantage depouvoir être activés et désactivés en quelquesmillisecondesetdonnentdoncl’accèsàunepossibilitédereconfigurabilité.Si l’étatdel’artconcernantlaphysiquedesplasmasestlarge,c’estbeaucoupmoinslecas concernant les plasmas utilisés comme réflecteurs ou comme antennes et particulièrementdanslesbandesISM.Enoutre,lesaspectsvalidationsexpérimentalesy sontencoremoinsdécrits.

ix RESUMEENFRANÇAIS Deux types d’antennes réflecteurs àplasma ont été simulés, fabriqués et mesurés, respectivement un réflecteur circulaire (RRA) et un réflecteur triangulaire (CRA). Le RRApermetd’obteniruneantenneàbalayageélectroniquemaiségalementdechanger la forme du faisceau. Les mesures sont en bon accord avec les simulations.Le gain mesuréest5dBplusélevéqueceluid’unmonopoleseulpourunetailleidentiquede plandemasse. Lesniveauxdepolarisation croiséerestentfaibles etle rapport avant arrière supérieur à 10 dB. La capacité de balayage de cette antenne est remarquable puisqu’elle permet de dépointer le faisceau sur 360° avec des diagrammes de rayonnementidentiquespourlesdifférentesdirections.

Le réflecteur triangulaire (CRA) développé durant ces travaux de thèse est un nouveau concept puisqu’il intègre en fait deux réflecteurs triangulaires sur un même plan de masse ce qui offre lapossibilité d’obtenir 3 formes de faisceau différentes et commutables. L’antenne CRA a été simulée, fabriquée et mesurée. Les résultats de simulationetdemesuresontenbonaccordetungainsupérieurde5dBàceluid’un monopoleclassiqueaétéobtenu.Lesniveauxdepolarisationcroiséeetderapportavant arrièresontégalementtrèssatisfaisants.

La hauteur des tubes fluorescents utilisés comme éléments réflecteurs reconfigurablesaétémodifiée(3hauteurs)afindevoirs’ilétaitpossibledecompacter ces réflecteurs reconfigurables (RRA ou CRA). Les performances obtenues sont satisfaisantesavecdestubespluscourts(54mm)cequidémontrequ’ilestpossiblede compactercesantennes etdelesréaliseravecdestubesfluorescentscommerciauxde faibletaille.

Enutilisantlemêmetypedetubefluorescent,uneétudedefaisabilitédeconception d’antenne rayonnante a également été engagée. Les tubes choisis ont des hauteurs respectivesde77et35,7mmetlesréalisationsontétémesuréesà900et450MHz. Cette étude a prouvé qu’il était possible d’utiliser ces tubes fluorescents compactes comme éléments rayonnants cependant la technique d’alimentation du plasma et du couplagedusignalélectromagnétiqueontunimpactimportantsurlesperformancesen rayonnementdel’antenne.Cetteétudedevraitdoncêtresuivied’uneoptimisationdans destravauxfuturs.

Commeilestprécisédanslalittérature,lesantennesplasmapermettentderéduire l’utilisation de matériaux métalliques et donc d’accéder à des antennes plus furtives présentantuneSERplusfaiblequeleuréquivalentmétallique.Durantcestravauxde thèse,dessimulationsdeSERdesantennesréflecteursreconfigurables(RRAetCRA) ont été menées et démontrent bien que ces antennes sont plus furtives et donc plus difficilement détectables d’un point de vue radar que des antennes métalliques équivalentes.

x

Contents Chapter1 Generalintroduction...... 5 1.1 Contextandmotivationofthestudy...... 5 1.2 Objectivesandresearchcontributions...... 6 1.3 Thesisstructure...... 7 References...... 9 Chapter2 Plasmasandfundamentals...... 11 2.1 Stateoftheart...... 11 2.1.1Gaseousplasma...... 13 2.1.2Solidstateplasma...... 14 2.1.3Plasmageneration...... 15 2.1.3.1Electrodelamps...... 15 2.1.3.2Electrodelesslamps...... 16 2.1.3.2.1Capacitivedischarges...... 16 2.1.3.2.2Inductivedischarges...... 17 2.1.3.2.3Microwavesdischarges...... 18 2.1.3.2.4Laser...... 19 2.1.4Plasmamodel...... 19 2.1.5Plasmaparameters...... 20 2.2 Theoreticalreminder...... 21 2.2.1Plasmaconductivity...... 21 2.2.2Plasmacriticalfrequency...... 24 2.2.3Plasmapermittivity...... 25 2.2.4Plasmacollisionfrequencyestimation...... 27 2.3 Experimentalmeasurement...... 28 2.3.1Technologicalpreference...... 28 2.3.2Effectofplasmafrequencyonelectromagneticwavebehaviors...... 29 2.3.3Experimentalestimationofplasmafrequency...... 31 2.3.3.1Measurementsetup...... 32 2.3.3.2Resultsanalysis...... 34 2.3.4Estimationofneutralcollisionfrequency...... 37 2.3.4.1Measurementsetup...... 38 2.3.4.2Resultanalysis...... 39 2.3.5Summaryofplasmaparametersestimation...... 42 2.4 Conclusion...... 42 References...... 44 Appendix2.1...... 47 Chapter3 Reconfigurablereflectorantenna...... 49 3.1 Stateoftheart...... 49 3.1.1 Reviewsofantennasforbeamsteering,beamscanningandbeamshapingusing metallicmediuminprintedtechnology...... 50 3.1.1.1Beamsteeringandbeamscanningantenna...... 50

1

3.1.1.2Beamshapingantenna...... 54 3.1.1.3Largebeamscanningantenna...... 56 3.1.1.4Cornerreflectorantennaforbeamshaping...... 58 3.1.2Reviewsofantennasforbeamsteering,beamscanningandbeamshapingusing plasmamedium...... 65 3.1.2.1Beamsteeringandbeamscanning...... 66 3.1.2.2Widebeamscanningandbeamshaping...... 72 3.1.3Summary...... 74 3.2 Reconfigurableroundreflectorantenna(RRA)...... 75 3.2.1RRAantennaspecifications...... 75 3.2.1.1RoundreflectorantennausingTripleBiaxcompactfluorescentlamp...... 75 3.2.1.2RoundreflectorantennausingT5fluorescentlamp...... 77 3.2.1.3 RoundreflectorantennausingUshapedcompactfluorescentlamparranged inseries...... 80 3.2.1.4RoundreflectorantennausingUshapedcompactfluorescentlamparranged inparallel...... 82 3.2.1.5Designsummary...... 84 3.2.2OptimizationoftheroundreflectorantennausingUshapedCFLsarrangedin parallel...... 85 3.2.2.1Optimizationofdistancebetweencentralmonopoleantennaandreflector surface,numberofelements,andelementseparationanglebasedonphysical arrangement...... 86 3.2.2.2Optimizationofdistancebetweencentralmonopoleantennaandreflector surface,andnumberofelementsbasedonantennaperformances...... 87 3.2.3Fabricationofroundreflectorantenna...... 89 3.2.4Measurementsetupofplasmaroundreflectorantenna...... 90 3.2.4.1Antennaperformancemeasurementofroundreflectorantenna...... 91 3.2.4.2SwitchingschemeofRRAforbeamscanning...... 92 3.2.5Designvariety...... 93 3.2.6Resultsandanalysisofthefabricatedroundreflectorantenna(RRA)...... 95 3.2.6.1Effectofsurroundingdielectrictubesonmonopoleantennaradiationpattern 95 3.2.6.2BeamshapingofRRAbyvaryingplasmawindow...... 98 3.2.6.2.1BeamshapingofRRAwithelementheight,hequals115mm...... 98 3.2.6.2.2BeamshapingofRRAwithelementheight,hequals54mm...... 101 3.2.6.2.3BeamshapingofRRAwithelementheight,hequals15mm...... 103 3.2.6.3BeamscanningofRRA...... 104 3.2.6.3.1BeamscanningofRRAwithelementheight,hequals115mm...... 105 3.2.6.3.2BeamscanningofRRAwithelementheight,hequals54mm...... 107 3.2.6.3.3BeamscanningofRRAwithelementheight,hequals15mm...... 108 3.2.7SummaryofresultanalysisofRRA...... 110 3.3 Reconfigurablecornerreflectorantenna(CRA)...... 112 3.3.1Antennaspecificationsofplasmacornerreflectorantenna...... 112 3.3.2Designandoptimizationofplasmacornerreflectorantenna...... 119 3.3.3Fabricationofplasmacornerreflectorantenna...... 121 3.3.4Measurementsetupofplasmacornerreflectorantenna...... 122 3.3.4.1Antennaperformancemeasurementofcornerreflectorantenna...... 122 3.3.4.2Switchingschemeofcornerreflectorantennaforbeamshaping...... 123 3.3.5Designvarietyofcornerreflectorantenna...... 124 3.3.6Resultsandanalysisofcornerreflectorantenna...... 126

2

3.3.6.1Effectofdielectrictubesonomnidirectionalbeampattern...... 126 3.3.6.2Beamshapingbyvaryingfeedertovertexdistance,S...... 129 3.3.6.2.1BeamshapesofplasmacornerreflectorantennawithSequals0.5λ.....129 3.3.6.2.2BeamshapesofplasmacornerreflectorantennawithSequalsλ...... 132 3.3.6.3Beamshapingbyvaryingdihedralreflectorsidelength,Lwithafixed elementheight...... 134 3.3.6.3.1BeamshapesofplasmacornerreflectorantennawithSequals0.5λandL1 variesfrom4to2ONelements...... 135 3.3.6.3.2BeamshapesofplasmacornerreflectorantennawithSequalsλandL2 variesfrom8to2ONelements...... 137 3.3.6.4Beamshapingbyactivatingallelements...... 140 3.3.7SummaryofresultanalysisofCRA...... 143 3.4 Conclusion...... 145 References...... 146 Appendix3.1...... 151 Appendix3.2...... 152 Appendix3.3...... 153 Appendix3.4...... 154 Chapter4 Plasmaasradiatingelement...... 155 4.1 Introduction...... 155 4.1.1Stateofthearts...... 156 4.1.1.1Couplingtechniques...... 158 4.1.1.2Typeofplasmaantennabasedonphysicaldimension...... 161 4.1.1.2.1Cylindricalplasmaantennas...... 162 4.1.1.2.2Nonstraightstructureofplasmaantennas...... 165 4.1.1.3Theassociatednoiseofplasmaantennas...... 170 4.1.1.4Summary...... 172 4.2 TherealizationofplasmaantennausingUshapedcompactfluorescentlamp...173 4.3 Prototypeofplasmaantenna...... 176 4.4 Measurementsetupofplasmaantenna...... 178 4.5 Measurementresultsofplasmaantenna...... 179 4.5.1Radiationpatternofplasmaantennawithhradiateequals35.7mm...... 179 4.5.2Radiationpatternofplasmaantennawithhradiateequals77mm...... 182 4.6 Conclusion...... 184 References...... 185 Appendix4.1...... 188 Appendix4.2...... 189 Appendix4.3...... 190 Appendix4.4...... 193 Chapter5 Radarcrosssection(RCS)...... 197 5.1 Introduction...... 197 5.1.1Basictypeofradar...... 198 5.1.2DefinitionofRadarCrossSection...... 199 5.2 Radarcrosssection(RCS)analysis...... 201 5.2.1Simulationofradarcrosssectionforclassicalcaseofasphereandaflatplate201 5.2.2SimulationofRRAradarcrosssection...... 204

3

5.2.3SimulationofCRAradarcrosssection...... 206 5.3 Measurementofradarcrosssectionofreconfigurablereflectorantenna...... 208 5.4 Conclusion...... 211 References...... 213 Generalconclusion...... 215 Perspectiveandfutureworks...... 217 Listofpublications...... 219

4 CHAPTER1–GENERALINTRODUCTION

Chapter1 Generalintroduction

1.1 Contextandmotivationofthestudy

Today's communication technologies have endured rapid and vast evolution. Therefore the necessity of the communication systems to become flexible in performance and reliable with time is very crucial. Moreover the wireless communicationshavebecomecomplexandevenmoresevereduetothecoexistenceof the similar systems. Hence many research works have been conducted since then or evenstillinprogresstoensurethesecommunicationsystemsremainsteadfast.Abilityto be reconfigured mechanically or electrically, capability to scan signals, capability to controlbeampatternsandoreventoremainlowcostcontinuetobepartofthemain questsindesigningantennas.

Otherthanmetamaterialswhichisnotnaturallyexist,plasmaisthefourthstateof matterwhichisnaturallyavailable.Differfrommetamaterialswhichhavebothnegative valuesforitspermittivity andpermeability,plasmakeepsitspermeabilityinpositive regionwhileitspermittivityisnegative.Thisisthemainfeatureoffersbyplasmasothat itcouldbeoneofthebeneficialmaterialsindesigningantenna.Ingeneral,plasmawill actlikeaconductorandcanbemadedisappearifitisdeenergized.Thereconfigurable behaviors offered by plasma are the factor why plasma antenna concepts are studied here.

Inmilitaryapplications,scanningcapabilitycanbeusedtojamundesiredsignals fromhostiles.Abilitytobedynamicallytunedandreconfiguredforfrequency,direction, bandwidth,gainandbeamwidthcouldhelpthesystemtosuiteitsrequirementvariation andtostaydependable. Inotherwords,theemploymentofplasmacouldreducethe numberofmultiplesantennas.

In the IETR, this research is one of the earliest works that deals with plasma antenna.Therefore,atthismoment,thisstudyisveryimportantsinceitwouldbecomea startingpointinIETRsothatotherworkswillbenefitfromtheoutputofthiswork.In France, one laboratory named as LAPLACE located at the University of Toulouse is activeinplasmaresearch.Howeverthedifferentbetweenthisstudyandtheirsisthat, thisstudyutilizeslowcostplasmaelementswhicharecommerciallyavailable.Thusa processtocreatehomemadeplasmawhichrequirescomplexphysicapparatuscanbe avoided.

5 CHAPTER1–GENERALINTRODUCTION Thenameof'plasma'wasfirstintroducedinphysicresearchinearly1920s[1].Prior to that, plasma was first invented as radiator to transmit electromagnetic signals just afterWorldWar1.In1919,theconceptofplasmaantennawaspatentedandthepatent wasawardedtoJ.Hettingerwiththenameof"Aerialconductorforwirelesssignaling andotherpurposes"[2].Buteventhoughplasmaantennahaditsbeginningsinearly20 century,itssignificantdevelopmentonlystartsin1960swhentheplasmabegantobe introducedincommunicationsystems[3].Sincethen,thereisaconsiderableamountof inventionsmadebymanyresearchinstitutionsandgroupstoexploitplasmaasantenna [49].Plasmacanbecontrolledelectricallytoactlikearadiator,reflectororevenasan absorber and because of these factors, the research activities in plasma field are kept activeandvibrant.

Plasmaantennasarehavingmoredegreeoffreedomthanmetalantennasandhence making their applications have huge possibilities. Plasma will behave as a conductor regardlessofitwasfullyionizedorpartiallyionized.Theadvantagesofplasmaantenna canbeviewedintwoperspectives.Thefirstoneisinthemilitarypointofviewwhich plasmaantennacouldprovideenormousflexibilityinmilitaryapplications.Abilityof communication antennas to be invisible in the eyes of radar is essential in military applications.Thestealthabilityistheadvantageofplasmawhichisunabletobedone bymetallicmaterials[5].Plasmaisalsoagoodcandidatetocreateconfusioninwarfare communication since it can disappear within microseconds. The unenergized plasma elementsarehardlytobedetectedbyhostileradarsincetherearenometallicantenna takesplacewhentheplasmaisswitchedoff. Inotherwords,the radar crosssection (RCS)oftheplasmaantennaislow[5].

Plasmacanalsobeappliedasantenna elementsforconventionalcommunication systems.Sinceplasmaishighlyreconfigurable,theunusedelementsdonotcauseany unwantedeffecttothewholesystems.Implementationofplasmaantennaenablesthe communicationsystemtoadjustitsradioperformancesinordertosuiteandmeetthe changing of system requirement due to the system itself or due to environmental requirement.Today'scommunicationsystemsbecomemorecomplexespeciallytocope withtheincreasingnumberofusers.Thereforewithplasmaability,thecommunication systemsarecapabletoremainreliableoverthetime.

1.2 Objectivesandresearchcontributions

Basicallythisresearchstudyisbasedonfourmainobjectives.

The first objective of this study is to characterize plasma medium so that it corresponds to the commercially available plasma source in the market. The characterizationismadebasedondispersionmodelwiththeCSTsoftware[10]asa platform.Priortothischaracterization,estimationanddefinitionofplasmafrequencyis

6 CHAPTER1–GENERALINTRODUCTION required.Forthatreason,anexperimentalapproachthatemploysanisolationtechnique orwavepropagationexperimentusingasetoftransmittingandreceivingantennasis firstlyidentified.Theexperimentswereaimedtobeconductedwithoutanyaidofphysic apparatuswhicharecomplex,expensiveandbulky.

The second objective is to design and realize plasma antennas based on plasma mediumforseveralspecificpurposessuchasreconfigurableantennaswithcapabilities ofbeamscanningandbeamshaping.Twotypesofreflectorantennasthatuseplasmaas itselementswereconstructed.Thesereflectorantennasweredesignedtoworkwithin ISM band frequency. This objective only can be realized once the defined plasma characterizationisfinalized.Theirperformancessuchasreflectioncoefficient,gainand radiationpatternsarecomparedwithregardtotheirconfigurationstyles.

Thethirdobjectiveistoanalyzetheperformancesofplasmaasradiatingelement. The available Ushaped compact fluorescent lamp (CFL) is used as radiator and this lampisexcitedusingdomesticACsupply.Sincetheplasmacanbeusedtoradiateradio signal,itisalsocanbecalledasplasmaantenna.Forfurtherinvestigations,theplasma antennasweremeasuredusingourlaboratoryfacilitiesandtheirperformancesbetween ON and OFF states are used to validate the ability of plasma antenna to effectively radiateradiosignal.

Thefinalobjectiveofthisworkistosimulateandmeasuretheradarcrosssection (RCS)performances of plasma reflector antennas. Prior to that, comparisonsbetween simulatedandcalculatedRCSofmetallicsphereandmetallicflatplateareperformedto ensureacorrectsimulationsetuphasbeenmade.Oncethesimulationsetupisvalidated, the RCS performances of plasma reflector antennas can be compared to their twin metallicstructureswithsimilarconfigurationandarrangement.Tofurtherenhancethe research's findings, the plasma reflector antennas (RRA and CRA) are measured for theiractualRCSlevelforonandoffstateofplasma.

1.3 Thesisstructure

Thisthesisconsistsoffourmainchapters.

Thesecondchapterisdedicatedtorecallplasmaasthefourthstateofmatterwhich islessexploitedincommunicationsystems.Stateoftheartsofplasmaisexplainedin thischapterforbetterunderstandingofplasmaexistence,generationandhowitbenefits tothecommunicationsystems.Thischapteralsoelaboratesplasmaformulationusing liquidmodelwhereinthispart,theplasmaparametersarelinkedtomicrowavevariables commonlyusedincommunicationsystems.Measurementssetupandresultswhichlead toselectionofplasmaparametersarealsoexplainedinthischapter.

7 CHAPTER1–GENERALINTRODUCTION Thethirdchapterpresentstherealizationofplasmareflectorantennas.Twoplasma reflector antennas have been constructed in this research work which are round and cornerreflectorantennas,RRAandCRArespectively.Thedesignandoptimizationare thoroughly explained within the chapter. Realization of both reflectors which is involving mechanical works are explained step by step. The theoretical and experimentalresultsforseveralconfigurationsthathavebeenrealizedinthisresearch workarealsocompared.Thefinalpartwilldiscussaboutperformancesofthereflector antennasthatusedplasmaaselements.

The fourth chapter deals with plasma as radio waves radiator. Prior to the realization,astateoftheartoftheplasmaantennaisexplainedinthischapter.Reviews oncouplingtechniquesarealsoexplainedinthesubsequencetopic.Thisisfollowedby thefabricationoftwoplasmaantennasusingcommerciallyavailableUshapedcompact fluorescentlamp(CFL).Next,theantennasperformancesarediscussedbasedonplasma ONandOFFstates.Finally,conclusionsaredrawnwithregardtotheperformancesof theplasmaantennas.

Chapter five discusses about radar cross section performances of the plasma reflectorantennas.Twoplasmareflector antennas(RRAandCRA)aresimulatedand measured for their RCS performances. The comparison between theoretical and simulationRCSformetallicshapes(sphereandflatplate)tovalidatesimulationsetupis also explained in the beginning of this chapter. In the end of this chapter, the performances of plasma reflectors are summarized with regard to their metallic counterparts.

8 CHAPTER1–GENERALINTRODUCTION References [1] UmranS.Inan,MarekGolkowski,"Introduction",inPrinciplesofPlasmaPhysicsfor EngineersandScientists,CambridgeUniversity Press,NY:NewYork,2011,pp.1 19. [2] J.Hettinger,"Aerialconductorforwirelesssignalingandotherpurposes",PatentNo. 1309031,8July1919. [3] C.Y.Ting,B.R.Roa,W.A.Saxton,"Theoreticalandexperimentalstudyofafinite cylindricalantennainaplasmacolumn",IEEETrans.,AntennasPropag.,vol.AP16, no.2,pp.246255,Mar.1968. [4] G.Borg,J.H.Harris,"Applicationofplasmacolumnstoradiofrequencyantennas," Appl.,Phys.,Lett.,vol.74,no.22,May1999. [5] J.P.Rayner,A.P.Whichello,A.D.Cheetham,"PhysicallyCharacteristicsofPlasma Antennas",IEEETrans.,PlasmaSci.,vol.32,no.1,pp.269281,Feb.2004. [6] I. Alexeff, T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, P. Hulloli, "Experimentalandtheoriticalresultswithplasmaantennas,"IEEETrans.,PlasmaSci., vol.34,no.2,pp.166172,April2006. [7] T. Anderson, I. Alexeff, N. Karnam, E. P. Pradeep, N. R. Pulasani, J. Peck, "An operatingintelligentplasmaantenna,"IEEE34thInternationalConferenceonPlasma Science(ICOPS2007),pp.353356,2007. [8] G.Cerri,R.DeLeo,V.MarianiPrimiani,P.Russo,"Measurementofthepropertiesof aplasmacolumnusedasaradiatingelement,"IEEETrans.,Instrum.,Meas.,vol.57, no.2,pp.242247,Feb.2008. [9] P.Russo,G.Cerri,R.DeLeo,E.Vecchioni,"Selfconsistentanalysisofcylindrical plasmaantenna,"IEEETrans.,AntennasPropag.,vol.59,no.5,pp.15031511,May 2011. [10] 3D EM field simulationCST computer simulation technology, Available at: http://www.cst.com.AccessedOctober1,2010.

9

CHAPTER2–PLASMASANDFUNDAMENTALS

Chapter2 Plasmasandfundamentals

Theobjectiveofthischapteristogiveabriefviewofthefourthstateofmatterthat canbeclassifiedintotwotypeswhicharecollisionalandcollisionlessplasma.Thestate oftheartofplasmaisdescribedinthefirstpartofthischapter.Inwhichtheexplanation coversontypeofplasma,itsgeneration,itsmodelizationanditsimportantparameters. Thesecondpartofthischapterisfocusingonthetheorythatisaffiliatedwithplasma especiallyitselectricalconductivity,criticalfrequencyandpermittivity.Thederivations ofthetheoryexplainedinthischapterarebasedonasingleparticlemotionthatobeys momentumconservationequation.Atheoreticalestimationofelectronneutralcollision frequency of plasma is also discussed. The third part of this chapter explains on measurements that have been carried out to estimate plasma working region. The measurement setup and results are explained in details. The determination of plasma electronneutral collision frequency with regard to the experimental results is also discussed. Finally, a conclusion is drawn based on the works done and the defined plasmamodelisfinalized.

2.1 Stateoftheart

Plasma medium is often referred to as the fourth state of matter, since it has properties very much different from those of the gaseous, liquid, and solid states. In 1920s, a group of scientists headed by I. Langmuirhas shown that thecharacteristic electricaloscillationsofveryhighfrequencycanexistinanionizedgasthatisneutralor quasineutral, and they introduced the terms plasma and plasma oscillations [1]. All states of matter represent different degrees of organization, corresponding to certain valuesofbindingenergy[1]. Inthesolidstate,theimportantquantity isthebinding energy of molecules in crystal lattice. If the average kinetic energy of a molecule exceedsthebindingenergy;typicallyafractionofanelectronvolt,thecrystalstructure breaksup,eitherintoaliquidordirectlyintoagas(forexample:iodine).Similarly,a certainminimumkineticenergyisrequiredtobreakthebondsofthevanderWaals forcesinordertochangealiquidintoagas.Formattertomakethetransitiontoits fourthstateandexistasplasma,thekineticenergyperplasmaparticlemustexceedthe ionizingpotentialofatoms(typicallyafewelectronvolts).Thus,thestateofmatteris basicallydeterminedbytheaveragekineticenergyperparticle[1].

11 CHAPTER2–PLASMASANDFUNDAMENTALS An example to show transformation towards the fourth state of matter is best

describedbytakingwater(H2O)asanexample.IcerepresentsthesolidstateofH2Oin whichthemoleculesoficeisfixedinlattice.Thekineticenergyofeachicemoleculeis very weak therefore the ice remains in solid state unless extra energy is applied. If adequateenergyisappliedtotheice,themoleculeswillhavemorekineticenergythat allowsthemtoagitate.Theextraenergyalsowillcausesomeofthemtomovefreely. Thisconditionturnstheiceintowater(liquidstate).Ifmoreenergyappliedtoliquid,for examplebyboilingthewater,themoleculeswillhavemoreenergyandgetexcited.Asa result,themoleculesarefreetomoveandchangeintosteam(gaseousphase).Inthis case,thespacingbetweeneachmoleculeislargeenoughcomparedtoitspreviousstates ofmatter.Sinceeachmoleculemovesinrandommanner,thekineticenergyforeach moleculeisdifferent.Ifthesteamissubjectedtothermalheating,illuminatedbyUVor Xraysorbombardmentbyenergeticparticles,itbecomesionized.Table1.1showsthe transformationoficeintoplasma.

Theplasmawillexistwhentheelectronandnucleusthatformedtheatomnolonger canstaytogetherduetohighkineticenergywherethearestrippedoutfrom theatoms.Plasmasareconductive,andrespondtoelectricandmagneticfieldsmoreover italsocanbeanefficientsourceofradiation.Ifthereisinsufficientsustainingenergy, plasmawillrecombineintogas.

Table1.1–Transformationfromsolidstatetoplasmastate. Solid Liquid Gas Plasma Example:Ice Example:Water Example:Steam Example:IonizedGas + + H2O H2O H2O H2=>H +H +2e Cold Warm Hot Hotter T<0°C 0°<T<100°C T>100°C T>100000°C

Moleculesarrangedin Thegridarrangementis Moleculesarefreeto Ionsandelectrons wellorganizedgrid brokenbutthebonds moveandthereare moveindependently (lattice) betweenmolecules largespacingbetween andtherearelarge maintained them spacingbetweenthem

Figure 2.1 shows the range of temperature, electron density and Debye length for typicalplasmafoundinnatureandintechnologicalapplications[1].

12 CHAPTER2–PLASMASANDFUNDAMENTALS

Figure2.1–Rangeoftemperature,electrondensityandDebyelengthfortypicalplasmafound innatureandintechnologicalapplications[1].(1eV=11600K).

2.1.1 Gaseousplasma

Plasmacouldexistinaglasstubeiftheencapsulatedgasgetsionized.Thetypical gases that are used as plasma sources are the noble gases such as helium (He), neon (Ne),argon(Ar)andkrypton(Kr).These gasesareconsideredaslowlevelreactivity thustheyaresafetobeusedasalightsource.Eachofthegasesmentionhereishaving itsownplasmacharacteristic.Thiscanbediscussedintermsoftheirplasmaparameters. Since each of the gas atoms has different number of energy level, the total energy neededforeachatomtobeexcitedisalsodiverse.Inotherwords,therequiredenergy forthegasatomtotransformintoplasmastateisalsodifferent.

Mostoftheplasmasourcescontainnotonlytheionizedgasbutalsootherchemical quantitiestoaccelerate ortosurgetheprocess ofionizing.Thewellknownquantity added along the encapsulated gas is mercury vapor. Other than domestic fluorescent lamps,mercuryisalsoaddedinthehighintensitydischarge(HID)lamps.Instandard fluorescentlamps,mercuryvaporpressureplaysoneofthekeyrolestodefineelectron density [2]. In view of the fact that, electrical conductivity of plasma depends on electrondensityandelectronneutralcollision,thevaporpressureplaysimportantrolein determining plasma electrical conductivity too, which is important properties in determiningtheperformanceofplasmamediumiftheyareusedtoradiatemicrowave signals.Thelowpressuregasusuallyencapsulatedininsulatingtubemadeofglassas showninFigure2.2.

13 CHAPTER2–PLASMASANDFUNDAMENTALS

Figure2.2–Commerciallyavailableplasmacolumn;thefluorescentlamps. The physical geometry of fluorescent lamps is depending on its applications. Becauseofthat,theyareavailableinmanyshapesandsizes.AsshowninFigure2.2, thereare5commonsizesoffluorescentlampsusuallyusedfordomesticusage.The technology of fluorescent lamp is expending year by year with the quest to provide varietyofoptionsforuserstoselect.Oneofitsoptionsisthecompactfluorescentlamp (CFL).Thecompactfluorescentlampsarealsoavailableinmanysizesandshapes.Due toitshighefficiencyandcompactinsize,theCFLbecomesmostpopularlightsource forenergysaving.

2.1.2 Solidstateplasma

Solidstateplasmaisasystemofpositiveandnegativecarriers(electronsandholes) insolids[3].Thesolidstatecanbechargedsuchaselectronplasmaofmetals,electron orholeplasmaofsemiconductors,plasmawithunequalelectronorholeconcentration in alloys [3]. It can also be neutral for example the electronhole plasma of semiconductorsandsemimetals.Theplasmaparticledensityvariesindifferentsolids overawiderange,from0to1022 cm3forachargedplasmaandto1017 cm3 for a neutralplasma.Somepropertiesofsolidstateplasmasuchasthermodynamicproperties andkineticcoefficientsarerelatedtothetypeandpeculiaritiesofthelatticeofthesolid andtotheinteractionbetweenthecarriersandthelattice;ontheotherhand,inmany casessolidstateplasmacanberegardedasanalmostisolatedsubsystemofthesolid (whichinteractsweaklywiththelattice),andthepropertiesofthissubsystemcanbe studiedseparately[3].

The solid state phenomenon has been studied in [4] and the review on the similaritiesanddifferencesbetweengaseousandsolidstateplasmaswasalsoreported. One of the differences that need to be highlighted between gaseous and solid state plasmaisthemuchloweractivationenergyforionizationinsolidstateplasma.This advantageexplainsthelowcostimplementationofsolidstateplasmainvariousupto

14 CHAPTER2–PLASMASANDFUNDAMENTALS date technologies typically for high frequency applications (60 GHz). Dense solid plasmas are much more easily established at reasonable temperatures and plasma phenomenons are observable in some solids even at liquid helium temperatures. Besides,theimplementationofsolidstatemicrowavedeviceatroomtemperaturewas reported in [5]. The other most important characteristic of solid state plasma is the presence of crystal lattice which is capable to support acoustic vibrations [4]. The existenceoflatticemeansthepresenceofpolarizationabilitywhichleadstoalattice dielectricconstant, thatisnotunity. However,iftheimplementationofsolidstateplasmaisdiscussedintermsofits deploymentasantennaelementforlowerfrequencyapplications,solidstateplasmais notagoodcandidate.Thisisbecausethesizeoftypicalsolidstatedevice(PINdiode etc.)istoosmallcomparedtotheelectricallengthofantennasusedinlowerfrequencies range.Thus,ifthesolidstateplasmaismeantfor2.4GHzapplications,theantennawill requireseveralsolidstatedevices.Duetoitsnature,thesolidstatedevicesneedtobe excited individually as a result the circuit becomes complex and not viable to be constructed.

2.1.3 Plasmageneration

In general, generation of plasma in a gas container usually a dielectric tube or a discharge tube can be divided into two categories; electrode discharge tube and electrodeless discharge tube. However, the ionization process occurs in the gas containerremainsthesameregardlesshowthegasisbeingexcited.Thissectionaimsto focusonplasmaexcitationtechniquesthatareintendedtobeusedincommunication systems.Thisincludestheexcitationoffluorescentlampswhichfallsunderelectrode dischargestubesinceituseselectrodestoionizethegasinorderforplasmatoexist.

2.1.3.1 Electrodelamps

UsuallyagasfilleddielectrictubeusedwithelectrodeisoperatedonanACsupply whichisknownasfluorescentlamp.Differtoincandescentbulb,thefluorescentlamp hasnoheatingfilamentbutithasbeenreplacedwithasetofcathodes.Thecathodeis madeofcoiledtungtensfilamentsthatcoatedwithanelectronemittingsubstanceand locatedateachend.WhenthereisACsupply,thecathodewillcausetheelectronflow duetothechargeimbalanceoccursatoneend.Thiselectronwillflowthroughmercury vaporandcollideswithmercuryatomandcausesitselectronsoutoftheirnaturalorbit. Theenergyreleasedfromcollisionphenomenonisintheformofultravioletradiation. Theultravioletradiationisturnintovisiblelightwhenitstrikesthephosphorscoating.

15 CHAPTER2–PLASMASANDFUNDAMENTALS This process will continue to occur since the AC supply causes the cathode pair to alternateasanodeandcathode,thereforetheimbalancechargeissustained.Byhaving this condition, the encapsulated gas gets ionized and exhibits conducting behaviors. Therearemanyresearchworksonplasmaantennathathaveusedthiskindofexcitation techniqueincludingthosereportedin[612].

2.1.3.2 Electrodelesslamps

Oneofthemainadvantagesofelectrodelesslampsisitslongerlifespancompared to the electroded lamps. Since there is no direct connection between the gas and electrodes, a gas contamination could not occur. However the main obstacles of this excitationtechniquecanbeviewintermsoftechnicalaspects.Therearefourdistinct types of excitation for electrodeless lamps which are inductive (H discharges), capacitive(Edischarges),microwavedischargesandtravelingwavedischarges[2].

2.1.3.2.1 Capacitivedischarges

Capacitivedischargesoralsoknownas dischargesisthesimplesttechniqueto excite plasma in dielectric tube. A gasfilled container can be placed in between two capacitorplates.Theelectricfieldbetweencapacitorswilltransferextraenergytothe gascontainerresultingplasmatoexist.Anothercapacitivecouplingisusingasheathof conductortowrapasmallpartofthedischargetubeandasaresultastrongdependence on the E discharges. Figure 2.3 shows an example of a schematic of capacitive dischargesinanexcitationbox[1315].

A domestic fluorescent lamp was used to create the plasma column. The tube (fluorescent lamp) was placed inside a metallic box just under a ground plane. Two copperringwereemployed;thefirstone(excitationring)isusedandsolderedtoanN typeconnectortopumptheexcitationRFenergy.Asaresultastrongelectricfieldis createdbetweenthecopperringandthegroundplane.Theelectriclinesoftheelectric fieldpenetrateinsidethetubeandexcitingtheplasmacolumn.Thesecondcopperring (signalring)isusedtoapplyinformationsignalusingthesamecapacitivecoupling[14].

16 CHAPTER2–PLASMASANDFUNDAMENTALS

Figure2.3–Capacitivecouplinginaexcitationbox[14].Twocopperringsareemployed;the firstone(Excitation)istoapplyelectricfieldforplasmaexcitationandthesecondone(Signal) isfortransferringinformationsignal.

2.1.3.2.2 Inductivedischarges

Othernameofinductiveexcitationisthe discharges. The discharges current is suppliedtoacoilthatisplacedaroundthedielectrictube.Sufficientpowerisapplied will sustainthe discharges therefore the gas will get excited and gets ionized. An exampleofinductiveexcitationisshowninFigure2.4[16].Acoiloflength Lisusedto

windingaroundadischargestubewiththeradiusofR2.TheHzistheaxialmagnetic fieldwithtimedependence .

Figure2.4–Inductivecoupling[16].

17 CHAPTER2–PLASMASANDFUNDAMENTALS 2.1.3.2.3 Microwavesdischarges

PaolaRussoetal.,haveactivelystudiedthetechniquetoionizeplasmaincylindrical tubesbyusingmicrowavesdischarges[17],[18].Numericalmodelingandstudyofthe similarapproachtoexciteplasmahasbeenpresentedin[19],[20].Adeviceknownas “surfaguide” was firstly introduced by M. Moisan and Z. Zakrzewski in [21]. This devicewasactivelydevelopedbyPaolaRussoastodeterminesomeimportantplasma antenna parameters such as effective length of antenna [17], conductivity [18] and densitywithrespecttothepowerofelectricfieldapplied.

Inparticular,2.45GHzmicrowavepumpsignalisusedforignition.Theadvantage of this frequency is high power available with low cost [17]. By confining its electromagneticfieldinaclosedstructure,itissimpletoionizeplasmatube.The430 MHz signal is used as radiated signal since the usage of this frequency is permitted withoutanyrestriction.Figure2.5(a)reportsthelongitudinalsectionofthesurfaguide.

ItconsistsoftwotrunksL0ofastandardwaveguideWR340,twotransitionsL1,anda waveguideL2withareducedheight.Theguideisterminatedbyamovingshort,whose lengthLscanbevariedformatchingwhentheplasmacolumnisturnedon.Figure2.5 (b)showsasketchofthesurfaguidelauncherwithahorizontalplasmatube.

(a)

(b) Figure2.5–(a)Longitudialsectionofthesurfaguide.Verticaltubecontainsplasmatobe ignited[17].(b)Sketchofthesurfaguidelauncherwithahorizontalplasmatube[21].

18 CHAPTER2–PLASMASANDFUNDAMENTALS 2.1.3.2.4 Laser

Oneexampleofplasmacreatedbyalaserincommunicationsystemisaplasmawire worksasantennaproposedin[22].Avirtualreconfigurableplasmaantennaconsisting ofasetoflaserplasmafilamentproducedinairbythepropagationoffemtosecondlaser pulses.TheFigure2.6showstheschematicdiagramofplasmawireusedasantenna.

Figure2.6–SchematicdiagramforaproposedBeverageorwaveantenna[22]. The Beverage antenna is a horizontal, longwire antennas designed for the transmission of lower frequency and it is vertically polarized ground waves. The antennaconsistsofasingleplasmawire,twoormorewavelengthslongthatisplaced3 to6metersabovethegroundplane.Theantennamainlobecanbetiltedwithanangleof

θotowardsthetravelingdirectionbychangingtheplasmawirelength,Lpl[22].

2.1.4 Plasmamodel

As mentioned earlier, there are two types of plasma which are collisionless and collisionalplasmas.Inthisresearchwork,theplasmaismodeledasacoldplasmabased ontheDrudemodel.Theeffectofelectroncollisionisassociatedwiththemodel.The modelisdevelopedtorepresentthecommerciallyavailableplasmasourceusedinthe experimentalactivities.Theplasmasourceisassumedtohavelowpressureargonand mercury vapor encapsulated in pyrex glass tube. The model is developed in CST software[23]withanassumptionthattheisotropicplasmahasuniformintensityinall direction.ThematerialparametersetupwindowinCSTsoftwareisshowninFigure2.7.

19 CHAPTER2–PLASMASANDFUNDAMENTALS

Figure2.7–MaterialparameterdefinitionwindowinCST[23].

WithregardtotheDrudemodel,theepsiloninfinityisequalto1thussimplifyingthe permittivityequationasderivedinEq.2.32.

2.1.5 Plasmaparameters

Dealingwithplasmaitisnecessarytoconsidersomequantitiesthatcouldchange plasma properties. Generally the following are the quantities that could be altered to varytheplasmapropertiesinordertobenefitthepurposesofapplications:

 Excitationpowerorpowerinjectedtodielectrictube[24]  Gaspressure(electrondensitydependsonthemercuryvaporpressure)[2]  Typeofgasandgascombination[25] Thesethreequantitiesifappropriatelyalteredwillabletochangethefollowingplasma parameters:

 Plasmafrequency  Conductivity  Permittivity

20 CHAPTER2–PLASMASANDFUNDAMENTALS Plasmafrequency,conductivityandpermittivityarethecoreparametersthatmustbe comprehended when working with plasma. The subtopic 2.2 elaborates more about these parameters. Derivation is explained in details so that readers could understand importantrelationsbetweenplasmaparameters.

2.2 Theoreticalreminder

Plasma is a dispersive material which offers particular electrical properties when electromagneticwavesareappliedtoit.Asafrequencydependentmaterialitalsohas these properties; electrical conductivity, electrical permittivity, and magnetic permeability. These electrically controlled properties are allowing the exploration of plasmaasoneofmaterialoptionsindesigningantennas.Byunderstandingtherelation between plasma medium and incoming electromagnetic waves, it may lead to a promisingdevelopmentofplasmaantennas.

Plasma medium is formed by ions and electrons; therefore it is necessary to understand the interaction between plasma medium and electromagnetic waves. The followingsubtopicsexplaintheplasmapropertiesanditsrelationwithelectromagnetic waves.Theexplanationisstartedwithconsiderationofasingleparticlemotionmodel undertheeffectofelectromagneticfield.Theplasmaderivedinthefollowingsubtopic iswithanassumptionofhomogenousplasma.

2.2.1 Plasmaconductivity

Inordertofindplasmaconductivity,itiseasiertostartthederivationwithasingle chargeparticlemodel.Let’sconsiderthischargetobeanelectron, wherethisparticle mustobeytheLorentzforce(momentumconservationequation)[2628].

(2.1) wherethevisthevelocityoftheelectronandthe and aretheelectricandmagnetic fieldsthateffectingtheelectron.

Toconsiderthemostgeneralcases,let’sthe and varywithtimeinfreespace with the factor of (AC cases, and the factor, (+ signs) result in waves travelling in the negative x, y or z direction). The is in the x direction and the perpendicular intheydirection.Hence,equationsofbothelectricandmagneticfields are,

21 CHAPTER2–PLASMASANDFUNDAMENTALS (2.2) (2.3) wherecisthespeedoflightinfreespace.

Since these fields have influence on the electron, the velocity of the electron can be determinedbysubstitutingEq2.2and2.3intoEq2.1.Thus,

(2.4) This equation is transformed into differential form to simplify the determination of electronacceleration.

(2.5) Then,eachofaccelerationcomponentscanbewrittenas

(2.6)

(2.7)

(2.8) The velocity component of the single charge particle can be derived from above equations(thethreeequations).Byonlyconsideringnonrelativisticmotion,sothatthe velocityinpropagatingdirectionislesserthanthespeedoflightinfreespace( ). Thereforetheaccelerationcomponentinthexdirectionbecomes

2.9) Then,thevelocityandthedisplacementinthexdirectionis

22 CHAPTER2–PLASMASANDFUNDAMENTALS

(2.10) (2.11) Uptothispoint,thederivedvelocityandthedisplacementinthexdirectionisfor singleelectron.Sincetheplasmaiscomposedofmanyparticleshencethecollective effectelectricandmagneticfieldsontheparticlesisessential.Byconsideringelectric currentproducedbyalltheparticles,thecollectivecurrentdensityvectoris (2.12) SubstitutingEq.2.10in(2.12) (2.13) TheEq.2.13assumesthatthecurrentflowisonlyinthexdirection,sincethevelocity of particles in the z direction is negligible (Eq. 2.18). The volume current density (conductioncurrent)canalsobeexpressedintermofelectricfieldas (2.14) andequatingEq.2.14andEq.2.13theconductivityofplasmacanbedefinedas (2.15)

(2.16) FromtheEq.2.16,itcanbenoticedthattheconductivityisascalarwheneverthereisno magneticfield( ). Let's now apply the effect of collisional process with an assumption that the electronslooseallitsenergyduringacollision.Sinceonlyacollisionlesssingleparticle modelwasassumedinthebeginningofthederivation,withtheeffectofcollision(the inpreviousequationsisnow torepresentmorethanoneparticleinvolvedinthe collisionalcase),theEq.2.1isnowbecomes

(2.17) 23 CHAPTER2–PLASMASANDFUNDAMENTALS withanintroductionof (collisioneffect),andiftimedependence isassumed, thenthelefthandsideofEq.2.17turnsouttobe

(2.18) Thisresulttellsusthatwecouldreplacethe by inEq.2.16inorderto includetheeffectsofcollisions.Thereforetheconductivityturnsinto

(2.19) and if we assume there is only DC electric field and unmagnetized plasma (isotropic cases)[1],theconductivitysuitsthefollowing

(2.20)

2.2.2 Plasmacriticalfrequency

Becauseofplasmaisamediumoffreechargecarriers,thereforeitexhibitsnatural oscillationsthatoccurduetothermaland electricaldisturbances. By focusingonthe electronmotioninplasmamedium,theharmonicoscillationofelectronaroundtheions isimportanttobeanalyzed.Byassumingthat,duetoharmonicoscillationofelectron aroundions,theelectrondensitycanoscillateatangularfrequency, andasaresult theelectricfieldintensity, willalsooscillateatthesamefrequency.Inmanyreference books, the is always referred as plasma frequency, however in order to avoid confusioninthisthesis,the willbereferredasangularfrequencyofplasmaand willbereferredasplasmacriticalorplasmafrequency.

The density oscillations increase the total free charge density, that related to volumecurrentdensity, .TherelationisknownasContinuityEquationasshownasEq. 2.21[27].

(2.21) SubstitutingEq.2.14intoEq.2.21,theequationwillbe

(2.22)

24 CHAPTER2–PLASMASANDFUNDAMENTALS TherelationbetweenfreechargedensityandelectricfieldisdefinedinEq.2.23.

(2.23) Inordertohavefreecurrentchargedensity withtheinfluenceofelectricfield, the Eq.2.16andEq.2.23substituteintoEq.2.22.

(2.24) Theionsaremuchheavierthantheelectrons,soitsoscillationwillnotlonglast comparetoelectrons.Thus,thevolumechargedensityinEq.2.24isassumedtodepend onlyonelectronoscillation.Eq.2.24issolvedusingdifferentialequationwillyield,

(2.25) Theangularfrequencyofoscillationofthefreechargedensity, isalso ,andhence,

(2.26)

2.2.3 Plasmapermittivity

ThepermittivityofplasmacanbedefinedbasedonMaxwellequationasinEq.2.27 withanassumptionoflossymediumandwiththetimefactorof . (2.27)

(2.28) Baseonthisequation,permittivityofplasmaisderivedfortwocases,whicharewithout andwiththeeffectofcollisionprocess.BysubstitutingEq.2.16intotherighthandside ofEq.2.28,theequationbecome

(2.29) thereforetherelativepermittivityofplasma( )is

25 CHAPTER2–PLASMASANDFUNDAMENTALS

(2.30) andbysubstitutingEq.2.19intotherighthandsideofEq.2.28theequationwillbe,

(2.31) thereforetherelativepermittivityofplasmawithcollisionaleffectis

(2.32) FromHelmholtzequation,thecontants isequalto ,andthewavenumberof propagationconstantsforthetwocases(collisionless(Eq.2.33)andcollisional(Eq. 2.34))areasfollows

(2.33)

(2.34) Asmentionin[26],aslongasEq.2.33ispositive,the willberealnumbersodoes the velocity of propagation in plasma, where and plane electromagnetic wavecanpropagate.

(2.35) Asaconclusion,basedonEq.2.30andEq.2.32,iftheradiofrequencyappliedto plasmaishigherthanplasmafrequencytheresultingcomplexpermittivityislessthan unity, thereforeplasma having dielectricproperties. If theplasma frequency is higher enoughwithrespecttoradiofrequency,theplasmawillshowconductorproperties,and either it will reflect or absorb the incoming wave depending on the electronneutral collisionfrequency. Figure2.8showsplasmacomplexpermittivity( )usingEq.2.32basedonthe DrudemodelinCSTsoftware[23].Theoretically,theimaginary accountsforloss (heat)duetothedampingofthevibratingofthedipolemoment.Duetotheenergy

26 CHAPTER2–PLASMASANDFUNDAMENTALS conservation, the imaginary part of complex permittivity must be negative value ( positive).Thereforethehighestinimaginaryvaluesmeanshighlossinthemedium.As for the case shown in Figure 2.8 (plasma frequency equals 7 GHz), as the incoming microwavefrequencyreducesfromhightolow,thelossinplasmastarttoincrease.

2000 1800 1600 1400

) 1200 r ε 1000 Real 800 Imaginary 600 400 200 0

RelativePermittivity( 200 400 600 800

1000 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 Frequency(GHz) Figure2.8–ComplexrelativepermittivityofplasmabasedonDrudemodelforplasma frequencyequals7GHzandelectroncollisionfrequencyequals900MHz.

BylookingintoEq.2.32,thepermittivityofplasmacanbealteredbyvaryingthe plasma frequency, electronneutral collision frequency and microwave frequency. In otherwords,thebehaviorofplasmawhenreactingwithimpingedmicrowavefrequency is depending on the microwave frequency itself. Here it comes the challenges when dealingwithplasmamedium.

2.2.4 Plasmacollisionfrequencyestimation

Knowledgeofthedependenceoftheeffectiveelectronneutralcollisioninnoblegas such as argon is very important in order to understand many of plasma processes especiallyforitsfundamentalandapplications.Thistypeofcollisionfrequencyisoften referred to evaluate the energy transfer between particles. The collision frequency occursingasesisimportantinradiofrequencyfieldashighlightedin[29].Collisional plasmascanbedividedintotwocases,whicharepartiallyionizedplasmasandfully ionized plasmas [1]. When discussing about partially ionized plasmas, the dominant collisionalprocessisbetweenelectronsandneutrals.Ingeneral,asthepartiallyionized plasmaisassociatedwithlowpressureplasma,collisionswithneutralparticlesdominate allotherelasticprocessesinlowpressuredischarge[29][30].

27 CHAPTER2–PLASMASANDFUNDAMENTALS In1981,theeffectivecollisionfrequencyofelectroninnoblegaseswasstudiedin [31]. The Maxwellian distribution of electron particles was assumed to conduct the study.Thegrouphascomparedtheirresultswithotherpreviouspublishedstudieswithin theyearof1960and1978.Theestimationwasconductedforthenoblegasessuchas helium, neon, argon, krypton and xenon. The following is the equation to estimate effectivecollisionfrequencybetweenelectronsandargonatoms[30].

(2.36) or

(2.37) wherethe iselectrontemperatureand isargongasdensity. Forexample,ifthe offluorescentlampisknowntobe11000K,andtheargongas densityis1023m3atparticularpressure,thustheestimated willbe4000x106Hz.

2.3 Experimentalmeasurement

Thegoalofthismeasurementistoestimateplasmafrequencyforthecommercially availableplasmasource.Thisstepisessentialpriortobegintheresearchworkbecause onlybyknowingplasmafrequency,theworkingregioncanbeestimatedandtheplasma model can be simulated. Once the model is developed, approximation of other parameterssuchascollisionfrequencycanbemade.

2.3.1 Technologicalpreference

One of the main objectives of this research is to implement a low cost and a commercially available plasma source as antenna element. By choosing the compact fluorescentlampwhichisnormallyuseindomesticusage,thecomplexitytobuilda homemadeplasmatubeaspresentedin[8],[9],[32],[33]and[34]canbeavoided.

Thetypicalhomemadeplasmatubeishavingmoreflexibilitytochangetheplasma parametersbycontrollingtheexcitationpower,typeofencapsulatedgas,pressureofgas and also the density of the gas. However this method requires more complicated experimentalapparatusthereforeitwillincreasethecomplexityandthecostofrealizing plasmaantenna.

28 CHAPTER2–PLASMASANDFUNDAMENTALS Therefore,inthisresearchwork,thefluorescentlamps(FL)arechosen asplasma source.ByexploitingtheFLandcompactfluorescentlamps(CFL)[35],thecomplexity when dealing with plasma generation could be ignored. Figure 2.9 are the type of fluorescentlampsusedduringexperimentalactivities.

Figure2.9–Compactfluorescentlampsusedintheresearch[35].

ThecurrenttechnologyofCFLonlyrequiresasimpleelectronicballasttogenerate plasmaindielectrictubeandaswitchtocontrolitsstate.Electronicballastisknownto haveadvantageovertraditionalmagneticballastintermofnoisecontrol.Theinternal andexternalnoises are reduced withtheuseof electronicballast.Moreover,thebulk size of magnetic ballast and its heavy weight are not the problems if the electronic ballastisusedasanalternative.

Otherthanitslowcostandhighavailability,theFLandCFLallowfastandrapid experimental access. A simpleplasma reflector andplasma antenna couldbe realized withlesscomplexityandineasyway.Yet,optimizationsofthedesignneedtobedone togiveoptimumperformance. Inthisresearchwork,theFLsandCFLswithacolor temperatureisequalto4000Kareusedasplasmasource[35].

2.3.2 Effectofplasmafrequencyonelectromagneticwavebehaviors

In general, plasma frequency will define the margin of plasma operating region. Basedonthisregion,thefrequenciesrangewheretheplasmabehavesasmetal,absorber or even as a lossy dielectric could be estimated. As the electron density is directly related to plasma permittivity, the characteristic of plasma will also change as the densityvaries.Figure2.10showsthecomplexpermittivityofplasmaforseveralplasma frequencies in hertz. These plasma frequencies are represented by electron density of 1.5327x109m3,6.1310x1017m3and24.5234x1017m3fortherespectivefrequencyof 3.5GHz,7GHzand14GHz.

29 CHAPTER2–PLASMASANDFUNDAMENTALS It is worth to remind that plasma is having complex permittivity, where the imaginarypartrepresentslossesinthemediumandtherealpartrelatedtoenergystore inthemedium.Astheplasmaishavingsomeconductionpropertiesatregionwhenthe incomingwavefrequencyislesserthanplasmafrequency,itcanbeusedtoradiateradio signal in which the signal propagates on a lossy conductor at which the plasma represents.Theelectricalconductivityofplasmawilldeterminehowgoodistheplasma ifitmeanttoradiateradiosignals.Inotherwords,theelectricalconductivityofplasma playsamajorrolewheneverplasmaisusedasaradiator.

3000

2500 Real3.5GHz 2000 Imaginary3.5GHz Real7GHz ) r Imaginary7GHz ε 1500 Real14GHz 1000 Imaginary14GHz 500

0

500 RelativePermittivity( 1000

1500

2000 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Frequency(GHz) Figure2.10–Comparisonofplasmacomplexrelativepermittivitywhentheplasmafrequency variedandelectronneutralcollisionfrequencyisfixedat900MHz.

Back again to Figure 2.10, the value of imaginary part of the plasma complex permittivity increases when the operating frequency is decreased. For any case represented in Figure 2.10, as the real permittivity becoming more negative towards lowerfrequencyrange,thelossoccurinplasmamediumwillalsoincrease.Thereforeit isimportanttoknowatwhatfrequencytoradiateortoreflectmicrowavesignals.The knowledgeofelectromagneticwavebehaviortowardsplasmaisveryimportantasthe plasma always remains as frequency dependent material. At a region where a transmittingwaveinteractsasintendedwithplasmaiscruciallyrelatedtotheplasma’s conductionproperties.

Inordertohaveaquickanalysis,let'srefertoEq.2.30.Therearetwoconditionsto betterunderstandtheelectromagneticwavepropagationinplasma.

a) when the electromagnetic wave frequency is lower than plasma frequency ( ), the relative permittivity is negative value. Thus, the propagation constantturnsintoimaginaryasinEq.2.33.Thereforetheelectromagneticwave will be reflected as the plasma behaves as conductor with low conductivity. If

30 CHAPTER2–PLASMASANDFUNDAMENTALS consideringthecollisionalplasma(Eq.2.34),theelectromagneticwavecouldalso beabsorbedhoweveritisdependingonelectronneutralcollisionfrequency.

b) when the plasma frequency is lower than electromagnetic wave frequency ( ), the relative permittivity of plasma becomes positive and the propagationconstantisreal.Consequently,theplasmahavingdielectricproperties that is electronically controlled. In this case, the electromagnetic waves will penetratetheplasmamediumandsufferfromlosses.

2.3.3 Experimentalestimationofplasmafrequency

Because of the antenna element is made of the commercially available plasma source,thereisnooptiontochangetheplasmaparameters.Inthiswork,theCFLis producedinthemassnumbersandasaresultthedetailsaboutitstechnicalrawdata such as gas pressure, gas combination, and electron density are limited and kept confidential.Therefore,thisresearchworkhastobeginwiththecharacterizationofthe particularplasmasource.

Forthatreason,experimentalapproachtoestimateandidentifyplasmaparameters such as plasma frequency is required. By knowing the plasma frequency, the other parameter such as electronneutral collision frequency could be recognized by comparing parametric study and experimental results. Since plasma is frequency dependentmaterial,itscharacteristicswillalsovaryforeveryfrequencychanges.

There are several techniques to characterize plasma in dielectric tube such microwaveinterferometry[26],[36]thatusessingleFLtubeasshowninFigure2.11or aconventionalisolationmeasurementthatusesseveralFLtubeswhicharearrangedin paralleltocreateplasmawallorplasmaslab[37],asillustratedinFigure2.12(a).

Figure2.11–Blockdiagramofinterferometrymeasurementsystem[36].

31 CHAPTER2–PLASMASANDFUNDAMENTALS The conventional isolation measurement is easy to conduct and able to give reasonablygoodandsimplediagnostictechnique.Therefore,theconventionalisolation technique is chosen in this work in order to estimate the working region of plasma. However,theestimationofelectronneutralcollisionfrequencycannotbedonewiththis technique.

2.3.3.1 Measurementsetup

In order to find the plasma’s working region, isolation measurements were conductedinsmallanechoicchamber.Themeasurementequipmentsconsistsofapair ofwidebandhornantennas(2GHz18GHz),anetworkanalyzerandthedevicesunder test(DUT)thatincludeplasmawallasshowninFigure2.12(a)andmetalsheets.The technical details of the horn antennas are included in Appendix 2.1. There were two metalsheetsusedduringmeasurementwhichareslottedmetalsheetasshowninFigure 2.12(b),andacompletemetalsheetwiththesimilardimension.

57.3

64.2 5 5 3

120 120 126

3 2.55 0.6 2.55 0.6 (a)(b) Figure2.12–Schematicdiagramsofthedevicesundertest(DUT).(a)Plasmawallmadeof 20fluorescentlampsarrangedinparallel(bluecolorrepresentsfluorescentlamps).(b)Slotted metalsheet.(Unitincm).

Thecompletemetalandslottedmetalsheetswerefabricatedusingaluminumplate withathicknessof3cm.Plasmawallwasbuildusingfluorescentlamps(4000Kcolor temperature) which are arranged in parallel. The lamp socket is bipin G13 and the

32 CHAPTER2–PLASMASANDFUNDAMENTALS lampsareregulatedbyelectronicballasts.Thephotographofthefabricatedplasmawall andslottedmetalareshowninFigure2.13.

(a)(b) Figure2.13–Photographsofthedevicesundertest(DUT).(a)Plasmawallmadeof6 fluorescentlampsarrangedinparallel(measurementsareconductedwith20fluorescent lamps).(b)Slottedmetalsheet.

Asimilartechniqueofplasmacharacterizationwasconductedasthosereportedin [37].ThedistancebetweenDUTtoeachofthehornantennasis1meterasdepictedin Figure 2.14. The horn antennas worked as transmitter and receiver antennas were arranged in vertical polarization. The measurements were conducted for five cases, whicharefreespace,metalsheet,slottedmetalsheet,plasmaOFFandplasmaON.The slottedmetalsheetinFigure2.13(b)wasfabricatedtomimictheplasmawallinFigure 2.13 (a) which is having an air gap between two adjacent fluorescent lamps. The measurements were started with the free space condition as a reference. The measurement resultsarethencomparedtounderstandtheplasmacharacteristicswith regardtometalwalls,plasmawallandfreespacecases.

33 CHAPTER2–PLASMASANDFUNDAMENTALS

Plasmawall Transmitter(hornantenna) 100

100 Receiver(hornantenna)

Figure2.14–Experimentarrangementwiththeplasmawallisplacedat100cmfromeachof thelinearpolarizedhornantennas.(Unitincm).

2.3.3.2 Resultsanalysis

Themeasurementresultsdiscussedinthissectionarebasedonthetwoselective caseswhichareperformanceofmetalisolationandperformanceofplasmaisolation.

Case1:Metalsheetandmetalslotsisolationperformance

Themeasurementswereconductedforbroadbandfrequencystartingfrom1.5GHz upto18GHz.However,performancesofthehornantennasareonlyvalidfrom2GHz to 18 GHz. As the frequency shifts from low to high, the transmitted signal is suppressedbymetalsheetfrom45dBtobelow60dBasdepictedinFigure2.15(a). Forthefrequencyfrom2GHzuntil3GHz,thereareabout15dBand30dBsignal suppressionwithrespecttofreespacecase.

0 0 5 S metalsheet 5 S metalslots 21 21 10 S freespace 10 S freespace 21 21 15 15 20 20 25 25

(dB) 30 (dB) 30 21 21 S 35 S 35 40 40 45 45 50 50 55 55

60 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Frequency(GHz) Frequency(GHz) (a)(b)

34 CHAPTER2–PLASMASANDFUNDAMENTALS

0 5 S metalsheet 21 10 S metalslots 21 15 20 25

(dB) 30 21 S 35 40 45 50 55

60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Frequency(GHz) (c) Figure2.15–Measuredtransmissioncoefficients.(a)Metalsheetversusthefreespace.(b) Metalslotsversusthefreespace.(c)Metalsheetversusslottedmetalsheet.

Whenthemetalsheetisreplacedbyaslottedmetalsheet,thesimilarpatterncanbe seen up to 9 GHz, as shown in Figure 2.15 (b). However when the frequency is exceeding11GHz,themetalslotseemstopermitthesignaltopassthroughitsairgap

thereforethemagnitude ofS21startstoincrease.Thisisduetothedecreasingsizeof wavelength with the increment of frequency. Comparison between metal sheet and metalslotasshowninFigure2.15(c)alsodemonstratesthatthetransmittedsignalis abletoreachthereceivingantennawiththeaidofmetalslotstartingfrom11GHz.

Case2:Plasmaisolationperformance

At each time the plasma is deactivated, its isolation performance have similar patternwithfreespacecaseasshowninFigure2.16(a).Thissimilarityprovesthatthe dielectrictubesusedtoencapsulatethenoblegashasnomajoreffectonelectromagnetic waves when the frequency is increasing from 2 GHz to 18 GHz. However when the plasma is activated, there are attenuation effects at region below than 7 GHz and at regionupperthan8.8GHzasshowninFigure2.16(b).

Figure2.16(b)alsoshowsaregionwherethebehaviorofplasmaischangingfrom reflectortodielectric.Thisimportanttransitionoccursstartingfrom7GHzto8.8GHz in which the transmitted signal can propagate through plasma when the frequency is exceeding8.8GHz.To provethattheplasmaisexhibitingdielectricproperties,itis

goodtocompareFigure2.16(b)withFigure2.15(b).TheS21ofplasmawallishigher thantheS21ofslottedmetalsheet,wheretheplasmawallishavingS21approximately higherthan35dBfrom9GHzonwards,whilebelow50dBforslottedmetalsheet.

TheincrementofS21ofslottedmetalsheetmorethan50dBseenafter14GHz(Figure 2.15(b))ismainlyduetothewavelength’ssizerelativetosizeoftheairgap.

35 CHAPTER2–PLASMASANDFUNDAMENTALS

0 0 5 S plasmaOFF 5 S plasmaON 21 21 S freespace 10 S freespace 10 21 21 15 15 20 20 25 25

(dB) 30 (dB) 30 21 21 S 35 S 35 40 40 45 45 50 50 55 55

60 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Frequency(GHz) Frequency(GHz) (a) (b)

0 0 S plasmaON 5 21 5 S plasmaON 21 S plasmaOFF 10 21 10 S plasmaOFF 21 15 15 20 20 25 25 (dB) (dB) 30 30 21 21 S 35 S 35 40 40 45 45 50 50 55 55

60 60 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1 2 3 4 5 6 7 8 9 10 Frequency(GHz) Frequency(GHz) (c)(d) Figure2.16–Measuredtransmissioncoefficients.(a)PlasmaOFFversusthefreespace.(b) PlasmaONversusthefreespace.(c)PlasmaONversusplasmaOFF.(d)Acloselookfor plasmaONversusplasmaOFF.

Asmentionedin[26],atthepointwherethetransmittingfrequencyishigherthan plasma frequency, the propagation is cutoff and something can be learned about the plasma. Since the transmitted frequency is known, the plasma density could be measuredexperimentallyattheinstantofcutoff.Regionwherethepermittivityisbelow thanunity,theplasmaispresumedtohavepropertiesofmetal.

In this work, we estimate the propagation is cutoff somewhere in the transition region(7GHzto9GHz,Figure2.16(c))whereplasmachangesitbehaviorfrommetal to dielectric. However, this work is focusing at the region where the plasma having negative permittivity as it behaves as metal with low conductivity. Figure 2.16 (d) shows the close look for the region below than 7 GHz which is more interesting to study.From2GHzto2.5GHz,theisolationbetweenfreespaceandactivatedplasmais between8dBand15dB,andwiththemaximumdifferenceoccurat2GHz.

36 CHAPTER2–PLASMASANDFUNDAMENTALS To conclude, by referring to the experimental results, the plasma frequency is estimatedoccurringsomewherefrom7GHzto9GHz(Figure2.16(d))andtogetan approximation,the7GHzisestimatedfortheplasmafrequencyinthisresearchwork.

2.3.4 Estimationofelectronneutralcollisionfrequency

Inordertocalculateapproximatedvalueofelectronneutralcollisionfrequency,an experimental approach is needed. Complex permittivity that defines plasma characteristics varies with electronneutral collision frequency. As an example, three values of electronneutral collision frequency which having different complex permittivitygraphcurvesareshowninFigure2.17.Therealpermittivityisrelatedtothe energy stored in the medium while the imaginary permittivity is related to the dissipation or loss in the medium. For these particular cases, for a low collision frequency (100 MHz), the loss in plasma is negligible. However when the collision frequency is increased to 900 MHz, a vast loss occurs in plasma. As the collision frequencyisamplifiedto1700MHz,thereisnocoherentdifferenceinlossseeninthe plasma.Thereforeitisquitecomplextodefineamodelofplasmaasitsparametersare timeandfrequencydependent.However,sincethelossinplasmaisonlymanifestin thelower frequencies rangeasshowninFigure 2.17,thehighfrequenciesrangemay havenotbeaffectedbythelossduetotheelectronneutralphenomenon.

3000

2500 Real100MHz 2000 Imaginary100MHz Real900MHz 1500 Imaginary900MHz Real1700MHz 1000 Imaginary1700MHz 500

0

ComplexPermittivity 500

1000

1500

2000 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Frequency(GHz) Figure2.17–Curvepatternsofplasmacomplexpermittivityforthreedifferentvaluesof electronneutralcollisionfrequency(100MHz,900MHzand1700MHzrespectively).The plasmafrequencyis7GHz.

37 CHAPTER2–PLASMASANDFUNDAMENTALS Yet, an experimental approach can be taken to start a process of estimating these parameters and to verify the loss sensitivity of the plasma throughout the frequency rangeseeninFigure2.17.Forthatreason,inthebeginningofthisstudy,weaimto comparethemeasuredandthesimulatedradiationpatternsoftheantennaasillustrated inFigure2.18.Bydoingso,anestimationvalueofelectronneutralcollisionfrequency canbemade.

2.3.4.1 Measurementsetup

ACFLwithaphysicalheightisequalto40mmfromgroundplaneisexpectedto reflect electromagnetic wave radiated by a monopole antenna as illustrated in Figure 2.18.ThedistancebetweenCFL’ssurfaceandcentralmonopoleantennaresonatingat4 GHzis0.25λ.

CFL z

Monopole 40 x 17

300

18.75

300

x

y

300 Figure2.18–Schematicdiagramofantennausedfortheradiationpatternmeasurement.(Unit inmm). Themonopoleheightis17mmandthegroundplanedimensionis4λx4λwitha thicknessof3mm.Thefrequencyissweptfrom1.5GHzto5.5GHztoobservethe evolution of radiation patterns. The measurements were conducted in Stargate 32 SATIMOanechoicchamber.

38 CHAPTER2–PLASMASANDFUNDAMENTALS 2.3.4.2 Resultanalysis

The radiation patterns are compared between measurement and simulation. The simulated model (CST software) is defined with plasma angular frequency equals 43.9823x109rad/sandelectronneutralcollisionfrequencyisequivalentto900MHz. ThefirstassumptionofthecollisionfrequencyismadewithregardtotheworkofG.G. Borgetal.in[38],[39].

Theresultsforfrequency1.5GHz,2GHz,2.5GHzand3GHzareshowninFigure 2.19,whiletheresultsforfrequencyfrom3.5GHzuntil5.5GHzareshowninFigure 2.20.

Hplane(θ=90°) Hplane(θ=90°) o o 0 5dB 0 5dB o o o o 30 0 30 30 0 30 5 5 60o 10 60o 60o 10 60o 15 15 20 20

90o 90o 90o 90o 20 20 15 15 10 10 o o o o 120 5 120 120 5 120 Sim 0 Sim 0 Meas 150o 5dB 150o Meas 150o 5dB 150o 180o 180o

φ(deg) φ(deg) (a)(b) Hplane(θ=90°) Hplane(θ=90°) o o 0 5dB 0 5dB o o o o 30 0 30 30 0 30 5 5 60o 10 60o 60o 10 60o 15 15 20 20

90o 90o 90o 90o 20 20 15 15 10 10 o o o o 120 5 120 120 5 120 Sim 0 Sim 0 Meas 150o 5dB 150o Meas 150o 5dB 150o 180o 180o

φ(deg) φ(deg) (c)(d)

Figure2.19–Measuredandsimulatedradiationpatterns,Eθcomponents.(a)1.5GHz.(b)2 GHz.(c)2.5GHz.(d)3GHz.

In Figure 2.19, the simulated and measured radiation patterns only start to have similarpatternatbroadsidedirectionfrom2GHz.Thesignificantdissimilarityobserved

39 CHAPTER2–PLASMASANDFUNDAMENTALS inFigure2.19(a)isduethehighsensitivityoflossinplasmainthelowerfrequencies range.

Hplane(θ=90°) Hplane(θ=90°) o o 0 5dB 0 5dB o o o o 30 0 30 30 0 30 5 5 60o 10 60o 60o 10 60o 15 15 20 20

90o 90o 90o 90o 20 20 15 15 10 10 o o o o 120 5 120 120 5 120 0 0 Sim Sim o o o o Meas 150 5dB 150 Meas 150 5dB 150 180o 180o

φ(deg) φ(deg) (a)(b) Hplane(θ=90°) Hplane(θ=90°) o 0 o 5dB 0 5dB 30o 30o o o 0 30 0 30 5 5 o o 60 10 60 60o 10 60o 15 15 20 20

90o 90o 90o 90o 20 20 15 15 10 10 o o 120o 120o 120 5 120 5 0 Sim 0 Sim Meas o 5dB o Meas 150o 5dB 150o 150 150 o 180o 180

φ(deg) φ(deg) (c)(d) Hplane(θ=90°) o 0 5dB o o 30 0 30 5 60o 10 60o 15 20

90o 90o 20 15 10 o o 120 5 120 Sim 0 Meas 150o 5dB 150o 180o

φ(deg) (e)

Figure2.20–Measuredandsimulatedradiationpatterns,Eθcomponents.(a)3.5GHz.(b)4 GHz.(c)4.5GHz.(d)5GHz.(e)5.5GHz.

40 CHAPTER2–PLASMASANDFUNDAMENTALS In Figure 2.20, the results are remain comparable between simulation and measurementandcontinuetohavesimilarcardioidsshapesuntil5.5GHz.Theresults alsoverifythatathigherfrequencies range (>1.5GHz),thelossduetotheelectron neutralphenomenonisextremelylow.Thepatternevolutionsomehowvalidatesthatthe plasmawhichhasbeenmodeledinsimulationiscorrespondingtoactualplasmasource. This is satisfactory to characterize the CFLs in simulation for the frequency starting from2.0GHzuntil5.5GHz.ThemeasuredandsimulatedgainsaredepictedinFigure 2.21.Thefigureemphasizesthatthedefinedplasmamodelgivessimilargaincurveif comparedtothemeasuredone.

10

5

0 Sim Meas

5 RealizedGain(dBi) 10

15 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Frequency(GHz) Figure2.21–Theantennagaininthemaximumbeamdirection.

Again,astoreassurethecorrectestimationofelectronneutralcollisionfrequency hasbeenselected.Asetofsimulationswasconductedbyvaryingthevalueofelectron neutralcollisionfrequencyfrom100MHzuntil3000MHz.Theresultsaredepictedin Figure2.22.

Hplane(θ=90°) o 0 5dB o o 30 0 30 5 0.1GHz 60o 10 60o 0.2GHz 15 0.3GHz 20 0.4GHz o 0.5GHz 90 90o 0.6GHz 20 0.7GHz 15 0.8GHz 10 0.9GHz o o 120 120 1.0GHz 5 2.0GHz 0 3.0GHz 150o 5dB 150o Meas o 180

φ(deg) Figure2.22–Effectofelectronneutralcollisionfrequencyonradiationpattern,Eθ componentsat4GHz.

41 CHAPTER2–PLASMASANDFUNDAMENTALS AsillustratedinFigure2.22,theeffectofelectronneutralcollisionfrequencyon radiationpatternisnegligibleasthefrequencyincreasesfrom100MHzto3000MHz. Therefore the plasma model used in the simulations is adequate enough to represent actualplasmasourceinforecastingradiationpatternofplasmareflectorantenna.

2.3.5 Summaryofplasmaparametersestimation

Basedontheisolationexperiments,theplasmafrequencyisanticipatedtooccurin thefrequencyregionfrom7GHzandto9GHz.Thetransmissionofelectromagnetic waveinplasmamediumiscutoffsomewhereinthisregionandtheestimationofthe plasma frequency can be made. In order to conclude with one value of plasma frequency,the7GHzisestimatedfortheplasmafrequencyinthisresearchworksince atthisfrequencytheplasmaexhibitspropertiesofmetallicmedium.

The measured and simulation results showed similar radiation patterns at the broadsidedirectionstartingfrom2GHzuntil5.5GHzwhenplasmasourceisplaced near to central monopole antenna resonates at 4 GHz. Therefore, the experimental results have proven that the plasma model developed and used in the simulation is correspondingtoactualplasmasourcewhenitworksasreflectorelementsandhavinga goodconvergencebetweensimulatedandmeasuredradiationpatternsfrom2GHzupto 5.5 GHz. For the frequency of 1.5 GHz, the dissimilarity between simulated and measured radiation patterns is due to the high sensitivity of loss in plasma which is contributed by electroncollision phenomenon. Another plasma model has to be developed in order to characterize the particular plasma source for lower frequency antennas.

Thevariationofelectroncollisionfrequencyfrom100MHzupto3000MHzhasno significanteffectonreflectorradiationpatterns.Therefore,theinitialvalueofelectron collisionfrequency(900MHz)canbeusedtomodeltheplasma.

2.4 Conclusion Abriefreviewofplasmaasthefourthstateofmattershasbeendiscussedinthe beginningofthischapter.Seriesofplasmaequationshavebeenderivedstartingwiththe single particle motion. Elaboration of plasma equations for the two classifications of plasma which are collision and collisionless plasma was also explained. The cutoff frequency of plasma is very crucial to define plasma working region. As the plasma complexpermittivityisalsodependingonthecutoffandtransmittingradiofrequencies, itisnecessarytoestimatethevaluesofthesetwoparameters.Experimentalapproach

42 CHAPTER2–PLASMASANDFUNDAMENTALS has been taken to get an approximation of plasma cutoff frequency and finally the frequency of 7 GHz is chosen to be plasma frequency for this entire work. As the experiments were conducted with plasma worked as reflector, the model used in simulation can be used to represent the actual plasma source for any reflector configuration.Theelectronneutralcollisionfrequencyisestimatedtobe900MHzand reassurancestepshavebeentakenbyvaryingitsvaluefrom100MHzto3000MHzand the effect of reflector radiation patterns was observed. In conclusion, there is no significanteffectoccurredandhencetheinitialvalueisadequatetorepresenttheactual plasma model. The performance of the defined plasma model for reflector antenna configurations will be explained in the following chapter. The similarity between measuredandsimulatedresultswillagainconfirmthedefinedplasmamodel.

43 CHAPTER2–PLASMASANDFUNDAMENTALS References [1] U.S.Inan,M.Golkowski,"Introduction",PrinciplesofPlasmaPhysicsforEngineers andScientists,CambridgeUniversityPress,NY:NewYork,2011,pp.119. [2] G.G.Lister,J.E.Lawler,W.P.Lapatovich,V.A.Godyak,"Thephysicsofdischarge lamps,"Rev.Mod.Phys.,vol.76,no.2,pp.541598,April2004. [3] A.A.Vedenov,"Solidstateplasma",SovietPhysicsUspekhi,vol.7,no.6,pp.809 822,MayJune1965. [4] A.K.Jonscher,"Solidstateplasmaphenomena",Brit.JournalAppliedPhysics,vol. 15,pp.365377,1964. [5] Kimio Suzuki, "Room temperature solid state plasma nonreciprocal microwave devices," IEEE Trans., Electron Devices, vol. ED16, no. 12, pp. 10181021, December1969. [6] I. Alexeff, T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, P. Hulloli, "Experimentalandtheoriticalresultswithplasmaantennas,"IEEETrans.,PlasmaSci., vol.34,no.2,pp.166172,April2006. [7] T. Anderson, I. Alexeff, N. Karnam, E. P. Pradeep, N. R. Pulasani, J. Peck, "An operatingintelligentplasmaantenna,"IEEE34thInternationalConferenceonPlasma Science(ICOPS2007),pp.353356,2007. [8] M. Chung, W. Chen, B. Huang, C. Chang, K. Ku, Y. Yu, T. Suen, "Capacitive couplingreturnlossofanewpreionizedmonopoleplasmaantenna,"IEEERegion10 Conference(TENCON2007),2007. [9] M. Chung, W.Chen, Y.Yu, Z. Y. Liou, "Properties of DCbiased plasma antenna," InternationalConferenceonMicrowaveandMillimeterWaveTechnology(ICMMT 2008),2008. [10] I. Alexeff, T. Anderson, E. Farshi, N. Karnam, N. R. Pulasani, “Recent results of plasmaantenna,"Phys.,Plasmas15,057104(2008). [11] V.Kumar,M.Mishra,N.K.Joshi,"Studyofafluorescenttubeasplasmaantenna," ProgressinElectromagneticsResearchLetters,vol.24,pp.1726,2011 [12] H.M.Zali,M.T.Ali,N.A.Halili,H.Jaafar,I.Pasya,"Studyofmonopoleplasma antenna using fluorescent tube in wirelesss transmission Experiments," IEEE InternationalSymposiumonTelecommunicationTechnologies,pp.5255,2012. [13] J.P.Rayner,A.P.Whichello,A.D.Cheetham,"Physicallycharacteristicsofplasma antennas,"IEEETrans.,PlasmaSci.,vol.32,no.1,pp.269281,Feb2004. [14] G.Cerri,R.DeLeo,V.MarianiPrimiani,P.Russo,"Measurementofthepropertiesof aplasmacolumnusedasaradiatingelement,"IEEETrans.,Instrum.,Meas.,vol.57, no.2,pp.242247,Feb.2008. [15] P.Russo,G.Cerri,R.DeLeo,E.Vecchioni,"Selfconsistentanalysisofcylindrical plasmaantenna,"IEEETrans.,AntennasPropag.,vol.59,no.5,pp.15031511,May 2011. [16] G.G.Lister,M.Cox,"Modelingofinductivelycoupleddischargeswithinternaland externalcoils,"PlasmaSourcesSci.Technol.1,pp.6773,1992. [17] G.Cerri,R.DeLeo,V.M.Primiani,P.Russo,E.Vecchioni,"2.45GHzwaveguide plasmagenerationincylindricalstructures,"TheInternationalMicrowaveSymposium Digest(IMS),pp.10321035,2010. [18] P. Russo, V. M. Primiani, G. Cerri, R. De Leo, E. Vecchioni, "Experimental characterizationofasurfaguidefedplasmaantenna,"IEEETrans..AntennasPropag., vol.59,no.2,pp.425433,Feb.2011.

44 CHAPTER2–PLASMASANDFUNDAMENTALS [19] P. Russo, G. Cerri, E. Vecchioni, "Selfconsistent model for the characterization of plasma ignition by propagation of an electromagnetic wave to be used for plasma antennasdesign,"IETMicro.,AntennasPropag.,vol.4,Iss.12,pp.22562264,2010. [20] P.Russo,G.Cerri,R.DeLeo,E.Vecchioni,"Selfconsistentanalysisofcylindrical plasmaantenna,"IEEETrans.,AntennasPropag.,vol.59,no.5,pp.15031511,May 2011. [21] M.Moisan,Z. Zakrzewski,R.Pantel,P.Leprince, "Awaveguidebasedlauncherto sustainlongplasmacolumnsthroughthepropagationofanelectromagneticsurface wave,"IEEETrans.,PlasmaSci.,vol.no.3,pp.203214,Sept.1984. [22] M. Alshershby, J. Lin, "Reconfigurable plasma antenna produced in air by laser induced filaments: passive radar application," The International Conference on OptoelectronicsandMicroelectronics,pp.364370,Aug.2012. [23] 3D EM field simulationCST computer simulation technology, Available at: http://www.cst.com.AccessedOctober1,2010. [24] G.Cerri,R.DeLeo,V.MarianiPrimiani,P.Russo,"Measurementofthepropertiesof aplasmacolumnusedasaradiatingelement,"IEEETrans.,Instrum.,Meas.,vol.57, no.2,pp.242247,Feb.2008. [25] N.A.Halili,M.T.Ali,H.M.Zali,H.Jaafar,I.Pasya,"Astudyonplasmaantenna characteristics with different gases," IEEE International Symposium on TelecommunicationTechnologies,pp.5659,2012. [26] J. L. Shohet, "The motion of isolated charged particles," in The Plasma State, AcademicPress,Inc.,NY:NewYork,1971,pp.3966. [27] Matthew N. O. Sadiku, "Magnetic forces, materials, and devices," in Elements of Electromagnetics4thEdition,Oxford,NY:NewYork,2007,pp.270320. [28] R.F.Tigrek,"Aninvestigationonplasmaantennas,"ThesisMiddleEastTechnical University,Ankara,Turkey,August2005. [29] G. G. Lister, "Lowpressure gas discharge modeling," J. Phys. D. Appl. Phys. 25 (1992)pp.16491680,1992. [30] M. H. Elghazaly, S. Solyman, A. M. Abdel Baky, "Study of some basic transport coefficientsinnoblegasdischargesplasmas,"Egypt.J.Solids,vol.30,no.1,pp.137 149,2007. [31] P.Baille,J.Chang,A.Claude,R.M.Hobson,G.L.Ogram,A.W.Yau,"Effective collisionfrequencyofelectronsinnoblegases,"J.Phys.B.AT.Mol.Phys.14(1981), pp.14851495,1981. [32] A. E. Robson, R. L. Morgan, R. A. Meger, "Demonstration of a plasma mirror for microwaves," IEEE Trans., Plasma Sci., vol. 20, no. 6, pp. 10361040, December 1992. [33] R. Kumar, D. Bora, “Experimental investigation of different structures of a radio frequencyproducedplasmamedium,”Phys.,Plasmas17,043503(2010). [34] R.Kumar,D.Bora,“Wirelesscommunicationcapabilityofareconfigurableplasma antenna,”J.,Appl.,Phys.109,063303(2011). [35] InspiringlighthingsolutionsSylvanialighthingsolutions.Availableat: http://www.havellssylvania.com/en/products/0025902.AccessedDecember1,2011 [36] M. K. Howlader, Y. Yang, J. R. Roth, "Timeresolved measurement of electron number density and collision frequency for a fluorescent lamp plasma using microwavediagnostics,"IEEETrans.PlasmaSci.,vol.33,no.3,pp.10931099,June 2005. [37] W. J. Vogel, H. Ling, G. W. Torrence, "Fluorescent light interaction with personal communication signals," IEEE Trans., Comm., vol. 43, no. 2/3/4, pp. 194197, February,March,April1995.

45 CHAPTER2–PLASMASANDFUNDAMENTALS [38] G.Borg,J.H.Harris,"Applicationofplasmacolumnstoradiofrequencyantennas," Appl.,Phys.,Lett.,vol.74,no.22,May1999. [39] G.G.Borg,J.H.Harris,N.M.Martin,D.Thorncraft,R.Miliken,D.G.Miljak,B. Kwan, T. Ng, J. Kircher, "An investigation of the properties and applications of plasma antennas," SwitzerlandMillenium Conference on Antennas and Propagation Davos,April2000.

46 CHAPTER2–PLASMASANDFUNDAMENTALS Appendix2.1

47 CHAPTER2–PLASMASANDFUNDAMENTALS

48 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA Chapter3 Reconfigurablereflectorantenna

Thechapteraimstodiscussandexplaintheuseofplasmaasreflectingelements.The stateoftheartofreflectorantennasispresentedinthefirstpartofthischapter.Mainly briefreviewscoveronreflectorantennasusedforbeamsteeringandshapingorevenas a method for scanning. The reflector antennas were constructed by using metallic elements along with active devices. These active devices were employed to provide switchingmechanisminorderfortheantennastosteerbeaminparticulardirections.A review on corner reflector antennas which are meant to be used to reflect incoming beamsinforwarddirectionaregivenindetails.Thereflectorantennasareverysimple butcanbeusedtoreplaceothertypeofreflectorswhicharemorecomplexindesignto have comparable performance. The state of the art section is ended with a review of several works on plasma (naturally available material that comes with negative permittivity)usedtoreflect,tosteerandtoshapeincomingbeamsuchasplasmamirror. Thesecondpartofthispresentsanewdesignofplasmaroundreflectorantenna(RRA) tosteer,toshapeandtodoscanningbeamintheISMband.Priortothat,severalRRA designs were proposed and their simulated performances were compared in order to selectthefinalone.Thefinaldesignhasundergoneoptimizationprocesspriortoits fabrication.Themeasuredresultsarepresentedalongwithitscorrespondingsimulated ones.TheoptimizedRRAexhibitsgoodperformancesat2.4GHzandevenbetterif compared to the wire circular monopole antenna array (as been reviewed in previous part of this chapter). A novel design of corner reflector antenna (CRA) using plasma medium is presented in the third part of this chapter. Two corner reflector antennas (CRA1 and CRA2) were fabricated on a single finite ground plane to offer extra flexibility that cannot or never been offered by any other classical CRA. Several configurationsofCRAweremeasuredandsimulatedinordertoprovethattheCRAis workableat2.4GHz.Finally,aconclusionisdrawnbasedontheworksdoneandthe resultsofthefabricatedRRAandCRAprototypes.

3.1 Stateoftheart

Inrecentyears,therehasbeenanincreasinglyinterestinplasmaexploitationmainly incommunicationsystemswheretheplasmaisimplementedasantennaelement.The capabilityandflexibilityofplasmahaveattractedmanyattentionsthusacceleratingthe studyofplasmaasoneofcandidatesinordertoreplacemetalelements.Aconsiderable amountofliteratureonplasmahasbeenpublishedsince1960sandtodate;thenumber of publications has increased tremendously, especially within the five years back.

49 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

However,theliteratureonlycoverstheusageofplasmaasradiatortoreplacemetallic radiator.Plasmaisfreelydefinedandcanbedevelopedtosuitespecialpurpose.Still thisisonlytrueforphysicslaboratorieswheretheplasmacharacterizationcanbedone and plasma parameters can be altered regarding their applications. Anybody can imagineshowcomplexphysicslaboratorywouldbeandasaresult,manyworkswere conducted since then by using the commercially available plasma source such as fluorescentlampsanditscompactversion.Sinceeachoftheexistingplasmasourceshas theirownparameters’valuesandthewayplasmabehavesishighlydependentonits parameters,itisquitedifficulttomodelpreciselyplasmawithoutfirstmeasuringthe particularplasmasource.Thereforethecharacterizationofparticularplasmasourceas mentionedandexplainedinpreviouschapterisextremelyessential.

Ontheotherhand,thehurdlestodealwithplasmahavenotabletostopresearch interestontheplasmaandyethasbecameareasonforotherideastobeexpandedsoas to enable implementation of plasma in communication systems which never been imaginedbefore.Tosimplify,thissectionaimstoreviewtheuseofplasmaasreflecting elements to suite several applications such as beam steering, scanning and beam shaping. Prior to that, a brief review of other techniques using metallic elements to obtainthesimilarpurposesispresented.Sincetheinvestigationworkincludesplasma corner reflector antenna, a review on corner reflector antennas using wire grid and metallicsurfacesarealsodiscussed.

3.1.1 Reviews of antennas for beam steering, beam scanning and beam shapingusingmetallicmediuminprintedtechnology

Thispartisfocusingonthepublishedworksthatusedotherthanplasmamediumin ordertodesignantennasthatarecapabletosteer,toshapeincomingbeams.Onthe whole,therearemanydesignofantennasaremeantforthesecapabilities,howeverthis sectionisaimedtoreviewonlyontheprintedtechnology.

3.1.1.1 Beamsteeringandbeamscanningantenna

Incertaincommunicationsystems'applications,capabilityoftheantennastosteer andtoscanbeamatparticulardirectionhasbecameessentialnowadays.Forexample, thespacecommunicationsystemsthatalwaysworkingathigherfrequenciessuchinthe intersatellitecommunications,closeproximity datalinks,theindoorcommunications withhighbitrates,oreventheupcomingWifiwithdatatransferratesofuptoGb/s may require antennas with diversity in their beam pattern characteristics. There are manytechniqueswhichcanbeadoptedtorealizethisdiversity.Oneofthesetechniques

50 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

istheprintedantennatechnologythatuseseitherleakywave[1],BSML[2]oreventhe double loop [3]. Lens antenna is also an option to have these capabilities as those reportedin[4]and[5].Recently,beamscanningantennabasedonmetamaterialplanar lenswasproposedin[6].Otherthanthelensantennas,phaseshiftersalongwithMEMs switchesarealsoanalternativetosteerandscanningbeamaspresentedin[7]andnotto forget the advanced liquid crystal technology (LCD) has also been explored to steer beamandwaspresentedin[8].Eventhoughthetechniquesinachievingdiversityin communication systems becoming more advance and complex, occasionally, the conventionalmechanicaltechniqueisenoughtoprovidegoodoutputasthosereported in [9]. Photograph of leaky wave antenna and microstrip crankline antenna with moveabledielectricplatethathavebeenproposedinliteraturesareshowninFigure3.1 (a)andFigure3.1(b)respectively.

(a)(b) Figure3.1–Photographoffabricatedantennasforbeamsteeringandbeamscanning.(a) Leakywaveantennas(LWA)withRotmanlens[1].(b)Microstripcranklineantennascovered withmoveabledielectricplateat20GHz[9]. .

Whenitcomestolowprofile,lowcost,lowweightandeasytofabricate,microstrip based antennas are the ultimate choice for applications within low microwave frequenciessuchastheISMbandfrequency,5.85GHzand2.4GHz.Therearemany antennadesignsthatusethistechnologytosteerabeamoreventodobeamscanning. This includes a novel beam steering leakywave antenna that uses reactive loading capacitoralongtheleakylineaspresentedin[10].Aprototypewasconstructed,tested andexhibitedabeamscanningangleof23°.Thisisobtainedbyperiodicallyloadinga leaky line with 0.06527 pF capacitors at 4 GHz. By replacing the capacitors with varactorsdiode,anangleof13°ofbeamsteeringcanbeestablished.

For5.8GHzapplications,activeelementssuchvaractordiode[11],PINdiode[12], variablereactance[13],oreventheESPARthatcontainsactiveandpassiveelements [14],[15]areamongpopularavailablechoicestoaddextrafunctionsonantennatosteer andscanbeamsortoshapethebeam[12].Figure3.2showsalongperiodicslotsloaded leakywaveantennaanditsradiationpattern[14].

51 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b) Figure3.2–Beamsteeringantenna.(a)GeometryofproposedLogPeriodicSlotsloaded Leakywaveantenna.(b)ExperimentalHplaneradiationpatternwithmetalinsulatormetal (MIM)capacitors(2.2pFand4.7pF)at5.4GHz[14].

Thedesignhasbeenimplementedandhenceprovingthat,passivecomponentcanbe modifiedwithvaractordiodesforbeamsteeringbyappropriateDCbias.Thefabricated antennaexhibitsamaximumscanningangleof45°andbeamsteeringof15°atafixed frequency(5.4GHz)whenthecapacitorchangesitsvaluefrom2.2pFto4.7pF.Other microstripbasedantennasthatabletosteerincomingbeamfor2.4GHzapplicationsin the previous works including passive beam steering reported in [16], [17] and a miniatureantennathatusedRFswitchesreportedin[18].

Theuseofparasiticelementstoprovideasectorbeamsteeringwasproposedin[19] for wireless adhoc communications. The details of the structure and dimension of quarteredbeamswitchableantennaareillustratedinFigure3.3.

Figure3.3–Quarteredbeamswitchableantennastructureoperatingat2.4GHz.The dimensionsare;a=150,b=80,c=27.5,d=28,e=5,f=40,andg=2(Unitinmm)[19].

Theantennaconsistsofoneactiveelementsurroundedbyeightparasiticelements onafinitegroundplane.Theseparasiticelementsareswitchedtobeshortoropentoact likeacornerreflectorforbeamshapingandsteering.ThegainintheEplaneis8.2dBi

52 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

andgainintheHplaneis5.6dBiwithHPBWequivalentto82°.Figure3.34showsthe radiationpatternsoftheantennaintheEandHplanes.

(a)(b) Figure3.4–Radiationpatternoftheantennaat2.4GHz.(a)TheEplaneradiationpattern revealsagainof8.2dBi.(b)TheEplaneradiationpatternrevealsagainof5.6dBi[19].

Onewaytoachievebeamsteeringwithouttheuseofactivedeviceswaspresentedin [20].Thebeamsteeringantennawasbasedonparasiticlayeroperatingat5.6GHz.The schematicdiagramoftheantennaisdepictedinFigure3.5.

Figure3.5–3Dschematicofbeamsteeringantenna[20].

53 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Thesteerabilityoftheantennaiswithin30°to+30°withthreemaindirections. Theantennastructureconsistsofadrivenmicrostripfedpatchelementandaparasitic layerlocatedontopoffthedrivenpatch.The measuredmaximumazimuthalgainis around8dBi.

Othertypesofbeamsteeringantennashavebeenreportedfor900MHzin[21]and 5.8GHzapplicationsin[22],[23].Theseantennasweredesignedforwearableantenna applications.Figure3.6showsawearableantennawithbeamsteeringanditssimulated radiationpatternat900MHz.

(a) (b) Figure3.6–Beamsteeringparasiticantenna.(a)Fabricatedantennaonconductivefabric. (b)Simulatedradiationpatternsoftheproposedparasiticarraynexttoahumanbodymodel forseveralcapacitancecombinations[21].

Theantennaconsistsofparasiticdipoles(p1p6)fabricatedonthelayer2anda

drivendipoleonthelayer1.Theparasiticdipolesareconnectedtovaractordiodes,C1 (p1andp3)andC2(p2andp4)whichprovidevariablecapacitance.Bycontrollingthese capacitancesandthedistancebetweenthedrivenandtheparasiticdipoles,theinduce currentintheparasiticelementscanbecontrolthuscontrollingthebeamdirection.The shortedparasiticdipolesp5andp6canbeusedtoimprovearraydirectivity.

3.1.1.2 Beamshapingantenna

Anarrayofdrivenelementsisoneofseveralwaysofachievingbeamshaping.In 2005, this technique was proposed and presented in [24] using fourelement dipole array. The antenna was proposed to work at 5.2 GHz. Another Nelement monopole arraywasstudiedandpresentedin[25].Insteadofdipole,monopoleswereemployed thus reducing the physical size of the antenna. The 6element monopole array was fabricatedonafinitegroundplaneandthegeometryoftheantennaanditsprototypeare showninFigure3.7.

54 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b) Figure3.7–Wirecircularmonopolearray(CMA).(a)GeometryofanNelementCMAona finitegroundplanefedusingaSMAprobe.Itsparametersare:Ra=0.25λandRg=1.50λ.(b) Photographof6elementCMAdesignedfor2.8GHz,theRg=1.40λ=15cm,h=0.25λ=2.65 cm,Ra=0.234λ=2.5cm,andtheinterelementangleis60°[25].

Theantennadesignwassimulatedforseveralconfigurationswithvariousnumbers ofelements(4,6,8,and10elements)andtheirperformanceswerethencompared.For 6elementsarray,theperformanceoftheantennaissuperiortootherconfigurations.The excitationschemeof206(element2and6areexcited,element1isopen,andelement 3,4and5isshortedtothegroundplane)ischosen,sinceithasbetterdirectivityinthe Hplane.Thus,thisconfigurationisfurtheroptimizedbyobservingtheeffectofthesize ofgroundplaneandarrayradiusonantennaradiationpattern.Resultstellsthatthearray radiusdoesnotaffectsignificantlyontheradiationpatternbutthesizeoftheground plane can help to suppress the side lobes with an appropriate size. The comparison betweensimulatedandmeasuredresultsisshowninFigure3.8forHandEplanes. Themeasurementwasconductedfrom2GHzto3GHzandthemaximumgainonly occursat2.8GHzandthehalfpowerbeamwidthintheHplaneis67°.

(a)

55 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(b) Figure3.8–Radiationpatterncomparisonsat2.8GHz.(a)Hplane,themaximumgaininthe Hplaneare5.70dBi(simulated)and5.48dBi(measured).(a)Eplane,themaximumgainin theEplaneare11.20dBi(simulated)and10dBi(measured)[25].

3.1.1.3 Largebeamscanningantenna

Antennasareconsideredaslargebeamscanningantennasiftheantennasarecapable tosteerabeammorethan180°orupto360°directionwithoutdecreasingtheantenna gain.Mainlyactivecomponentssuchasdiodeareusedtoprovideswitchingmechanism. In [26], a novel antenna structure known as reconfigurable orthogonal antenna array (ROAA)basedonseparatedfeedingnetworkwasproventosteeritsmainbeamfrom0° to340°with20°and50°scanningsteps.PINdiodeswereemployedasswitchestosteer the beam at desired directions. The ROAA consists of four vertical reconfigurable planar antenna array (RPAA) which was arranged as a box structure. The layout and fabricatedantennaareshowninFigure3.9.

(a)(b) Figure3.9–Reconfigurableorthogonalantennaarray(ROAA);(a)Thelayoutdiagramofthe ROAA.(b)Fabricatedantenna.[26].

The antenna was meant to work at 5.8 GHz and the fabricated antenna has been measuredandwasconfirmedtosteerintwelvedirections(0°,17°,72°,90°,107°,162°,

56 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

180°,197°,252°,270°,287°,and342°).A16pinsPICpowermicrocontrollerwasused tocontroltheRPAAelements.

Anotherlargebeamsteeringantennawasproposedin[27].Theactiveantennawas designed for base station associates an omnidirectional antenna to a cylindrical controllablemetallicElectromagneticBandGap(EBG).Theomniditectionalantennais placed in the center of the active antenna. To control radiation over a 360° in the azimuthplane,thereconfigurableEBGstructureiscomposedofacylindricallatticeof discontinuousmetallicwiresalongwithPINdiodes.Thediodesareusedtocontrolthe sizeofthecompositewire;longwireswhenthediodesareONandtheEBGmaterialis reflector,discontinuouswireswhenthediodesareOFFandtheEBGistransparent.The antennawasmeasuredat950MHzanditsradiationsintensityareshownFigure3.10for 90°ofEBGaperture.

Figure3.10–Activeantennaradiationintensitywith90°ofEBGapertureat950MHz[27].A photographofthefabricatedactiveantennaisshowninthisfigure(top).

57 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.1.1.4 Cornerreflectorantennaforbeamshaping

Asimpleandyeteffectivetechniquetoshapeandtoreflectabeamisbyusing corner reflector antenna. The corner reflector antenna (CRA) was first introduced by JohnD.Krausandwasknowntohaveabout914dBigain[28].Theimagestheoryis employedtorunantennaanalysisandalsotogiveausefulguideintheantennadesign [2832].Otherthanparabolicreflectors,CRAisagoodcandidatetosteerandshapea beam in forward direction. Unlike, parabolic reflectors, CRAs are uncomplicated in designsincetheyremovethecrucialpartoffocalpointforadrivendipole[28].Figure 3.11showsasingleflatsheetreflectorandaparabolicreflector.Asreportedin[28],the parabolicreflectorsprovideslightornoimprovementoverCRAofacomparablesizein termsofperformance.

Figure3.11–Asingleflatsheetreflector(labeledwithA)andaparabolicreflector(labeled withB).ThecrucialpartoffocalpointforadrivendipoleisremovedfortheCRA[28].

ByreferringtoFigure3.12,JohnD.Krausalsoclaimedthatbychangingthefeed tovertexspacing,Swiththesameincludedangle,αthebeamcanbevariedfromsingle beam into dual beams. However, with this approach, the s needs to be altered mechanically.

Figure3.12–Cornerreflectorincrosssection(A)andinperspective(B)[28].

58 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

VariousstudiesonCRAswereenlightenedandconductedinmanyresearchpapers includingvariationofradiationpatternduetotheseveralvaryingincludedangles[32], [33],feedtovertexspacing[32],[33]andlengthofthereflectingsurface[34].ACRA withcircularpolarizationwasproposedandpresentedin[29]andin[30].Atilteddipole isusedtorealizethecircularpolarization.ThedesigndetailsareillustratedinFigure 3.13.Thedipolecanbetilted32°fromoriginandbydoingso,intoandfromanner,a circularpolarizationwillbeproduced.

(a)(b) Figure3.13–CircularpolarizedCRA.(a)Geometryofantenna.(b)FieldadjustmentofCRA toproducecircularpolarization[29].

TheearliestthreedimensionalCRAwasproposedbyNaokiInagiin[35].Thistype of CRA employed three planar reflectors and a 3/4λ unipole radiator. Calculation analysis of antenna gain, input impedance and radiation pattern were made based on imageand electromotiveforce(EMF)methods. Experimentsconducted onthethree dimensionalCRAandrectangularcornersusingfinitereflectingsurfacehaveconfirmed thattypeofCRAproducedagainof5dBgreaterthanthetwodimensionalCRA.Later in[36],withthesameidea,twotypesofthreedimensionalantennawereproposedand measured using finite reflecting sheet and a set of finite grids for VHF and UHF applications.BothdesignsareshowninFigure3.14.

59 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b) Figure3.14–A60°CRA.(a)Constructedbyusingfinitereflectingsheet.(b)Constructedby usingfinitegrid[36].

Thefirsttypeisconstructedbyaddingacylindrical reflecting surface of suitable radiustotheVshapedCRAandthesecondtypeisconstructedbyaddingacylindrical surfacetothethreedimensionsCRA.Bothdesignsoffer2dBiand6.5dBiincrements intheantennagain.Infollowingyear,analysisofthethreedimensionalCRAsin[36] wasreiteratedbutthistimebyusingmethodofmoment(MoM)andwaspresentedin [37].TheMoMwasconcludedtogivehighervaluesfortheinputresistanceandlower valuesfortheinputreactancecomparedtoimageandEMFmethods.

Intermsofdesignrobustness,aCRAmadebyasetofgridsofreflectingsurfaces hasonecoherentadvantageoverthefinitereflectingsheet.ThesocalledgridedCRA eliminatessevereeffectcausedbythewindwhentheCRAismountedinhighandopen airareasuchasonthetopofbuildings.

Othertechniquesofanalysisoftheradiationpatternwereconductedin[38]using boundary elements method (BEM) and in [39] using finite difference time domain method (FDTD). Some CRA are designed with wideband capability and mainly for UHFandVHFapplications[40],[41]withthesetechniquesofanalysis.

Many studies have been conducted to enhance the performances of the classical CRA.ThisincludesbyplacingconductingobjectinfrontoftheCRA,generallyinthe mainlobedirectionsothatitcanbeconfiguredtodiffractandscatterincomingbeam constructively.Thistechniquewasfirstintroducedin[42]usingferritecylindersand later by using metallic stripes as reported in [43]. Another proposed technique to improvetheCRAperformancesisbyusingmetamaterialcylindersormetalcoatedwith metamaterialasthegridelement[44].Otherthanthat,anoveldesignofCRAknownas thetriplecornerreflectorantenna(TCR)wasproposedin[45].Thedesignwasaimedto

60 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

improveantennagainandtoreducethesizeofhalfpowerbeamwidth.Theschematicof theTCRanditsperformancearedepictedinFigure3.15.

(a)(b) Figure3.15–Anovel120°triplecornerreflectorantenna(TCR)forXbandapplications.(a) Schematicdiagram.(b)Hplaneradiationpatterncomparison(theTCRisrepresentsbythe dot,andthe90°classicalCRAisrepresentbythecross)[45].

Theexperimentwasrepeatedforseveralincludedangles,αwhichare60°,90°and 120°intheXband.ExperimentiterationshowsthatoptimumTCRwiththehighestgain occurswiththeconfigurationα=120°,l=2λ,β=80°andw=1.5λ.TheoptimizedTCRhas 3dBimprovementsingainandthehalfpowerbeamwidthishalfofthevalueofthe correspondingconventionalCRAwith90°includedangle.Thesidelobelevelofthe optimizedTCRisbelow13dB.

Forsomeapplications,itisdesirabletobeabletoadjustthebeamwidthandthe radiationpatterncharacteristics.Forthatreasons,aCRAwithvariablebeamwidthwas proposed in [4648] with different techniques. In [46], a reconfigurable CRA was proposed with the use of mechanical movement as illustrated in Figure 3.16. The beamwidthcharacteristiciscontrolledbymovingthereflectorplatesusingaslidingring thatisconnectedtotheplatesbyahinge.Theplatesmustbemovedsynchronouslyso thatthedipolewillalwaysatthebisectorlineandthisiswherethemaindifficultlyarise. TheCRAwasdesignedtoworkat5GHzandwasfedbyahalfwavedipoleseparated by30mm(0.5λ)fromthevertex,andthesidelengthofthesquareplateswas120mm (2λ).

61 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Figure3.16–SchematicofavariablebeamwidthCRAsimulatedat5GHz[46].

Thebeamwidthcharacteristiciscontrolledbymovingthereflectorplatesusinga sliding ring that is connected to the plates by a hinge. The plates must be moved synchronouslysothatthedipolewillalwaysatthebisectorlineandthisiswherethe maindifficultlyarise.TheCRAwasdesignedtoworkat5GHZandwasfedbyahalf wave dipole separated by 30 mm (0.5λ) from the vertex, and the side length of the squareplateswas120mm(2λ).

In[47],anovelquadcornerreflectorarraywasproposedandmeasuredfor2.4GHz applications. This antenna uses four identical dipoles placed at every 90° angle. The proposedandrealizedreflectorsaredepictedinFigure3.17.

(a)(b) Figure3.17–Anovelquadcornerreflectorarrayat2.4GHz.(a)Antennaconfiguration.(b) Prototypedmodel[47].

ThemeasurementsresultsareshowninFigure3.18.Theresultsareexplainedfor threemaincases;thefirstoneiswhenthedipoleantennasareintransmittingmode(Tx), thesecondandthelastcasearewhenthedipole2togetherwithdipole4anddipole1 togetherwithdipole3areinreceivingmode.Themaximumgainforthecase1is8.8

62 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

dBiandthemaximumgainforthecase2andcase3arethesamewith11.8dBi.All gainsaremeasuredat2.45GHz.

(a)(b) Figure3.18–Measuredradiationpatterns.(a)Hplane.(b)Eplane[47].

AnotherreconfigurableCRAfor2.4GHzapplicationisproposedin[48].TheCRA offersmultiplebeamformingcapabilitysinceitincorporateselectronicsteerablepassive radiator(ESPAR).TheproposedcornerreflectorESPARisshowninFigure3.19.

Figure3.19–ThestructureoftheproposedCRESPARantennaat2.4GHzforbasestation applications[48].

BeamforminginESPARantennasisperformedbycontrollingthereactanceloaded toanumberofpassiveelementsandforsuchdesigntheESPARisintegratedwithCRA by placing these passive elements in front of the CRA. These passive elements are formedinsymmetricalpairsaroundthebisectorofthereflectorandtheycanbeloaded withdifferentreactiveloadvalue.Theoptimizationwasconductedwithrespecttothe

63 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

resonance frequency, input impedance, and multiple switchedbeam pattern configuration. By using genetic algorithm (GA), the antenna was optimized and achievedmaximumgainof14dBifora30°3dBbeamwidthand11dBifor45°3dB beamwidth. This is quite high compared to the research's literatures operating at the samefrequency,which themaximumgainis8 dBi.Theauthorhadclaimingthisis partiallyduetothesizeoftheCRESPARitselfwhichismuchbiggerwiththoseinthe literatures.

SincetheintroductionofCRAin1940s,mostoftheresearchworksdealwithlow frequency bands including low microwave frequencies. However, in [49], a new milimeterwavecornerreflectorantennaarraywasdesignedandrealized.Theantenna was aimed to work at 26 GHz which is a popular for microwave communication network applications such as indoor and outdoor wireless LANs and point to point communications. Three CRAs were designed with different included angles, 127.5°, 180°andthenewconceptofincludedanglemorethan180°whichisequivalentto255°. Thesketchofthethreedifferentincludedanglesandtherealizedantennasareshownin Figure3.20.ThesimulatedradiationpatternresultsareshowninFigure3.21revealing thatthebeamwidthintheHplanechangescorrespondingtotheincludedangle.

(a)

(b) Figure3.20–(a)Sketchofthreedifferentincludedangles.(b)Realizedantennaswiththree includedangles(127.5°,180°,255°)[49].

64 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)

(b) Figure3.21–Simulatedradiationpatterns.(a)Hplane.(b)Eplane[49].

The measured results are in a good agreement with the simulation ones. The measuredantennasgainare19.6dBi,16.5dBi,and13.8dBi,fortherespectiveincluded anglesof127.5°,180°and255°.

3.1.2 Reviews of antennas for beam steering, beam scanning and beam shapingusingplasmamedium

Therearemanyshapesandconfigurationsofreflectorantennasthatcanbeadopted to steer incoming signal to the intended direction. Reflector antennas are simpler in termsofdesignsinceitusesthefreespaceasitsfeedingnetwork.Beamsteeringby using plasma reflectors is very promising profile, especially ability of plasma to be

65 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

reconfiguredelectricallywhichisimpossibletobedonebymetalelements.However, up to now, there are not many published works that have employed plasma as the mediumtohavebeamsteeringandbeamshapingcapability.Thus,thissectionaimsto providebriefreviewonthepreviousworkssothatanoverviewofplasmaindesigning reflectorantennascanbecomprehendedeasily.

3.1.2.1 Beamsteeringandbeamscanning Intheearliestworks,atypeofreflectorsknownasplasmamirrorhasbeenusedto steer electrical beam in particular direction especially in radar systems. The plasma mirrorisdesignedtosuiteapplicationsforspacebasedusedintheXband,60GHzand 94 GHz frequencies. This is because although the existing phasedarray radar has tremendous response time advantage over other types of , yet it is generally restrictedtolowfrequency[50]duetohighinsertionlossandeasilyaffectedbymutual coupling [51] in millimeter wave applications. The concept of the plasma mirror is showninFigure3.22.

(a)(b) Figure3.22–(a)Agilemirrorsystem[50].(b)Geometryofmicrowavereflectionfroma plasmamirror[52].

InordertocreateanionizeregioninthegasthatcontainsAromatic,Argon,andSF6, arotatingmirrorisusetomaneuveralasersothatthelaserwillsupplyenoughenergy forthegasinsidethecontainer.Themirrorcouldberotatedsothattheionizedregion canberelocatedaccordingly.Theenergyfromthelasersourceisdirectedtotherotating mirrorthatwouldabletocreateanionizeregionwhichisplasma.

Mirroring concept using plasma has been demonstrated in [53] in X band (10.5 GHz).Apulsedglowdischargedisusedtogenerateaplasmasheetwithalinear,hollow cathodeinanaxialmagneticfield.Theplasmaisexperimentallytestedanditcanbe established and extinguished on a time scale of 20 microseconds. The experiment

66 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

apparatusisshowninFigure3.23(a)andthemeasurementofthemicrowavelayoutto formplasmamirrorisshowninFigure3.23(b).

(a)

(b) Figure3.23–(a)Theexperimentapparatus[53].(b)Thelayoutformicrowavemeasurement [52].

Thesametechniquewhichwaspresentedin[53]isusedtocreateaplasmamirrorin [52],[54]and[55].Thistimetheperformanceoftheplasmamirroriscomparedtoit metalcounterpart.A50cmwide,1cmthickand60cmlongplasmasheetisformed between the cathode and the anode just after 10 microseconds when the voltage is applied.Theplasmasheetiscreatedbya4kVvoltagepulseand1013cm3plasmais achievedwithintheplasma.Thepressureofthedischargegasduringtheoperatingtile is130mTorr.A30cmdiameterCutlerfeedantennaisusedtoilluminatethemirrorat 10GHz[52].Thecomparisonbetweenplasmaandmetalmirrorsinthesamedimension isshownFigure3.24.

67 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Figure3.24–ComparisonofHplaneradiationpatternsduetoreflectionfromametalmirror andaplasmamirror[52].

Thispatternisobtainedbyrotatingtheplasmamirrorwhilekeepingthereceiver hornfixed.Thereflectivityoftheplasmamirrorisalmost100percentandasareflector theplasmamirrorexhibitsextremelylowlossandthenoisemeasurementresultcanbe seeninFigure3.25.Thenoiseperformanceoftheplasmamirrorhasbeenpresentedin [56]. The noise was measured at 10.5 GHz for an Argon plasma mirror with cutoff frequencyof>12.5GHz.Thedetectorrecordedthegeneratednoisebefore,duringand afterthemirrorpulse.Duringthe300 smirrorpulsethenoisepowerfirstincreased whenthemirrorwasturnedONthenquieteddownafter~50μ s.Thereafterthenoise powersettleddowntoafactorof3abovetheambientnoiselevel.μ

Figure3.25–Measurementof10.5GHznoiseemissionforanArgonplasmamirror[56].

Anotherwaytosteerabeamisbyusingmicrowavelensbasedonplasmamedium asreportedin[51].Plasmalenscanbeformedwhentheratio fallswithin~13 which allows the waves to propagate obliquely to a density gradient pass through a

68 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

regionofgradientintherefractiveindexandthusdeflected.Thedegreeofdeflectionin plasma is depending on the plasma density. Interestingly in these conditions, the refractive index of plasma in less than unity and the wavelength is larger than in vacuum.ThisphenomenonisillustratedinFigure3.26.

Figure3.26–Theeffectofacirculardensitygradientonthepathofmicrowavebeam[51].

Theplasmalensexperimentconductedin[51]isusingspecialequipmentknownas basic ion laser (BASIL). The BASIL vacuum chamber is made of Pyrex tube with a transitionfroma50mmto1000mmdiameter.Thetubeissurroundedbymagneticfield coilstoallowformationoftheplasmabytheexcitationofheliconwave.Theschematic oftheBASILisshowninFigure3.27.

(a)(b) Figure3.27–Basicionlaser(BASIL).(a)SchematicshowingsetupofBASIL.(b)Thearc sweptoutbydetectortomeasuretheradiationpatternofdeflectedandundeflectedbeams [51].

Themicrowavesignalat36GHzisgeneratedusingIMPactionizationAvalanche TransitTime(IMPATT)diodesourceandlaunchedthrougha25x32mm,3dBhorn antenna to an entry point at 22 mm from the tube axis. This offset ensures that microwavebeamisdirectedthroughtheplasmagradientatanangle.Thedetectionof

69 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

microwavessignalisdoneusing20x35mmhornfeedingapointcontactdiodewith sensitivityof<1mW.Theplasmafrequencyduringtheexperimentwas20–30GHz. TheresultisshowninFigure3.28.

Figure3.28–Measuredfarfieldradiationpatternof36GHzplasmalens[51]. It can be noted that there is good collimation of deflected beam. Therefore, the abilitytosteerbeamhasbeenprovenandadequatetobeusedinpracticalapplications. The plasma lens demonstrated in the paper can deflect about 25° without radically changing its shape or introducing significant side lobes. Insertion loss seemed to be controllable.

Oneofplasmareflectorrealizationstosteerabeamwasaparabolicplasmareflector operatingat3GHz.ThisprojecthasbeenrealizedbyagroupheadedbyIgorAlexeff and Ted Anderson in the middle of 2000[57],[58]. Figure 3.29 shows one of their earliestdesignsofplasmareflector.

Figure3.29–Earliestdesignofplasmareflector[57].

70 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

The parabolic concept is furthermore enhanced with the use of commercially available fluorescent lamps and finally tested. Figure 3.30 shows plasma antenna installedinananechoicchamberalongwithametalantennathatwasdesignedtobean identicaltwintotheplasmaantenna.

(a)(b) Figure3.30–Plasma(a)andmetal(b)reflectorantennasinstalledinananechoicchamber. Themetalantennawasdesignedtobeanidenticaltwintotheplasmaantennaat3GHz[57], [58].

Theplasmareflectorhasshowncomparableperformanceswithmetalreflectorinthe samearrangementandtheresultisillustratedinFigure3.31.

Figure3.31–Comparisonofradiationpatternonplasmaantenna(bluedots)andmetal reflector(redsolidline)[57],[58].

71 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Theradiationpatternofplasmaisquitesimilarwithitsmetalcounterpart.Itcanbe seenthatwhentheplasmaisdeactivated,thereflectedsignalisdroppedbyover20dB. Thesetwoscenarioshaveconfirmedthattheplasmareflectorantennawasabletogive similarperformancesasmetalreflectorat3GHzandalsotheplasmacanbedestroyed toeliminateitsexistence.

3.1.2.2 Widebeamscanningandbeamshaping

Igor Alexeff, Ted Anderson and their group have published several remarkable worksindesigningplasmausingantennamediumsuchassmartplasmaantennain[59 61]. The plasma elements were arranged in circular coordination allowing extra possibilityofbeamsteering,beamshapingandbeamscanning.However,thelargetype fluorescentlampswereusedastheplasmasourceandthustheresultantantennaisquite bulky. The schematic of the antenna is shown in Figure 3.32 (a). Any deactivated element will create a plasma window and allowing directional beam to emerge. The plasma window can be varied accordingly with number of elements are deactivated. The concept of smart antenna was realized at 2.5 GHz and the final antenna was fabricatedasshowninFigure3.32(b).

(a)(b) Figure3.32–(a)Schematicofbeamformingforaplasmawindowingdirectionalantenna [60].(b)Photographofinitialsmartplasmaantenna[61].

Generally,areflectorantennaoperatingat2.5GHzdoesnotrequirephysicallytall reflectingelements.Therefore,itissufficienttoensurethatthereflectingelementsare littlebittallerthanresonatingelement(>λ/4).Forexample,iftheresonatingelementisa monopole antenna, the reflecting element must be a little bit taller than a quarter wavelengthssothatthereflectingelementsworkasreflectors.Thusduetothesizeof plasmaelementusedin[61],theplasmaantennahastobedesignedassuchthatthe somepartoffluorescentlamp(FL)needtobecoveredasshowninFigure3.32(b).This

72 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

isbecausetheheightofFListootallcomparedtotheheightofmonopoleantennaat2.5 GHz(λ=120mm).Theemploymentofbigelementradiusalsowillincreasescanning stepandleadstothebroaderbeamwidth.Theusedofcylindricalfluorescentlampalso requiresbothendsofthefluorescentlamptobeconnectedtopowersupplyinorderfor theencapsulatedgastogetionized.

In[62],thesimilararrangementofplasmacylindricalelementsasintroducedin[59 61]wasappliedinordertomaneuverandsteerincomingbeamstocertaindirection. Becauseofplasmaadvantages,thearrangementallowsascanningbeamtoberealized. Theplasmaelementsarearrangedin circularformasillustratedinFigure3.33.The resultsofadoublebeamandbeamscanningareshowninFigure3.34.

(a)(b) Figure3.33–Geometryofplasmaantennabeamformingwith12elements.(a)Sideview.(b) Topview[62].

(a)(b) Figure3.34–(a)Doublebeamsat8.1GHz.(b)Singlebeamscanningat8.1GHz. [62].

73 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Thesignalissuppliedbyaclassicalmonopoleantennathatislocatedinthecenterof the circulararranged reflecting elements. The theoretical result shows that with this arrangement,thebeamcanbesteeredatparticulardirectionandthescanningbeamcan bedone.ThereflectingelementsareassumedtobemadebyArgongasencapsulatedin T12orT18ofthedomesticfluorescentlamps.Theassumepressureisfrom1to5Torr. Theelectronneutralcollisionfrequencyandelectrondensityareassumesas6.83x107 Hz and 9.24 x 1017 m3 respectively. The distance between plasma element and the centralmonopoleissetto0.0641meterfor8.1GHzoperatingfrequency(λ=37mm).

Althoughthecomputedradiationpatternswerepresentedinthepaperseemedso satisfactory,thepaperwaslackedwithsomepoints.Therewasnoconfirmationofthe proposed antenna performance such as antenna gain and reflection coefficient. Moreover the operating frequencies used in the simulation are rationally near to the plasmafrequencywhichcouldleadtoimprecision,referto[57],[59].Therefore,the onlywaytoverifytheresultsisthroughaconcretemeasurement.

3.1.3 Summary

Byreferringtotheliteratures,uptonow,therearenotmanypublishedworkingon plasmareflectorantennas.Eventhoughthereareenormousworksondesigningantennas tosteer,toshapeandtoscanbeamhavebeenpublishedrecently,theseworksmainly limitedtotheusageofmetallicelements.Evenmore,activedeviceswereoftenusedin helpingtheantennastoswitchfromoneconfigurationtoanotherinordertoredirectan incomingbeaminparticulardirections.

Thus, plasma is another type of naturally available materials other than metallic material that can be exploited to give extra advantage in designing antennas. By implementingit,therequirementofnonlinearactivedevicescanbeeliminated.Many typeofplasmasourcehavebeenusedintheliteratures.Somearecomplexintermofits excitationtechniqueandsomearenot.However,therearemanywaytoexciteplasma and by using the commercially available CFL as plasma source, the complexity excitation can be reduced. Since plasma decays in microseconds, a round reflector antennacanberealizedtosteer,toshapeandeventoexhibitscanningbeam.

74 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2 Reconfigurableroundreflectorantenna(RRA)

Tothebestofourknowledge,onlyafewpapershavereportedaboutthescanning feasibility study of plasma reflector antennas [62], and none has reported about its verifiedperformanceexceptin[60],[61].However,allofthesereportshaveworkedon specificsizeofplasmasourcewhichislargeinsizethustheperformancesanddesign maynotbeoptimumatthespecificoperatingfrequency.Forthisreason,thissectionis aimedtopresentsimulationandexperimentalresultsinordertoverifytheperformance ofareconfigurableplasmareflectorantennawithbeamshapingandscanningcapability intheISMband.Thereflectorelementsaremadeofseriesofcompactfluorescentlamps (CFL) and are arranged in circular arrangement. Each of the elements is individually controlledbyasinglepoleelectronicswitch.Therefore,thechangeofbeamprofilesis effortless by narrowing or widening plasma window. As plasma only requires microsecondstodecay[60],[63],thescanningbeamcanbemaneuveredinsplitseconds too.Comparisonsbetweensimulatedandmeasuredresultsinthesameconfigurationare discussedthoroughlyinthefollowingsections.

3.2.1 RRAantennaspecifications

Inthebeginningofthestudy,therearefourproposalstodesignareflectorantenna whichincorporatedbeamscanningandbeamshapingcapability.Theprevioustypesof CFLs (Figure 2.9 in Chapter 2) were used in the simulations. These antennas are electricallyreconfigurablesothatoncetheplasmaisdeactivated,andwiththepresence ofthedielectrictube,theantennawillradiatetransmittingsignalasthesameasclassical monopoleantennas.Inallfourdesigns,thesamegroundplanesizewithathicknessof3 mmwasused.Forthematerials,thesamedielectrictubesandmetalwereusedinthe simulationwhicharemadefromlossyglasspyrexwithpermittivityof4.82andordinary annealedcopperwithconductivityof5.8x107S/m.Thedetailsoftheproposeddesigns are explained in the following subtopics. Their simulated performances are also included.Theoptimizationwillonlybedoneoncethebestdesignisselectedbasedon theperformance.

3.2.1.1 Round reflector antenna using Triple Biax compact fluorescent lamp

Thisisthefirstplasmareflectorantennathathasbeensimulatedaftertheplasmahas beencharacterized.ThedesignconsistsoffiveTripleBiaxCFLsasshowninFigure 3.35.DetailsoftheCFLareincludedinAppendix3.1.Theanglebetweenthecentersof

75 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

each element is 72° and the distance between reflector surface and central monopole antennais0.25λat4GHzresonatingfrequency.

CFL z

40 x

300

0.25λ

CFL Monopole 300

y 72° x

300 Figure3.35–RoundreflectorantennausingTripleBiaxCFLconsistof5elements.Only threeelementsareactivatedatthesametimetoreflectbeaminforwarddirection.(Unitsin mm)

TheheightofCFLismeasured40mmfromthegroundplanesurfaceanditsouter diameter is 10 mm. The height of the central monopole antenna is 17 mm with a diameterof1mm.Threeelementsareactivatedinordertoshapetheomnidirectional beam.ThesimulationresultsareshowninFigure3.36.

Hplane(θ=90°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 Metal 150o 0dB 150o Metal 150o 0dB 150o Plasma o Plasma o 180 180

φ(deg) θ(deg) (a)(b)

76 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

0 15

5 10 10

PlasmaOFF (dB) 15 5

11 Metal S Plasma 20 RealizedGain(dBi) 0 25 PlasmaOFF Metal Plasma

30 5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.36–SimulatedperformancesofroundreflectorantennausingTripleBiaxCFL.(a)

NormalizedHplaneradiationpatterns,Eθcomponentat4GHz.(b)NormalizedEplane

radiationpatterns,Eθcomponentat4GHz.(c)Magnitudeofreflectioncoefficients,S11.(d) Antennagains.

Based on the design (Figure 3.35), three cases are simulated; plasma OFF, three metalelements,andthreeactivatedplasmaelements(ON).Fromtheresults,radiation patternofthetwomaterialsarecorrespondingtoeachotheratthebroadsidedirectionas showninFigure3.36(a),with3dBbeamwidthsare±35°and±30°formetaland plasmarespectively.Howeverthefronttobackratio(f/b)oftheplasmaislessthan10 dBwhichisagainstitsmetaltwin(13.5dB)andthistrendcanbeseeninFigure3.36(a) whileFigure3.36(b)showsthatthemaximumbeamsaredirectedatθequals70°.In Figure3.36(c),allthreecasesarematchedat4GHz,andyetmetalandplasmahaving

shiftedreflectioncoefficients,S11ifcomparedtothecaseofglasstube.Thisisdueto scattering effect caused by the surrounding elements that change the antenna input impedance.Bothmetal(9dBi)andplasma(8.3dBi)caseshaveshownalmost4dB moreingainifcomparedtotheplasmadeactivatedcaseasdepictedinFigure3.36(d). Intermsofscanningcapability,theantennamainbeamcanbesteeredwith72°scanning stepasillustratedinFigure3.35.

3.2.1.2 RoundreflectorantennausingT5fluorescentlamp

Inthesimulationoftheseconddesignofroundreflectorantenna,cylindricalshaped fluorescentlamps(FL),typeT5areimplementedasreflectiveelementsandcoordinated incirculararrangement.Thetotalnumberofelementsusedinthesimulationis18.But notallelementsaresetasplasmaormetalineverysimulation.Astheideaistohave sectoralbeamshape,onlyhalfofthetotalelementsareworkingasreflectoratatime

77 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

andtherestremainsasdielectrictubes.The geometryofthisdesignisillustratedin Figure3.37.

FL

z 100

x

300

20°

0.35λ FL 300 Monopole

y

x

300

Figure3.37–RoundreflectorantennausingT5fluorescentlampconsistsof18elements.Only halfofthetotalelementsareactivatedatthesametime.(Unitsinmm)

Theheightofeachelementfromgroundplanesurfaceis100mm,thediameterof thelampis16mm,andthecentralmonopoleheightis30mmwithadiameterof1mm. Theanglebetweenthecentersoftwoadjacentelementsis20°,anditisdependingon thedistancebetweenfeederandreflectorsurfaces.Thisanglewillcauseapproximately 2mmgapbetweentwoadjacentelements.Inthesimulations,thedistanceissetto0.35λ at2.4GHz.ThesimulationperformanceresultsaregiveninFigure3.38.

78 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 Metal o o o o 150 0dB 150 Metal 150 0dB 150 Plasma 180o Plasma 180o

φ(deg) θ(deg) (a)(b)

0 15

5 10 10

(dB) 15 5 11 S 20 PlasmaOFF RealizedGain(dBi) 0 25 Metal PlasmaOFF Plasma Metal Plasma 30 5 1 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.38–SimulatedperformanceofroundreflectorantennausingT5fluorescentlamp

antenna.(a)NormalizedHplaneradiationpatterns,Eθcomponentat2.4GHz.(b)Normalized

Eplaneradiationpatterns,Eθcomponentat2.4GHz.(c)Magnitudeofreflectioncoefficients,

S11.(d)Antennagains.

ByreferringtoFigure3.37,only9elementsareusedtoformplasmaandmetal reflectorsinthesimulations,whileothersremainasdielectrictubes.Thegasinsidethe dielectrictubesisassumedtohave~1permittivitysincethenoblegas(Argon)usedin conventionalFLisquitesimilarwiththeairintheroomtemperature.Thereforeonlythe dielectrictubehaseffectonradiationpatternswhentheplasmaandmetalareabsent. Thesimulatedrealizedgainsforplasmaandmetalelementsare8.5dBiand9.1dBi respectively.The3dBangularwidthsis66°formetalaswellasplasma.Thefrontto backratio(f/b)are19dB(metal)and16.5dB(plasma).Themainbeamofthisdesign canbesteeredwith20°steptocomplete360°areaasillustratedinFigure3.37.Some drawbacksofthisdesignintermsofitsrealizationare;thereflectingelements(T5FL) needtobeexcitedonitsbothendsandthenumberofelementsrequiredforthisdesign ishigh(18elements).

79 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.1.3 Round reflector antenna using Ushaped compact fluorescent lamparrangedinseries

The third design employs Ushaped compact fluorescent lamps (CFL) as its reflective elements. Because of its arrangement in series, this design employed less number of elements if compared to the round reflector antenna using T5 fluorescent lamp.GeometryofthesimulateddesignisshowninFigure3.39.Aquarterwavelengths antennaisplacedinthecenterofthegroundplanehavingadiameterof1mmanda heightof30mm.Theheightofeachelementfromgroundplanesurfaceis115mm,and thediameterofthelampis13mm.Thegeometricscaleoftheelementsisbasedonthe existingUshapedCFLavailableinthemarket.Theanglesbetweenthecentersoftwo adjacent elements are 40° which is depending on the distance between feeder and reflectorsurfaces.TheantennaperformancesarerepresentedinFigure3.40.

CFL

115 z

x

300

40°

0.35λ CFL 300 Monopole

y

x

300 Figure3.39–RoundreflectorantennausingUshapedCFLconsistsof9elementscoordinated inseries.Onlyfiveelementsareactivatedatthesametime.(Unitsinmm)

80 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 Metal 150o 0dB 150o Metal 150o 0dB 150o Plasma 180o Plasma 180o

φ(deg) θ(deg) (a)(b)

0 15

5 10 10

(dB) 15 5 11 S

20 PlasmaOFF PlasmaOFF RealizedGain(dBi) 0 Metal Metal Plasma 25 Plasma

30 5 1 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.40–SimulatedperformanceofroundreflectorantennausingUshapedCFLarranged

inseries.(a)NormalizedHplaneradiationpatterns,Eθcomponentat2.4GHz.(b)Normalized

Eplaneradiationpatterns,Eθcomponentat2.4GHz.(c)Magnitudeofreflectioncoefficients,

S11.(d)Antennagains.

TheradiationpatternshowninFigure3.40(a)and3.40(b)tellusthatthisplasma elementarrangementdoesnotprovidegoodradiationpatternifcomparedtoitsmetal counterpart.Eventhough,smalldegreesofbroadsidebeamoftheplasma(±40°)and metal(±30°)haveasimilarity,thefronttobackratiooftheplasma(7dB)isnotas goodasthemetal(17.5dB).Therefectioncoefficientsandantennasimulatedrealized gainsaredepictedinFigure3.40(c)and3.40(d)respectively.Bothcases(plasmaand metal)havehighergainsifcomparedtothegainofthemonopoleantenna(4.2dBiat2.4 GHz). The gain for metal case is 10.2 dBi while for the plasma is 8.9 dBi. For its scanning ability, the main beam of this design can be controlled to steer with 40° scanningstepasdepictedinFigure3.39.

81 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.1.4 Round reflector antenna using Ushaped compact fluorescent lamparrangedinparallel Thisdesigncombinesthebestfeaturesoftheseconddesign(roundreflectorantenna using T5 FL, in Figure 3.37) and the third design (round reflector antenna using U shapedCFLarrangedinseries,inFigure3.39).Thesimilarelementsusedinthethird designarearrangedincircularcoordinationasproposedintheseconddesign.Therefore, thisfourthdesignisassumedtohaveagoodfronttobackratio(f/b)aspredictedinthe seconddesign.SincetheUshapedCFLisemployed,therequirementofexcitationat bothendsforT5 FL asintheseconddesign canbeeliminated.Overall,thisdesign requires18elementswithonly11elementsactivatedatthesametimewhiletherest remaindeactivated.Theheightofeachelementis115mmwithrespecttotheground planesurface andthe anglebetweenthecenters oftwoadjacentelementsis20°.The distance between central monopole and reflecting element is 0.35λ. The physical geometryoftheantennaisshowninFigure3.41whileitsradiationpatternsandantenna performancesaredepictedinFigure3.42.

CFL

115 z

x

300

20°

0.35λ CFL 300 Monopole

y

x

300 Figure3.41–Roundreflectorantennausing18UshapedCFLswhicharearrangedin parallel.Only11elementsareactivatedatatimetoreflectanincomingwave.(Unitsinmm)

82 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 Metal 150o 0dB 150o Metal 150o 0dB 150o Plasma 180o Plasma 180o

φ(deg) θ(deg) (a)(b)

0 15

5 10 10

(dB) 15 5 11 S

20 PlasmaOFF PlasmaOFF Metal RealizedGain(dBi) 0 Metal Plasma 25 Plasma

30 5 1 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.42–SimulatedperformanceofroundreflectorantennausingUshapedCFLarranged

inparallel.(a)NormalizedHplaneradiationpatterns,Eθcomponentat2.4GHz.(b)

NormalizedEplaneradiationpatterns,Eθcomponentat2.4GHz.(c)Magnitudeofreflection

coefficients,S11.(d)Antennagains.

Figure3.42(a)tellsthatbothplasmaandmetalcaseshavegoodagreementinterms ofHplaneradiationpattern.The3dBbeamwidthforplasmacaseis±30°aswellas forthemetalcase.Plasmareflectorantennaisexhibitingagoodfronttobackratio(f/b) whichis14.5dBifcomparedtothefirstandtheseconddesignswhicheachofthese designs produces f/b below than 10 dB. These two designs are previously shown in Figure3.35 andFigure 3.37respectively.An excellentagreementalsocanbeseenin Figure3.42(b)fortheirelevationplaneradiationpatterns.Thereflectioncoefficientof plasmaismuchbetterthanmetalcaseasrepresentedinFigure3.42 (c).Bothplasma andmetalprovidegoodgainsat2.4GHz(10dBiforbothcases)asshowninFigure 3.42 (d), which is more than the gain of its monopole antenna with surrounding dielectrictubes.Thisdesignhassimilarscanningcapabilityasexplainedinthesecond design.Thesmallestpossiblescanningstepis20°anditcanberealizedbyactivating only11elementsatthesametime.

83 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Ingeneral,thisroundreflectorantennausing18UshapedCFLswhicharearranged inparallelhasnosignificantdrawbackifcomparedtothethreedesignsproposedinthe previoussections.

3.2.1.5 Designsummary

TheroundreflectorantennausingTripleBiaxCFL(firstdesign)havingthebiggest separationanglewhichisduetoitsphysicalsize.Asaresult,thefinestscanstepisonly 72°whichishigherthanotherproposeddesigns.Fortheroundreflectorantennausing T5fluorescentlamp(seconddesign),ithasmuchbetterantennaperformancethanthe firstdesignintermofradiationpattern.Howeveritrequiresexcitationatitsbothends thereforewillleadtocomplexitywhenitcomestorealization.Fortheroundreflector antenna that uses 18 Ushaped CFLs arranged in series (third design), it reduces the complexityoftheseconddesign,howeveritscirculararrangementwith40°separation angleisnotgoodasthoseproposedbytheseconddesign.Thebacksideradiationis broadandremainsthebiggestifcomparedtootherdesigns.

Therefore,theroundreflectorantennausing18UshapedCFLsarrangedinparallel isthemostfavorablesinceitmergesthebestfeaturesproposedinFigure3.35andin Figure3.37.Moreoverthisdesignshowsagoodsimilaritybetweenmetalandplasmain

terms of their radiation patterns and gains. The reflection coefficient, S11 of plasma reflectorisslightlylowerthan10dBat2.4GHzbutitisawaybetterthanitsmetal counterpart.However,thismatchingproblemcanbeavoidedwitharightselectionof the distance between reflector surface and an optimum angle between two adjacent elements.ThesummaryfortheproposedplasmareflectorantennasarelistedinTable 3.1

Table3.1–Theperformancessummaryoftheproposedroundreflectorantennasusing plasmaasreflectingelements. Round Roundreflector Roundreflector Round reflector antennausing antennausing18 reflector Components antenna 18Ushaped UshapedCFLs antenna usingTriple CFLsarranged arrangedin usingT5FL BiaxCFL inseries parallel Distancebetween centralmonopole antennaand 0.25λ 0.35λ 0.35λ 0.35λ reflectorsurface (mm) Anglebetween centersoftwo 72 20 40 20 adjacentelements (°) No.ofelements 5 18 9 18

84 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

No.ofactivated 3 9 5 11 elements(required) HPBW(°) ±30 ±33 ±40 ±30 Gain(dBi) 8.3 8.5 8.9 10 Fronttobackratio 7 17 7 15 (f/b)(dB)

Basedonthissimulationresultscomparison,theroundreflectorantennausing18U shapedCFLsarrangedinparallelischosenfortheantennaoptimization.Thefollowing topicwillelaborateontheoptimizationprocessfortheroundreflectorantennausingU shapedCFLarrangedinparallel.

3.2.2 Optimization of the round reflector antenna using Ushaped CFLs arrangedinparallel

In the early work of optimization, several values of distances between central monopoleantennaandreflectingelementsurfacehavebeensimulated.Theparametric studyhasbeenconductedbyvaryingthedistancefrom0.1λupto0.7λ.Bydoingso,the numbersofelementsrequiredtoreflectomnidirectionalbeamintobroadsidedirection willalsovaryaccordingly.Theevolutionofdistanceanditsrequirednumberofelement isdepictedinFigure3.43.

0.1λ 0.3λ 0.7λ

Figure3.43–Evolutionofantennaarrangementforthreedifferentdistancesbetweencentral monopoleantennaandreflectorsurface.Therequiredactivatedelementsare5,9and19forthe distancesof0.1λ,0.3λand0.7λrespectively.

Thefigureshowsonlysomeofthesimulateddistanceshoweveritisenoughtogive an overview of the effect of the varying distance that changes the total number of requiredelements.Theantennaparametersthathavebeenusedtooptimizetheantenna

designinthefollowingsectionsaredepictedinFigure3.44.Dccisthedistancebetween centers of two adjacent elements and Dms is the distance between central monopole

85 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

antenna and reflector surface. The angle between centers of two adjacent elements is

representedbyθs.

Dcc θs

ElementN

Dms Element1 Centralmonopole

Figure3.44–Optimizationparametersoftheroundreflectorantenna.(Dccisthedistance betweencentersofadjacentelements,Dmsisthedistancebetweencentralmonopoleantenna andreflectorsurface,θsisananglebetweencentersoftwoadjacentelements)

3.2.2.1 Optimization of distance between central monopole antenna and reflector surface, number of elements, and element separation anglebasedonphysicalarrangement

Asmentionedearlier,bychangingthedistancebetweenfeeder(monopoleantenna) and reflecting surface will also change the required number of total elements. This scenarioisdepictedforthreedifferentdistancesbetweencentralmonopoleantennaand reflectorsurfacepreviouslyinFigure3.43.However,thenumberofelementsonlycan befinalizedbyrespectingtheactualphysicalgapbetweentwoadjacentelements(the lowerpartoftheCFL).Hence,byverifyingtheactualCFL,theclosestdistancebetween two adjacent elements is measured to be 5 mm (interelement spacing). As a consequence,ifthelampdiameteris13mm(with6.5mmradius),thepossiblelower distancebetweencentersofadjacentelementsis18mm.Byrespectingthisvalue,the resultsofthesimulationsaresummarizedinTable3.2.

86 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Table3.2–Summaryofantennaoptimizationbasedonphysicalarrangement. Angle Distancebetween Distance between No.of centralmonopole betweencenters centersof No.of activated antennaand ofadjacent each Elements elements reflectorsurface, elements,D element,θ cc (required) D (mm) s (mm) ms (°) 0.1λ 60 6 19.0 5 0.2λ 36 10 19.5 7 0.3λ 24 15 18.3 9 0.4λ 18.95 19 18.6 11 0.5λ 15 24 18.0 15 0.6λ 12.86 28 18.3 17 0.7λ 11.25 32 18.5 19

First of all, let'scomparetotheroundreflectorantennausing18UshapedCFLs

arrangedinparallel.Theseparationanglebetweencentersoftwoadjacentelements,θs isvariedfrom20°(refertoFigure3.41)to24°afteroptimizationwhichcorrespondstoa

reductionof0.05λonthedistancebetweenfeederandreflectingelementssurface,Dms. Thetotalnumberofelementis15(with9activatedplasmaelements)whichisless3 elementsthantheoneproposedpreviously.Verificationofthisoptimizationwillonlybe confirmedbycomparingtheantennaperformancewithrespecttoalldistances.

3.2.2.2 Optimization of distance between central monopole antenna and reflector surface, and number of elements based on antenna performances

Intheprevioussection,thebestanglebetweencentersoftwoadjacentCFLsis24° incorrespondstothedistanceof0.3λ(37.5mm)betweenfeederandreflectorsurfaces. Thesetwovaluesaregainedfromaparametricstudyofthecompletemodelbychanging eachvalue atonetime, andwithrespecttothe interelementspacinglimitation.The closerthedistance,thelessthenumberofelementsusedinthesimulations.However, thespacegapbetweenelementsmightbehigherwhenthenumberofelementsislesser. Thus,itcanreducetheeffectivenessoftheoverallreflectorsurface.Forthatreason,itis essentialtoselectoptimumconfigurationbytakingintoaccountthevalueofdirectivity, gainandnumberofrequiredelements.DespiteofthedistancestabledinTable3.2,a simulationwithdistanceof0.35λ(43.75mm)wasalsoconductedwithregardtothe distanceproposedinthefourthdesign(roundreflectorantennausing18UshapedCFLs arrangedinparallel).

AsshowninFigure3.45(a),thehighestgainoccursatthedistanceof0.4λ(50mm). Thisiscorrespondingto19elementsdepictedinFigure3.45(b).However,itisworthto

87 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

look at a distance of 0.35λ, even though the gain is 0.8 dB lower, the number of elementsisnowreducedto15.Withthisdistance,theoverallsystemgivesoptimum gain withrespecttothedirectivity. Hence,the distanceof0.35λisbetterthanother distancesthathavebeensimulated.Eventhoughwithdistanceof0.3λ,thenumberof requiredelementsisthesameasat0.35λ(15elements),theantennaismoreefficient withthedistanceof0.35λ.Thegaintakesintoaccountalllossaswellasthemismatch oftheantenna,anditisrelatedtothedirectivitybyacoefficientthatcanbeconsidered astheefficiencyofthe antenna. Forthatreason,theconfigurationwiththisdistance (0.35λ)ischosenforsimulationsinthisstudyandalsoforthemodelrealization.The geometryofthefinalizeddesignisshowninFigure3.46.Thesetofholestoinsertthe CFLsisalsorepresentedinthefigure.

14 35

12 30

10 25

8 20

(dBi) 6 15 RealizedGain 4 Directivity 10 NumberofElements

2 5

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Dms(xλmm) Dms(xλmm) (a)(b) Figure3.45–Antennaperformancesanditsnumberofelement.(a)Simulatedantennagainand

directivitywithrespecttodistance,Dms(gainsolidline,directivitydottedline).(b)Numberof

elementsversusdistance,Dms.Fifteenelementsarerequiredforthedistancesof0.3λand0.35λ.

88 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

CFL

z h=115 43.75 Monopole x 30 3

24°

0.35λ CFL 300 Monopole

y

x

300 Figure3.46–Geometryoffinalizedroundreflectorantenna.Only1elementoutof15elements isillustratedinthefigurealongwithasetofholesusedtoinserttheCFLs.

3.2.3 Fabricationofroundreflectorantenna

The realized model was fabricated on 3 mm thick ground plane based on the geometryoftheRRAgiveninFigure3.46.Thefabricatedprototypeanditssupporting componentsareshowninFigure3.47.Excitationpowertoenergizethe9WattsCFLsis supplied by a set of electronic ballasts with specification of 220240 V, 5060 Hz (Appendix3.2).Eachoftheelectronicballastiscontrolledbyasmallsinglepoleswitch andeachofitrequiredasetoffourwirestobeconnectedtoeachoftheCFLs.Thusto comeoutwiththeprototype,15electricballastsand15switchesareneededasshownin Figure3.47(b).

89 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b)

(c)(d) Figure3.47–Prototypeoftheroundreflectorantenna(RRA).(a)15CFLswitha300mmx 300mmgroundplane.(b)Switchesandelectronicballasts.(c)Connectorsbox.(d)Quarter wavefeederinthecenterofthegroundplane. Theelectricballastischoseninsteadofmagneticballastasanelementtoenergize CFLbecauseitssimplicity,lownoiseandcompactinsize.However,atradeoffexistsin the increment numbers of connecting wires. The needs of CFL base type 2G7 was removed since the CFLs were inserted from the bottom of the ground plane and carefullygluedtothegroundplane.Thegluingprocessneedtobedoneonebyonefor therestofCFLs.TheCFLsmustbeverticallyalignedwithrespecttothegroundplane surface.EachofthewireisconnectedtoCFLpinsbyusingordinarywireconnecterbox asshowninFigure3.47(c).Thereare4polylegsscrewedtosupportthegroundplane, andeachofithaving160mmlength.Themonopoleantennawithdiameterof2mmas showninFigure3.47(d)isconnectedtothefeedinglineviaa50OhmSMAfemale connector.

3.2.4 Measurementsetupofplasmaroundreflectorantenna

ThissectionexplainsonthemeasurementssetupoftheRRAanditsapparatus.A switchingschemetosteer,shapeandtoscanisalsodiscussed.

90 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.4.1 Antennaperformancemeasurementofroundreflectorantenna

Theantennaperformancemeasurementswereconductedintwodifferentanechoic chambers. The input impedance of the antenna was conducted in small anechoic chamberasshowninFigure3.48(a).Avectornetworkanalyzerwasusedtomeasure the input impedance. The measurements were conducted for all RRA configurations (beamshapingandbeamscanning).

(a)(b) Figure3.48–Antennainputimpedancemeasurementapparatus.(a)RRAwithactivated elements.(b)Vectornetworkanalyzer(AgilentN5242A).

The radiation pattern measurements were performed in a SATIMO 32 anechoic chamberwiththepeakgainaccuracyof±0.8dBifor1GHzupto6GHzoperating frequencies. The SATIMO nearfield chamber consists of 32 bipolarized receiving probe antennas located on an arch in circularshaped arrangement with an internal diameterof1.5m.TheSATIMOisshowninFigure3.49(a).

(a)

91 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(b)(c) Figure3.49–TheRRAradiationpatternandgainmeasurementapparatus.(a)SATIMO32 anechoicchamberwith32receivingprobes.(b)Aspeciallymadesupportfixtureusedtoplace theAUT.(c)Thespeciallymadesupportfixtureusedduringmeasurement.

TheSATIMOmeasurementsystemconsistsofanamplificationunit,amixerunit,a probearraycontroller,anuninterruptiblepowersupply,anantennaundertest(AUT) positioner,aprimarysynthesizer,andanauxiliarysynthesizer.TheAUTisplacedona supportfixtureascanbeseeninFigure3.49(b).Thesupportfixtureisspeciallymadeto beequippedwithSATIMO.Ithasfourlegsandbyvaryingtheheightofitslegs,the placingheightofAUTcanbealteredaccordingly.Themaximumheightwithrespectto theflatsurfaceisapproximately1meter.

3.2.4.2 SwitchingschemeofRRAforbeamscanning

Theantennaprototypeuses15singlepoleelectronicswitchestocontrolitselement state(ONorOFF)inordertodirectitsmainbeaminparticulardirections.Sinceeachof the elements can be controlled individually, the antenna has enormous possibility to shapeandtosteeritsbeam.Eachofelementsisrepresentedbyadedicatedswitchas showninFigure3.50.

92 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

12 13 11 14 10

15 9

1

8 2 y

7 3 6 x 4 5

Figure3.50–Thereare15elements(CFL)forthefabricatedRRAandtheelements arenumberedinanticlockwisedirection. Generally, a number of activated elements (switched ON) will define the size of plasmawindowthuscontrollingthereflectedbeamwidth.Inthisinvestigation,withthe optimizedRRA,thereareonly9elementsactivatedatthesametime.Bytakinginto accountofanoverlapping3dBbeamwidth(HPBW),theRRAiscontrolledtosteerits main beam with 48° step. Therefore, eight different main beam directions can be realizedwiththisconfiguration.Aswitchingsettingschemetosteertheantennabeamis tabledoutinTable3.3,anditisbasedontheelementnumberingsequenceasillustrated inFigure3.50. Table3.3–Switchingsettingforbeamscanning(with9activatedelements). Beam SwitchedONElements SwitchedOFFElements Direction 0° 5,4,3,2,1,15,14,13,12 11,10,9,8,7,6 48° 7,6,5,4,3,2,1,15,14 13,12,11,10,9,8 96° 9,8,7,6,5,4,3,2,1 15,14,13,12,11,10 144° 11,10,9,8,7,6,5,4,3 2,1,15,14,13,12 192° 13,12,11,10,9,8,7,6,5 4,3,2,1,15,14 240° 15,14,13,12,11,10,9,8,7 6,5,4,3,2,1 288° 2,1,15,14,13,12,11,10,9 8,7,6,5,4,3 336° 4,3,2,1,15,14,13,12,11 10,9,8,7,6,5

3.2.5 Designvariety

InsteadofhavingoneelementheightforthefabricatedRRA,theprototypeisfurther enhanced with extra flexibilityby varying its elements' height measured from ground plane surface. The design configurations with three different element heights are illustratedinFigure3.51.Anideatochangetheantennaelementheightisoriginated from the availability of variety of CFL lengths in the market. Therefore, instead of

93 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

havingoneelement’sheight,theantennacanberefabricatedwithasetofnewCFLs withdifferentheightsanditsperformancecanbemeasuredandcompared.

(b)

(a) (c) Figure3.51–Thesimulationdesigns.(a)Primarydesignwith115mmCFLheight.(b)Second designwith54mmCFLheight.(c)Thirddesignwith15mmCFLheight. However to redo the fabricationprocess will take some extra time and cost. As a result,byaddinganothergroundplaneasshowninFigure3.51(b)and3.51(c),the heightofantennaelementcanbereducedanditsperformancecanbeanalyzed.These twonewarrangementsrepresentacompactversionofRRAwithreducedheightwhich ispossibletobefabricated.

Priortoantennarealization,severalsimulationshavebeenperformedtostudythe effectofaddingsecondlayerofthegroundplane.Acomparisonhasbeenconducted between two cases; 1) a single layer, and 2) two layers of ground plane both with identicalelementheight.Theresultshaveprovedthatbyaddingextralayerofground plane,antennaradiationpatternsareidenticalforeachcaseinbothHandEplanes.In conclusion,thecompactversionofRRAwithreducedelementheightcanbeanalyzed bychangingitselementheightwiththeaidofsecondlayerofthegroundplane.The photographsofthesecondgroundplaneareshowninFigure3.52.

(a)(b)

94 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(c)(d) Figure3.52–PhotographofthesecondarygroundplaneanditsequivalentRRA.(a)(b)Theh is54mmwiththeinsertedsecondarygroundplane.(c)(d)Thehis15mmwiththeinserted secondlayerofthegroundplane.

ThefirstRRAprototypeisrealizedusingasetofUshapedCFLswiththebaseto baselengthis152mm(totalheightfromtoptobottom).Itstechnicaldataarelistedin Appendix 3.3. The second design is realized by adding extra ground plane and the resultingheightofelementis54mmwhichrepresenttheheightofotherUshapedCFLs withthebasetobaselengthequivalentto92mmthatisavailableinthemarket. Its technicaldataarelistedinAppendix3.4.Thethirddesignwaspurposelyrealizedto investigate the RRA performance if its element's height is lesser than its resonating element.

3.2.6 Resultsandanalysisofthefabricatedroundreflectorantenna(RRA)

This part presents numerous set of simulation and measurement results of the designed RRA. The effects of surrounding dielectric tubes on monopole antenna radiationpatternsarepresentedinthefirstpartofthissection.Plasmawindowisthe mainfactortoshapeanincomingbeam,thusitseffectarealsodiscussedwiththree different element's heights. Finally, scanning capability of RRA with 9 activated elementsispresented.Theresultsaregivenforthethreeelementheights(115mm,54 mm15mm).

3.2.6.1 Effect of surrounding dielectric tubes on monopole antenna radiationpattern

Inordertoobservetheeffectofdielectrictubesonradiationpatternofthemonopole antenna,thedesignmodelhasbeensimulatedandmeasuredfortwoconfigurations;a) monopole antenna without dielectric tubes, and b) monopole antenna surrounded by

95 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

dielectric tubes (plasma OFF) as previously shown in Figure 3.47 (a). For the configurationwith115mmdielectrictubes,theabsentofplasmaleavesargongasinside the tubes. The simulated and measured radiation patterns for both cases are then compared.Theresultsshowquitesimilarradiationpatternsforbothcasesthatconclude theexistenceofdielectrictubecanbeneglected.Figure3.53showsthesimulatedand measured normalized radiation patterns in the H and E planes for the both configurations.

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

o o 90 90o 90 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFFcopolar 5 PlasmaOFFcopolar 5 PlasmaOFFcrosspolar 150o 0dB 150o PlasmaOFFcrosspolar 150o 0dB 150o Monopolecopolar 180o Monopolecopolar 180o Monopolecrosspolar Monopolecrosspolar φ(deg) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFFcopolar 5 PlasmaOFFcopolar 5 Monopolecopolar 150o 0dB 150o PlasmaOFFcrosspolar 150o 0dB 150o 180o Monopolecopolar 180o

Monopolecrosspolar θ(deg) θ(deg) (c)(d) Figure3.53–Comparisonofthenormalizedradiationpatternsofamonopoleantennafortwo antennaconfigurations(monopoleantennaandmonopoleantennasurroundedbydielectric

tubes),EθandE componentsat2.4GHz.(a)SimulatedHplaneradiationpatterns.(b) MeasuredHplaneradiationpatterns.(c)SimulatedEplaneradiationpatterns.(d)Measured Eplaneradiationpatterns.

ThesimulatedcrosspolarizationlevelsintheEplaneforthebothconfigurationsare belowthan25dB.Asaresult,theyarenotabletobeseeninFigure3.53(c).During themeasurementfortheconfigurationwithsurroundingdielectrictubes,asetofwires to energize the CFLs are always there, therefore having some effect on the back radiation pattern. However the effect is negligible since it does not degrade the main

96 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

lobeascanbeseeninFigure3.53(d)orevenintheHplaneradiationpatternsdepicted inFigure3.53(b).

ThereflectioncoefficientsarealmostsimilarforbothcasesasshowninFigure3.54 (a)and3.54(b).Bothconfigurationsarematchedwithreflectioncoefficientbelowthan 10dBatoperatingfrequency.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S PlasmaOFF PlasmaOFF 20 Monopole 20 Monopole

25 25

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

12 12

10 10

8 8 PlasmaOFF PlasmaOFF Monopole Monopole 6 6

4 4 RealizedGain(dBi) RealizedGain(dBi)

2 2

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) FrequencyGHz) (c)(d) Figure3.54–Monopoleantennaperformanceswith(plasmaOFF)andwithoutthepresenceof

dielectrictubes.(a)Magnitudeofsimulatedreflectioncoefficients,S11.(b)Magnitudeof

measuredreflectioncoefficients,S11.(c)Simulatedgains.(d)Measuredgains.

Thegainofthemonopoleantennaisalsocomparedforthetwoconfigurationsas showninFigure3.54(c)and3.54(d),forthesimulationandmeasurementrespectively. Thereisnomuchreductioningainwiththepresenceofthesurroundingdielectrictubes forbothconfigurationseitherinsimulationormeasurement.

The results again confirm that, the presence of dielectric tubes surrounding the monopoleantennahasnosignificanteffectstothereflectioncoefficient.Therefore,itis possible to construct reconfigurable reflector antennaby only activate and deactivate theplasmaelementswithouthavingtoworryaboutthesurroundingdielectrictubes.

97 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.6.2 BeamshapingofRRAbyvaryingplasmawindow

SeveralsimulationshavebeenperformedtofindgoodradiationpatternsintheH and E planes with different number of elements activated at one time as the beam profiles of the reflected signal can be shaped by varying the size of plasma window. This can be realized by activating arbitrary adjacent elements. In this study, three configurationssetuphavebeenidentified.Theconfigurationis7,thesecondis9and the third configuration is 11elements activated. In this investigation, the 7elements correspondstothewidestplasmawindowwhile11elementsrepresentsthenarrowest plasmawindow.Figure3.55illustratesthesethreeconfigurations.

Figure3.55–Numberofdeactivatedelements(greycolor)representsthesizeofplasma window.Inthisinvestigation,thewidestwindowiswith8deactivatedelementsand7 activatedelements(bluecolor)whilethenarrowestwindowiswith4deactivatedelements. (7/15represents7activatedelementsoutof15totalelements).

Fromthesimulationresults,itisbettertoanticipatethatbynarrowingtheplasma window,thebeamwillbemorefocusandwillleadtohighdirectivitywhichallows longercommunicationdistanceandviceversa.Thevariationofradiationpatternsfor differentplasmawindow'ssizesintheHandEplanesarepresentedinthefollowing subsections. The antenna performances with regard to its configuration are also discussedaccordingly.

3.2.6.2.1 BeamshapingofRRAwithelementheight,hequals115mm

ThevariationofradiationpatternsfordifferentsizeofplasmawindowsintheH plane is shown in Figure 3.56 while the simulated and measured antenna gains are shown in Figure 3.57 (a) and 3.57 (b), respectively. Let’s take a look at antenna radiationpatterns;awiderbeamatbroadsidedirectionisobservedwhen7elementsare activated.Thegaintendstodropfrom9dBi(9elementsconfiguration)to6.8dBidue the broadening radiation effect. When the number of elements is increased to 11, the gainalsodecreasedto7.6dBi.Howeverthisisduetothenarrowingeffectofplasma

98 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

windowleadingtothediffractionofelectromagneticwaveandhencereducesthegain. The 3 dB beamwidths are similar for the three configurations. From these three patterns,onecanseewith9elementsconfigurationtheradiationpatternisatoptimum. Thebeamismorefocusedwhilethesidelobeandthebackradiationarereduced,giving thehighestgain.

Albeitthe11elementsconfigurationhascomparativebeamatbroadsidedirection, itsbackradiationismuchhigher.Thusthegainofthisconfigurationislowerthan9 elements configuration. Therefore for scanning validation in the next section, the 9 elementsconfigurationwasadopted.Itisimportantmentioningthatbothsimulationand experimentalresultshavecrosspolarizationbelowthan10dBandtheirfronttoback ratio(f/b)ismorethan10dBforthethreeconfigurationsdiscussedhere.TheEplane radiationpatternsareshowninFigure3.56(c)and3.56(d).Themaximumgainsoccur atelevationanglebetween29°and30°forallconfigurations.

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 7/15 150o 0dB 150o 7/15 150o 0dB 150o 9/15 180o 9/15 180o 11/15 11/15 φ(deg) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 7/15 150o 0dB 150o 7/15 150o 0dB 150o 9/15 180o 9/15 180o 11/15 11/15 θ(deg) θ(deg) (c)(d)

Figure3.56–Normalizedradiationpatterns,Eθcomponentsat2.4GHz.(a)SimulatedHplane radiationpatterns.(b)MeasuredHplaneradiationpatterns.(c)SimulatedEplaneradiation patterns.(d)MeasuredEplaneradiationpatterns.

99 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Themeasuredgainwith9elementsactivatedat2.4GHzis9dBiwhichis1dB lowerthanitssimulationone.

12 12

10 10

Monopole 8 PlasmaOFF 8 7/15 6 9/15 6 11/15

4 4

RealizedGain(dBi) RealizedGain(dBi) Monopole PlasmaOFF 2 2 7/15 9/15 11/15 0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b) Figure3.57–Antennagainscomparison.(a)Simulated.(b)Measured.

The antenna reflection coefficients are shown in Figure 3.58 for the three

configurations.For7and9elementsconfigurations,theS11arebelowthan10dBfor awidebandwidth.Overall,bothmeasuredandsimulatedresultsareingoodagreements. Theripplesseeninthemeasuredreflectioncoefficientsareduetothestriationeffectof theplasma.Thiseffectwillnotbeseenifthesensitivityofthesamplingfrequencyof networkanalyzerisreduced.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S Monopole S Monopole 20 PlasmaOFF 20 PlasmaOFF 7/15 7/15 9/15 9/15 25 11/15 25 11/15

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

Figure3.58–Comparisonofmagnitudeofreflectioncoefficients,S11.(a)Simulated.(b) Measured.

100 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.6.2.2 BeamshapingofRRAwithelementheight,hequals54mm

Fortheimplementationofcasewith54mmheightCFL, asecondlayer ground planeisinsertedfromthetopoftheantennaasillustratedpreviouslyinFigure3.50(b). Thesecondlayerisfixedtothefirstgroundplanelayerusingasetofpolylegsanda centralmonopoleantennaisattachedonit.Thereisnoelectricalconnectionbetweenthe firstandsecondgroundplanes.Theproceduresofvaryingtheplasmawindowarethe same as the one applied for the case of h equals 115 mm. The measurement and simulationresultsaregiveninFigure3.59andFigure3.60.

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 7/15 150o 0dB 150o 7/15 150o 0dB 150o 9/15 180o 9/15 180o 11/15 11/15 φ(deg) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 7/15 150o 0dB 150o 7/15 150o 0dB 150o 9/15 180o 9/15 180o 11/15 11/15 θ(deg) θ(deg) (c)(d)

Figure3.59–Measuredandsimulatedradiationpatterns,Eθcomponentsat2.4GHz(h=54 mm).(a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiationpatterns.(c) SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

Therearegoodagreementsbetweensimulationandmeasurementresultsasitcanbe seeninFigure3.59.IfwecomparedthemeasuredHplaneradiationpatternswiththe caseofhequals115mm,therearesomeimprovementsforthebackradiation,however

101 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

bothperformancesareacceptablesincethevaluesarelesserthan10dB.Moreover,the halfpowerbeamwidthsdonothaveanysignificantdissimilarity.

TheantennareflectioncoefficientsanditsgainsareshowninFigure3.60forthe

threeconfigurations.Forthe11elementsconfigurationtheS11isslightlyhigherthan 10dBhoweverfor7and9elementsconfigurations,theS11arebelowthan10dBand offerwideoperatingbandwidth.Whentheplasmaisdeactivated(OFF),itsmeasured and simulated reflection coefficient patterns are alike. A similar pattern of gains are showninbothsimulatedandmeasuredresultsasdepictedinFigure3.60(c)and3.60 (d).Themaximumsimulatedandmeasuredgainsofthe9elementsconfigurationare 9.6dBiand9.2dBirespectively.Thisis0.2dBhigherthanmeasuredgainwiththecase of h equals 115 mm. Overall, both measured and simulated results are in good agreements.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S Monopole S Monopole 20 PlasmaOFF 20 PlasmaOFF 7/15 7/15 9/15 9/15 25 11/15 25 11/15

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

12 12

10 10

8 8

6 6

4 Monopole 4 RealizedGain(dBi) RealizedGain(dBi) Monopole PlasmaOFF PlasmaOFF 7/15 2 2 7/15 9/15 9/15 11/15 11/15 0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.60–Antennaperformances(h=54mm).(a)Magnitudeofsimulatedreflection

coefficients,S11.(b)Magnitudeofmeasuredreflectioncoefficients,S11.(c)Simulatedgains.(d) Measuredgains.

102 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.6.2.3 BeamshapingofRRAwithelementheight,hequals15mm

For the third case, the hisequivalentto15mm.Torealizeit,asecondlayerof groundplaneisneededtobefixedtotheprimarygroundplanewiththeaidofpolylegs sothatthecorrespondingheightofelementsisnow15mm.Thesimilarmethodsof varyingplasmawindowsareapplied.Thesimulatedandmeasurementradiationpattern results are shown in Figure 3.61. The effects of dielectric tube (plasma OFF) on monopoleradiationpatternarealsoincludedinFigure3.61.

Hplane(θ=90°) Hplane(θ=90°) o 0 o 0dB 0 0dB 30o 30o o o 5 30 5 30 10 10 o o 60 15 60 60o 15 60o 20 20 25 25

o 90o 90o 90 90o 25 25 20 20 15 15 o o 120o 120o 120 10 120 10 5 5 PlasmaOFF PlasmaOFF o 0dB o 150o 0dB 150o 7/15 150 150 7/15 o o 9/15 180 9/15 180 11/15 11/15 φ(deg) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB 30o 30o o o 5 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 PlasmaOFF PlasmaOFF o o 7/15 150o 0dB 150o 7/15 150 0dB 150 o 9/15 180o 9/15 180 11/15 11/15 θ(deg) θ(deg) (c)(d)

Figure3.61–Measuredandsimulatedradiationpatterns,Eθcomponentsat2.4GHz(h=15 mm).(a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiationpatterns.(c) SimulatedEplaneradiationpatterns(d)MeasuredEplaneradiationpatterns.

FromtheFigure3.61,therearegoodagreementsbetweensimulatedandmeasured radiation patterns. However, with further decreasing elements height below than resonatingmonopoleantenna,thebroadsidebeamwidthbecomeswiderforthe7,9, and 11 elements configurations thus reducing the antenna focusing properties. Furthermore,withthisfocusingdegradation,theantennagainsarenowlesserthan8dBi

103 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

ifcomparedtothepreviouscases(h=115mmandh=54mm).Theantennareflection coefficients and gains are depicted in Figure 3.62. All antenna configurations are matchedat2.4GHzandgoodagreementsbetweensimulatedandmeasuredresultscan beseeninFigure3.62.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S Monopole S Monopole 20 PlasmaOFF 20 PlasmaOFF 7/15 7/15 9/15 9/15 25 11/15 25 11/15

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

12 12 Monopole PlasmaOFF 10 10 7/15 9/15 11/15 8 8

6 6

4 4 Monopole RealizedGain(dBi) RealizedGain(dBi) PlasmaOFF 2 7/15 2 9/15 11/15

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.62–Antennaperformances(h=15mm).(a)Magnitudeofsimulatedreflection

coefficients,S11.(b)Magnitudeofmeasuredreflectioncoefficients,S11.(c)Simulatedgains.(d) Measuredgains.

3.2.6.3 BeamscanningofRRA

Inordertosteerabeamfrom0°to360°,only 9elementsneedtobeactivated (switched ON) while the rest remains deactivated (OFF state). To ease the scanning process,eachoftheelementsisnumberedbyitslocationinanticlockwisedirectionas shown in Figure 3.50. Element number 1 is always at 180° from xdirection on the referenceplane.Thesmallestscanningstepis48°,thustomoveamainbeamfrom0°to 48°,thenext9elementsiscountedfromthethirdelement(elementnumber3)inthe0° configuration.Thissequencemustbefollowedtomovethemainbeamfrom48°to96°

104 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

andupto360°.Basically,thefirstelementiscountedafterthesecondelementinthe previous configuration. The ONOFF sequences to scan are made based on the switching setting scheme listed in Table 3.3 which has been explained in the earlier section(switchingscheme).

3.2.6.3.1 BeamscanningofRRAwithelementheight,hequals115mm

Figure 3.63 shows simulated and measured scanning radiation patterns in the H plane.Thesimulatedandmeasuredcrosspolarizationradiationpatternsareshownin Figure3.63(c)andFigure3.63(d)respectively.Thefronttobackratio(f/b)arealways morethan10dBinthesimulationsaswellasinthemeasurements.Thebeamcanbe directed at desired direction by switching ON the appropriate numbers of adjacent elements.Figure3.63(a)andFigure3.63(b)canbeeasilycomparedshowingthatthe simulatedandmeasuredresultsarecomparabletoeachother.ThesimulatedHPBWis± 30°whereasthemeasuredHPBWis±27°.

Hplane(θ=90°) Hplane(θ=90°) 0 0 0° 0° 48° 48° 5 96° 5 96° 144° 144° 192° 192° 10 10

15 15

20 20

25 25 NormalizedRadiationPattern(dB) NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (a)(b) Hplane(θ=90°) Hplane(θ=90°) 0 0 0° 0° 5 48° 5 48° 96° 96° 144° 144° 10 192° 10 192°

15 15

20 20

25 25 NormalizedRadiationPattern(dB) NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (c)(d)

105 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Figure3.63–NormalizedHplanescanningradiationpatternsat2.4GHzwithhequals115

mm.(a)Simulatedcopolarization,Eθcomponent.(b)Measuredcopolarization,Eθcomponent. (c)Simulatedcrosspolarization,E component.(d)Measuredcrosspolarization,E component.

For the antenna performances, because of the 9elements configuration is implemented for the scanning, the highest measured gain remains at 9 dBi. The simulated and measured scanning gains are shown in Figure 3.64 (a) and 3.64 (b) correspondingly.Thepatternsarequitesimilarforbothsimulatedandmeasuredgains. The simulated bandwidths below than 10 dB remain wide (>1 GHz) throughout the scanningaswellasmeasurements.ThesescenariosareshowninFigure3.64(c)andin Figure3.64(d).

12 12

10 10

8 8

6 6

0° 0° 4 48° 4 48°

RealizedGain(dBi) 96° RealizedGain(dBi) 96° 144° 144° 2 192° 2 192°

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b)

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S 0° 0° 20 48° 20 48° 96° 96° 144° 144° 25 192° 25 192°

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.64–Antennaperformances(h=115mm).(a)Simulatedgains.(b)Measuredgains.

(c)Magnitudeofsimulatedreflectioncoefficients,S11.(d)Magnitudeofmeasuredreflection

coefficients,S11.

106 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.2.6.3.2 BeamscanningofRRAwithelementheight,hequals54mm

Thesimilarscanningschemesettingwasappliedtothiscase.Asecondlayerof ground plane is used to reduce the element's height to 54 mm. The simulated and measuredradiationpatternsintheHplaneareshowninFigure3.65(a)andFigure3.65 (b) respectively. The cross polarization radiation patterns are demonstrated in Figure 3.65(c)forthesimulationandinFigure3.65(d)forthemeasurement.

Hplane(θ=90°) Hplane(θ=90°) 0 0 0° 0° 48° 48° 96° 5 5 96° 144° 144° 192° 192° 10 10

15 15

20 20

25 25 NormalizedRadiationPattern(dB) NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (a)(b) Hplane(θ=90°) Hplane(θ=90°) 0 0 0° 0° 48° 48° 5 96° 5 96° 144° 144° 192° 10 10 192°

15 15

20 20

25 25 NormalizedRadiationPattern(dB) NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (c)(d) Figure3.65–NormalizedHplanescanningradiationpatternsat2.4GHzwithhequals54

mm.(a)Simulatedcopolarization,Eθcomponent.(b)Measuredcopolarization,Eθcomponent. (c)Simulatedcrosspolarization,E component.(d)Measuredcrosspolarization,E component.

ThemeasuredHPBWsaresimilartothoseachievedinthepreviouscase(h=115 mm) and both simulated and measured radiation patterns are very analogous to each other.Thesidelobelevel(SLL)ofthiscaseismuchbetterthaninearliercasebutboth performancesarebelowthan10dBwhichismorethanenough.Thecrosspolarization componentsremainbelowthan15dBforsimulationaswellasmeasurement.

107 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Themaximumscanninggainismeasuredat9.5dBiwhichis0.3dBlowerthanits computedgain.Thismeasuredgainis0.5dBhigherthanthosemeasuredinprevious case(h=115mm)whichisattributedtotheimprovementatthebackradiationpatternso thatmoreenergyarereflectedinthebroadsidedirection.Similarityinpatternscanbe observedforbothsimulatedandmeasuredgainandthesepatternsaregiveninFigure 3.66 (a) and 3.66 (b) respectively. As those achieved in previous case, measured reflectioncoefficientsremainwideforbothsimulationandmeasurement.Thesepatterns canbeseeninFigure3.66(c)andFigure3.66(d),respectively.

12 12

10 10

8 8

6 6

0° 0° 4 48° 4 48° RealizedGain(dBi) 96° RealizedGain(dBi) 96° 144° 144° 2 192° 2 192°

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b)

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S 0° S 0° 20 48° 20 48° 96° 96° 144° 144° 25 192° 25 192°

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.66–Antennaperformances(h=54mm).(a)Simulatedgains.(b)Measuredgains.(c)

Magnitudeofsimulatedreflectioncoefficients,S11.(d)Magnitudeofmeasuredreflection

coefficients,S11.

3.2.6.3.3 BeamscanningofRRAwithelementheight,hequals15mm

As the antenna element’s height is further reduced to 15 mm, the antenna performances are also seemed to degrade. This circumstance occurs for its radiation

108 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

patternsespeciallyinthebroadsidedirection.ThemeasuredHPBWismorethan±30° whichiswiderthanthosereportedforthetwopreviouscases.ThemeasuredSLLsare higherthan10dBwhichareapproximately2.5dBshiftedifcomparedtoitscomputed SLLs. However, the cross polarization components stay below than 10 dB for both computedandmeasuredcrosspolarizations.Thecomparisonofradiationpatternsfor co and cross polarizations components in the Hplane for computed and measured patternsaregiveninFigure3.67.

Hplane(θ=90°) Hplane(θ=90°) 0 0

5 5

10 10

15 15

0° 20 0° 20 48° 48° 96° 96° 144° 25 144° 25 192° NormalizedRadiationPattern(dB) 192° NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (a)(b) Hplane(θ=90°) Hplane(θ=90°) 0 0 0° 0° 48° 48° 5 96° 5 96° 144° 144° 192° 10 10 192°

15 15

20 20

25 25 NormalizedRadiationPattern(dB) NormalizedRadiationPattern(dB)

30 30 180150120 90 60 30 0 30 60 90 120 150 180 180150120 90 60 30 0 30 60 90 120 150 180 φ(deg) φ(deg) (c)(d) Figure3.67–NormalizedHplanescanningradiationpatternsat2.4GHzwithhequals15

mm.(a)Simulatedcopolarization,Eθcomponent.(b)Measuredcopolarization,Eθcomponent. (c)Simulatedcrosspolarization,E component.(d)Measuredcrosspolarization,E component.

Theantennamaximumscanninggainismeasuredat8dBiwhichis1.5dBlower thanitscomputedversion.Thisisduetothedegradingofitssidelobelevelandfrontto back ratio performances. Both computed and measured gain patterns are shown in Figure 3.68 (a) and Figure 3.68 (b), respectively. Since the reflecting elements are shorter than its radiating monopole antenna, the measured reflection coefficients exhibited a similar pattern as its monopole antenna. Both simulated and measured reflectioncoefficientsarematchedat2.4GHzandofferingbandwidthsthatareslightly

109 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

lower than 1 GHz. Figure 3.68 (c) and 3.68 (d) show the simulated and measured reflectioncoefficients.

12 12

10 10

8 8

6 6

0° 0° 4 48° 4 48° RealizedGain(dBi) 96° RealizedGain(dBi) 96° 144° 144° 2 192° 2 192°

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b)

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S 0° S 0° 20 48° 20 48° 96° 96° 144° 144° 25 192° 25 192°

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.68–Antennaperformances(h=15mm).(a)Simulatedgains.(b)Measuredgains.(c)

Magnitudeofsimulatedreflectioncoefficients,S11.(d)Magnitudeofmeasuredreflection

coefficients,S11.

3.2.7 SummaryofresultanalysisofRRA

Intheresultsanalysissection,simulatedandmeasuredofseveralconfigurationsof RRAhavebeenexplainedanddiscussedthoroughly.Theconfigurationsareincluding threedifferentelementheightswhichare115mm,54mm,and15mm.Theideato changetheelementheightisbecauseitisusefultoanalyzethepossibilityofvariable sizeoftheRRAsincesomeapplicationsmayprefercompactsizeofantennas.Besides, therearemanyshapesandsizesofCFLsthatarecommerciallyavailableinthemarket including a shorter CFL listed in Appendix B which can be employed as antenna elements. Furthermore,by fabricating second layer of groundplane and fixing it to primary groundplane,variableelementheightcanbemeasuredand analyzedwithout expendingmoretimeandcosttofabricateanotherRRAwithdifferentelementheights.

110 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Priortothisideaimplementation,designs are computedanditsresultsare compared betweenonelayerandtwoofgroundplanewithasimilarelementheight.Indeed,there is no difference between the two simulated cases thus allowing the idea to be implemented.

Inthebeginningofthisresultanalysissection,theeffectofsurroundingdielectric tube was investigated and by having it to exist while the plasma elements are de activated,asaresultasimilarpatternofclassicalomnidirectionalwasobserved.The results prove that, the surrounding dielectric tubes do not deteriorate the monopole antenna radiation pattern. The radiation patterns of monopole antenna surrounded by dielectric tubes were also presented in order to demonstrate the antenna reconfigurabilityineveryconfiguration.

One of the reasons of having circular shape of reflector antenna is the huge possibilityofhavingplasmawindowsizethatallowsbeamscanningtobedoneinmany possibilityofstepsize.Theplasmawindoworreflectorantennaaperturecanberesized bydeactivatingplasmaelements,thuswiththisarrangement,plasmawindowcanbe shapedwiththesmallestwindowsizeof48°(onedeactivatedplasmaelement)andthe higheruptomorethan270°whichismorethanwhatmetallicelementscoulddoas proposed in [49]. In this study, only three window sizes were validated with measurementbydeactivatingseveralplasmaelementswhichare8,6,and4elements that corresponding to 7, 9, and 11 elements configurations. If compared the RRA performances (9elements configuration, with 9 dBi measured gain at 2.4 GHz and HPBWintheHplaneis52°)withcircularmonopolearray(CMA)measuredin[25] (withmeasuredmaximumgainof10dBionlyoccursat2.8GHzandHPBWintheH planeis67°),theRRAradiationpatterniscomparableanditsperformancesaremuch betterintermsofhalfpowerbeamwidthandgain.

Theresultsalsohaveprovedthat,thefabricatedRRAareabletodowidescanning which cover up to 360° of scanning area. The measured scanning gain fluctuates between8.1dBiand9dBiwhenthemainbeamissteeredfromonedirectiontoanother. Thescanningstepcanbenarrowdownwiththeimplementationofsmallerseparation angle between two adjacent elements and it can be done with the used of plasma element with the smaller radius. The realized RRA discussed here has the smallest scanningstepof24°.Howeverinthisinvestigation,scanningstepof48°ischosenafter takingintoaccountofoverlapping3dBbeamwidth.Themeasuredscanningradiation patternsareingoodagreementswiththesimulationones.

Asfinale,inthisinvestigationanewdesignofroundreflectorantenna(RRA)using commerciallyavailablecompactfluorescentlamps(CFLs)wasproposed,simulatedand validated.ThefabricatedRRAwasanalyzedwiththreedifferentelementsheights(115 mm,54mm,and15mm)inwhichitrepresentingthreeindividualRRAiftheyareabout tobefabricatedindividually.SincetheRRAcanprovidebeamshaping,beamsteering andwidescanning,itcanbeemployedtosuitemanyapplications.

111 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.3 Reconfigurablecornerreflectorantenna(CRA)

Thecornerreflectorantenna(CRA)wasfirstintroducedbyJohnKrausinearlyof 1940s[95].MostofCRAuseclassicalantennassuchasdipoleasafeederandtwoflat sheetsintersectingatanangle(knownasincludedangle)asthereflectorelements.Some of CRA use a wire grid to reflect signals. The wire grid offers reduction of wind resistancetoovercomethedisadvantageofflatsurfaceifitmountedintheopenspace. Theanglebetweenthesetworeflectivesurfaceswilldefinedtheradiationproperties.To constructasimplecornerreflectorantenna,a90°includedangleisadequate.Inorderto bettercollimateenergytoforwarddirection,thegeometricalshapeofthereflectormust bemodifiedtoreduceradiationinthebackandsidedirections.Thesmallerincluded angle willproduce high directivity and vice versa. However, the relationbetween the includedangleandthedistancebetweenvertexandfeedpointisopposite.Thesmaller the angle, the far distance between feed and vertex is needed and thus reducing the reflectoraperture.

3.3.1 Antennaspecificationsofplasmacornerreflectorantenna

Abasic guidetoconstructacornerreflectorantennawith90°includedangleas shown in Figure 3.69 is well documented in [64]. The S, is the distance between the

vertexandfeedpoint,theListhelengthofreflector,andDaisthereflectoraperture.

L

Feeder Vertex α Da

S Figure3.69–Acornerreflectorantennawith90°includedangle.

Tosimplify,thefollowingarethebasicguidestoconstructaCRA.

 Spacingbetweenvertexandfeedermustbeincreasedastheincludedangleof thereflectordecreases,andviceversa.

112 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

 For reflectors with infinite sides, the gain increases as the included angle decreases,thishowevernotistrueforfinitesizeplates.  Thepracticalminimumvalueforsidesurfacelength,Lofcornerreflectors(α= 90°)isequivalentto2S[65].Forthecaseofα<90°,theLmustbeincreased.

 Thereflectorapertureshouldbeintherangeofλ<Da<2λ.  Thevertextofeedpointdistancemustintherangeofλ/3<S<2λ/3.  Ifthewiresgridareusedinsteadofplanesurfaces,thedistance,gbetweentwo adjacentwiresmustbeintherangeof<λ/10.

In the beginning, ten configurations of corner reflector antenna (CRA) have been simulatedforbothplasmaandmetalliccases.Theconfigurationsarevarieddepending onthevertextofeeddistance,Sfrom0.1λtoλ.TheproposedCRAsareoperatingat2.4 GHz. However in this investigation, only two configurations of the CRA will be discussed. The CRAs with the S of 0.5λ and 1.0λ are illustrated in Figure 3.70 and Figure3.72,respectively.

The CRA elements are made of series of CFLs which are coordinated in V arrangementasshowninFigure3.70.Astheincludedangleisequalto90°thisCRAis also known as squareCRA [28], [64], [65]. The number of CFL elements used in simulationisdependingonthelengthofthereflectinggridsofthereflector,L.Thisis about twice of the distance between monopole antenna and the vertex, S. The half lambda distance (S=0.5λ) required 10 elements while the lambda distance (S=1.0λ) required18elementsforbothreflectorsides.Numberofelementsusedinthesimulation hasfulfilledminimumrequirementoftheL[65].

SincethenumberofCFLelementsusedinsimulationisdependingon L and the corresponding S,thereweretwogroundplanesizesusedinthesimulations;a2.4λx 2.4λ ground plane for the distances of 0.6λ and below (Figure 3.70) and a 4λ x 4λ ground plane for the distances of 0.7λ and onwards (Figure 3.72). The S of 0.5λ configurationwillproduceasinglefocusedbeaminthebroadsidedirectionandwhile theSofλwillproducedoublebeamatapproximately±30°intheHplane.

Based on Figure 3.70 and Figure 3.72, the geometric scales of the elements are basedontheactualsizeofCFL.Theheightofeachelementmeasuredfromtheground planesurfaceis115mm,anditsdiameteris13mmleaving0.5mmspacegapbetween theCFLsurfaceandthegroundplane(toeasethelampinstallation).Thesizesofboth groundplanesweresetunchangedinallcorrespondingsimulations.

113 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

CFL

z 115

x

300

L

α D 300 V

S y

x Figure3.70–GeometryofCRAwithSis0.5λand10activatedplasmaelements.

The simulated radiation patterns and antenna performances of 0.5λ CRA configuration are depicted in Figure 3.71. By referring to Figure 3.71 (a) and Figure 3.71(b),thesimulatedmetalandplasmaradiationpatternsshowagoodcorrelationin thebroadsidedirectionandthisrelationcanbeseenintheHandtheEplanes.

Abroaderbackradiationisoccurredforthecaseofplasmaandthisscenariocanbe observedFigure3.71(a),howeveritsbackradiationpatternislowerthan10dB.As canbeseeninFigure3.71(c),theantennaswithmetalandplasmacasesarematchedat 2.4GHzandtheplasmaofferswiderbandwidththanitscounterpart.

114 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 PlasmaOFF 5 PlasmaOFF 5 Metal o o o o 150 0dB 150 Metal 150 0dB 150 Plasma 180o Plasma 180o

φ(deg) θ(deg) (a)(b)

0 15

5 10 10

(dB) 15 5 11 S 20 RealizedGain(dBi) PlasmaOFF 0 PlasmaOFF Metal 25 Metal Plasma Plasma

30 5 1 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.71–Simulatedradiationpatternsandantennaperformances.(a)Hplane.(b)E

plane.(c)Magnitudeofreflectioncoefficients,S11.(d)Gains.

If the plasma elements are in OFF state (deactivated), the resonating monopole antennawillproduceaclassicalomnidirectionalpatternwiththegainof5dBiat2.4 GHz. This result somehow verifies that the remaining dielectric tubes does not disturbingthemonopoleradiationpattern.Theantennagainis5dBhigherthanthegain ofradiatingelementwhenevertheplasmaormetalisappliedasreflectingelement.The plasmagainisabout10dBiwhilethemetalgainis2dBhigherthanplasma.Thegain patternsareshowninFigure3.71(d).

For the case of lambda distance (S=1.0λ) with the geometry illustrated in Figure 3.72, two beams or double beam will be produced in the broadside direction. Theoretically,thesebeamswillhaveithighestpeakat±30°intheHplaneascomputed andshowninFigure3.73(a)and3.73(b),respectively.

115 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

CFL

z 115

x

500

L

D 500 V α

S y

x Figure3.72–GeometryofCRAwithS=λand18activatedplasmaelements.

Thesetwobeamsareseparatedbyanullaslowas15dB.Thebackradiationisalso belowthan10dBhoweverthemetalcasehaving10dBbetterthanitsplasmatwin. Once the plasma is deactivated, the antenna will produce omnidirectinal radiation patternascanbeseeninFigure3.73(a).

Hplane(θ=90°) Eplane o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 PlasmaOFF 150o 0dB 150o 150o 0dB 150o PlasmaOFF(φ=0°) Metal 180o 180o

Plasma Metal(φ=30°) φ(deg) Plasma(φ=30°) θ(deg) (a)(b)

116 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

0 15

5 10 10

(dB) 15 5 11 S 20

RealizedGain(dBi) PlasmaOFF PlasmaOFF 0 Metal Metal 25 Plasma Plasma

30 5 1 1.5 2 2.5 3 3.5 4 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.73–Simulatedradiationpatternsandantennaperformances.(a)Hplane.(b)E

plane.(c)Magnitudeofsimulatedreflectioncoefficients,S11.(d)Gains.

Intermofimpedancematching,themetalhaspoorperformanceat2.4GHzbutthe plasmareflectioncoefficientpatternissomehowsimilarwithmonopoleantennaasifthe plasmaisdeactivated.ThesematchingpatternsandperformancesareshowninFigure 3.73(c)andFigure3.73(d)respectively.Bothmetalandplasmaconfigurationsproduce goodvaluesofgainsat2.4GHz.

Ingeneral,thenumberofelementsusedasreflectoriscontrolledbythevalueofS. AstheSisincreased,theminimumnumberofelementneededtoconstructCRAisalso increased.However,theresultingnumbersof requiredelementsfromthisrelationare notyetoptimized.Thus,thereisstillroomtoobtainanoptimumnumberofrequired elementswhicharecorrespondingtotheantennaperformances.Onewayofoptimizing it,isbyreducingaspacegapbetweentwoadjacentelements.Figure3.74showsthe CRA efficiency comparison for metal and plasma cases with similar configurations versusdistancebetweenmonopoleantennaandthevertex,S.

117 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

16 16

14 14

12 12

10 10

8 8 (dBi) (dBi) 6 RealizedGain 6 RealizedGain Directivity Directivity 4 4

2 2

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S(xλmm) S(xλmm) (a)(b) Figure3.74–Simulatedantennagainanddirectivityat2.4GHz.(a)Metalliccase.(b)Plasma case.

Eventhough,thegainsofmetalcasearehigherthanplasmacase,theefficienciesof plasmaCRAandmetalCRAarecomparable.Notethatinbothfigures(Figure3.74(a) andFigure3.74(b)),thedifferenceofgainbetweenmetalandplasmaatcertaindistance suchasat0.5λandλarebetween1dBto2dB.However,thesimulatedplasmagainat 2.4GHzis10dBiwhichisabout5dBmorethanthegainofmonopoleantennaandcan be considered good in terms of reflecting signal. The resulting number of elements neededtoconstructCRAwithregardtothevaluesofSisshowninFigure3.75.Forthe case of S equals to 0.5λ and 0.6λ the same number of elements required to reflect incomingsignalwhichis10.

20 18 16 14 12 10 8 6 NumberofElements 4 2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 S(xλmm) Figure3.75–NumberofelementsrequiredtoconstructCRAwithrespecttotheSvaluesat2.4 GHz.

Since plasma can be destroyed in milliseconds and the dielectric tubes do not deterioratetheomnidirectionalpatternasshowninpreviousfigures(Figure3.71(a),and 3.73(a)),itisabrilliantideatocombineseveralCRAswithdifferent Svaluesona singlegroundplane.Therefore,twoorevenmoreCRAscouldbecombinedinasingle

118 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

groundplane.Inthisstudy,insteadofhavingonecornerreflector,bycombiningtwoor moreCRAcouldaddadditionalbeamshapingcapabilitythusminimizingarequirement ofmorethanoneantennainordertoprovidetwodifferentbeamshapes.

Inthisinvestigation,forthebeginning,combinationoftwoCRAonasingleground planeispreferred.BasedonFigure3.74(b),theefficiencyresultsofplasmasuggestthat the plasma CRAs work with better efficiency at 0.5λ and 1.0λ if compared to other distances that have been simulated. Therefore, these configurations are chosen to be mergedtogetherforthefinaldesign.

Tothebestofourknowledge,themergingpossibilitymakesthisdesignbeingthe firstdesignuptonowthatcombinestwoCRAsonasinglegroundplane.Themethod usedfortwoplasmaCRAstobecombinedtogethercannotbeappliedtoothermetallic CRAselsewhereintheworld.Therefore,theintegrationoftwoCRAonasinglefinite groundplaneisasignificantfindingtoappearfromthisresearchwork.

3.3.2 Designandoptimizationofplasmacornerreflectorantenna

Duetothesizeofthebottompartofplasmasource(CFLs),theCRAwith3.5mm spacing between elements as anticipated in simulations cannot be realized. This is becausethesmallestgapbetweentwoadjacentCFLsisapproximately5mm,whichis 1.5mmlargerthantheoneshavebeensimulated.Inrealcase,theoriginalgapisabout 10.73mmiftwoelementsareputsidebyside;howeverbycuttingthebaseofaCFLat bothsides,thespacebetweenelementscanbereducedto5.73mm(2.5mmreductionat thebothsides).Notethat,withthisreduction,thenumberofelementsisnowdecreased. Figure3.76showsphotographoflowerpartofCFLbeforeandafterthecuttingprocess. Thus,tofabricatetwoCRAsonasinglegroundplane,atotalof24elementsareneeded (including16elementsforCRAwithSisequaltoλand8elementsforCRAwithS equals0.5λ).

119 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a) (b) Figure3.76–PhotographofthelowerpartofCFL(redcircle)beforeandafterphysical modification.(a)Originalshape.(b)Modifiedshape(5mmofunnecessarypartswere removed).

Thesideviewoftheoptimizedgroundplanewithtworeflectiveelementsanda feedermonopoleantennaisclearlyillustratedintheFigure3.77.

CFL

z 115 Monopole

30 x 3

500

g

L2

L1

500 V2 V1 α D1 D2

S1 y

S2 x Figure3.77–GeometryofoptimizedgroundplaneoftheCRAwithtworeflectiveelements (bluecolor).Asetof24holesisrequiredtoinsert24reflectiveelements(CFL)anda monopoleantennaisplacedinthecenterofthegroundplane.

120 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

SetsofholesforCFLinsertionarealsoshowninFigure3.77(topview). Inthe following sections, the primary CRA with the half lambda distance (0.5λ) and the secondary CRA with the lambda distance (λ) will be referred as CRA1 and CRA2, respectively.

InFigure3.77,onlytwoelementsaredepictedtoshowtwosetsofholes(forthetwo CRAs)usedtoinsertCFLsfromlowerpartofthegroundplane.TheCRA1andCRA2

areseparatedby0.5λbetweenbothvertexes(V1andV2).Thelengthofbothdihedral cornersidesaredefinedbyL1andL2andwith90°concludedangle,resultingreflector aperturestobeD1andD2asdenotedinthefigure.Thesideslength(L1andL2)areabout twiceofthedistancebetweenmonopoleantennaandthevertex(denotedbyS1andS2). TheheightsoftheinsertedCFLsaremeasured115mmfromthegroundplanesurface. A central monopole resonating at 2.4 GHz is used to radiate the signal. The ground planegeometrydetailsofthefabricatedCRAaresummarizedinTable3.4.

Table3.4OptimizedCRAspecifications. Groundplanethickness 3mm Groundplanesize(wxl) 500mmx500mm Concludedangle,α 90° L2 265.3mm L1 133.25mm Spacegapinasingleelements 2mm Spacegapbetweenelements,g 5mm D2 375.19mm D1 188.44mm Vertextocenteroffirst 12.75mm elements Holediameter 7mm Feedtovertex,S2 125mm Feedtovertex,S1 62.5mm

3.3.3 Fabricationofplasmacornerreflectorantenna

The realized model was fabricated using 3 mm thick ground plane as shown in Figure 3.78 (a). The power to energize the 9 Watts CFLs is supplied by a set of electronic ballasts with specification of 220240V, 5060 Hz. Each of the electronic ballastsiscontrolledbyasmallsinglepoleswitchandrequires4wirestobeconnected toeachoftheCFLs.Thus,torealizetheprototype,thesimilarelectronicswitchesand ballastsusedtooperateRRAinprevioussectionwereemployed.Howeverinorderto operate the CRA, a number of 24 electronic ballasts and 24 switches are required. A monopoleantenna(Figure3.78(b))withdiameterof2mmisconnectedtothefeeding lineviaa50SMAfemaleconnector.

121 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b) Figure3.78–CRAprototype.(a)500mmx500mmgroundplane.(b)The24plasmaelements withamonopoleantennainthecenterofthegroundplane.

3.3.4 Measurementsetupofplasmacornerreflectorantenna

Inthissection,explanationonthemeasurementssetupoftheCRAiscarriedout.A switchingschemetoreflectincomingbeamisalsodiscussed.

3.3.4.1 Antennaperformancemeasurementofcornerreflectorantenna The antenna performances measurements were conducted using similar setup as performed for RRA in the earliest part. The radiation pattern measurements were performedinaSATIMO32anechoicchamberwiththepeakgainaccuracyof±0.8dBi for1GHzupto6GHzoperatingfrequencies.Photographofmeasurementequipments oninstrumentrackisshowninFigure3.79(a).Theantennaundertest(AUT)isplaced onasupportfixtureascanbeseeninFigure3.79(b).

(a)(b) Figure3.79–SATIMOStargate32.(a)Radiationpatternmeasurementequipments.(b)A speciallymadesupportfixtureusedtoplacetheCRA.

122 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.3.4.2 Switchingschemeofcornerreflectorantennaforbeamshaping

Theantennaprototypeuses24singlepoleelectronicswitchestocontrolitselement state(ONorOFF)inordertoshapethemainbeam.Sinceeachoftheelementscanbe controlledindividually,theantennahashugepossibilitytoshapeitsbeam.Figure3.80 showsthateachoftheelementsisnumberedaccordinglytoaspecificelectronicswitch.

24 22 20 18 16 8 14 6 12 4 10 2 9 1 11 3 13 5 15 7 y

17 19 x 21 23 Figure3.80–SwitchingnumberingoftheCRAforbeamshaping.

Generally, a number of activated elements (switched ON) will define the size of

reflectoraperture,D(denotedbyD1andD2inFigure3.77)thuscontrollingthereflected beamprofile.Inthisinvestigation,thereare8configurationsofwiththeoptimizedCRA weremeasured.TheconfigurationsarelistedinTable3.5alongwithitscorresponding switchingsetting.

Table3.5SwitchingsettingoffabricatedCRA(darkbluecolorrepresentsactivatedplasma elements(ON)whilelightbluecolorrepresentsdeactivatedplasmaelements(OFF)). No.of CRAConfigurations SwitchedONElements SwitchedOFFElements configurations

1 None All

9,10,11,12,13,14,15, 2 1,2,3,4,5,6,7,and8 16,17,18,19,20,21, 22,23,and24

123 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

9,10,11,12,13,14,15, 3 16,17,18,19,20,21, 1,2,3,4,5,6,7,and8 22,23,and24 5,6,7,8,9,10,11,12, 13,14,15,16,17,18, 4 1,2,3,and4 19,20,21,22,23,and 24

9,10,11,12,13,14,15, 1,2,3,4,5,6,7,8,21, 5 16,17,18,19,and20 22,23,and24

1,2,3,4,5,6,7,8,17, 9,10,11,12,13,14,15, 6 18,19,20,21,22,23, and16 and24

1,2,3,4,5,6,7,8,13, 7 9,10,11,and12 14,15,16,17,18,19, 20,21,22,23,and24

8 All None

3.3.5 Designvarietyofcornerreflectorantenna

InordertorealizeCRAswithreducedheight,asetofsimulationwereconductedfor 54mmand15mmCFLs'height.Sincetherealizedprototypeismadebyusing115mm CFL, another ground plane is needed to reduce the element height with respect to groundplanesurface.Theheightvariationsofthedesignweresimulatedasshownin Figure3.81.Priortoantennarealization,severalsimulationshavebeencarriedoutto studytheeffectofaddingsecondarygroundplane.Acomparisonhasbeenconducted between two cases; 1) a single layer, and 2) two layers of ground plane, both with identicalelements'height.Theresultshaveprovedthatbyaddingextralayerofground plane,antennaradiationpatternsareidenticalforeachcase(115mmand15mm)in bothHandEplanes.Toconclude,thecompactversionofCRAwithreducedheight canbeanalyzedbychangingitselementheightwiththeaidofsecondarylayerofthe

124 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

ground plane. The photographs of the CRA with the primary and secondary ground planesareshowninFigure3.82.

Figure3.81–Thesimulationdesignswiththreeelementheights(115mm,54mm,and15mm) andsecondarygroundplanes.

(a)(b)

(c)(d) Figure3.82–PhotographofthefabricatedCRAwithprimaryandsecondarygroundplane. (a)(b)Thehis115mm.(c)Thehis54mmwiththeinsertedsecondarygroundplane.(d)The his15mmwiththeinsertedsecondarygroundplane.

125 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.3.6 Resultsandanalysisofcornerreflectorantenna

Thissectionpresentsnumeroussetofsimulationandmeasurementresultsofthe designedCRA.Theinvestigationswerefocusedonthreeconditions;1)beamshaping byvaryingfeedertovertex,S,2)beamshapingbyvaryingreflectorsidelength,L,and 3)beamshapingbyactivatingallelements.Priortothat,asubsectionismadededicated topresentthestudyofeffectofdielectrictubesonomnidirectionalradiationpatterns.

Series of measurements were carried out to validate the simulation results. Implementationoftworeflectorsonasinglegroundplaneenablessinglebeamanddual beamshapestoberealizedjustathands.Thesingleshapecanbechangedintodual beamshapewithinsplitsecondsorevenmicrosecondswithfastswitchingscheme.In fact,thefastesttimetakentochangethebeamshapefromonetoanotheronlydepends onthetimetakenbytheplasmatodecay[6],[62].Evolutionofthebeamshapesare presented in this section, for the Hplane and the Eplane respectively. The antenna reflectioncoefficientsandgainsarealsoincludedinthissection.

3.3.6.1 Effectofdielectrictubesonomnidirectionalbeampattern

Inthissection,theeffectofdielectrictubessurroundingamonopoleantennaare presentedanddiscussed.Theantennaconfigurationsarebasedconfigurationnumber1 aslistedinTable3.5isrepresentedinFigure3.83.Themeasuredandsimulatedresults of the antenna radiation patterns and performances are discussed based on the three element’sheight;115mm,54mmand15mmrespectively.Asecondarygroundplane hastobeusedforthecasesofelement’sheightsareequalto54mmand15mm.The secondarygroundplaneisattachedtotheprimarygroundplanebyusingtwosetsof fourpolylegs.

Figure3.83–Configurationnumber1.CRA1andCRA2areswitchedOFF.

126 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

AssoonasthemonopoleinoperatingmodeandallelementsareswitchedOFF, omnidirectionalbeamshapeswereobservedintheHplane asshowninFigure3.84. Eventhoughthedielectrictubeonlycontainsargongas(withassumptionofthethin phosphorlayerdoesnotgivinganyeffectonantennaperformances),somehowwithits arrangement (coordination and height), it could confer trivial effect to the antenna radiationpattern.ThiscanbeseenintheHplaneradiationpatternsfor hequals115 mm.ThemeasuredradiationpatternintheHplaneisapproximately 5dBlowerat somepointsthanitssimulationone.Butitdiffersfromtheothertwoheights,whichare havinggoodradiationpatterncorrelationsbetweensimulationandmeasurement.Forthe Eplane patterns, a satisfactory agreement can be observed between simulation and measurement radiation patterns. Even though the cross polarization patterns are not representedinthefigures,theirlevelsareaboutbelowthan10dBintheHandE planes,inbothsimulationandmeasurement.

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o Sim(h=115mm) o Meas(h=115mm) o Sim(h=54mm) 180 180 Meas(h=54mm) Sim(h=15mm) φ(deg) Meas(h=15mm) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o Sim(h=115mm) o Meas(h=115mm) o 180 Meas(h=54mm) 180 Sim(h=54mm) Sim(h=15mm) θ(deg) Meas(h=15mm) θ(deg) (c)(d) Figure3.84–Measuredandsimulatedradiationpatternsofcornerreflectorantennaat2.4

GHz,Eθcomponent.(a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiation patterns.(c)SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

127 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Intermofperformances,bothsimulatedandmeasuredreflectioncoefficientsarein goodagreementsandtheantennaismatchedat2.4GHzforthreedifferentelement’s heights. The measured maximum gain at operating frequency for the three different height are 5.4 dBi (h=115 mm), 5.7 (h=54 mm), and 5.8 (h=15 mm) and the correspondingsimulatedgainsare6dBi,6.4dBi,and6dBi,respectively.Itisworthto notethat,themeasuredmonopoleantennawiththesamegroundplanesizeis5.4dBi which is similar to its computed version. A short conclusion can be made here, by having dielectric tubes unevenly surrounding monopole antenna in V coordination, a slight increment in gain was observed for the three measured CRAs with the three heights.ThegainpatternsandthereflectioncoefficientsareillustratedinFigure3.85.

14 14

12 12

10 10

8 8

6 6

RealizedGain(dBi) 4 RealizedGain(dBi) 4 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) Meas(h=54mm) 2 Sim(h=15mm) 2 Meas(h=15mm)

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b)

0 0

5 5

10 10 (dB) (dB) 15 15 11 11 S S 20 20 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) 25 25 Meas(h=54mm) Sim(h=15mm) Meas(h=15mm)

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.85–Measuredandsimulatedperformanceofcornerreflectorantennaat2.4GHz.(a)

Simulatedgains.(b)Measuredgains.(c)Magnitudeofsimulatedreflectioncoefficient,S11.(d)

Magnitudeofmeasuredreflectioncoefficient,S11.

128 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.3.6.2 Beamshapingbyvaryingfeedertovertexdistance,S

Inthissection,theCRAradiationpatternsandperformanceswhentheSisvariedare discussed.Comparisonsofantennaperformancesandradiationpatternsarepresentedin thissectionforthethreeelement'sheightswhichare115mm,54mm,and15mm.

3.3.6.2.1 BeamshapesofplasmacornerreflectorantennawithSequals 0.5λ

Itisinterestingtonotethat,whentheplasmaelementsofCRA1areswitchedONas depictedinFigure3.86,theomnidirectionalbeampatternsarenowtransformedtomore focusedbeamsatthebroadsidedirection.

Figure3.86–CRA1isON(L1is4)andCRA2isOFFsimultaneously(bluecolorrepresents activatedelement).

Goodsimilaritiesareobservedbetweensimulatedandmeasuredradiationpatterns bothintheHandtheEplanesasshowninFigure3.87.Allcasesshowgoodfrontto backratioandgoodprofileofbackradiationpatterns.However,forthehequals15mm theradiationpatternseemstobebroaderinthebroadsidedirectionwithincrementinthe sidelobelevel.Thebackradiationprofileissomehowmuchhigherandbroaderthanthe twoothercasesbutitratherlowerthan10dB.Therenotmuchdissimilaritycanbe observed in the Eplane radiation patterns. Both simulated and measured radiation patternsaresimilarwiththemaximumbeamsaredirectedatelevationangleof25°.

129 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 o 0dB o o 0dB o Sim(h=115mm) 150 150 Meas(h=115mm)150 150 o o Sim(h=54mm) 180 Meas(h=54mm) 180

Sim(h=15mm) φ(deg) Meas(h=15mm) φ(deg) (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o Sim(h=115mm) o Meas(h=115mm) o Sim(h=54mm) 180 Meas(h=54mm) 180

Sim(h=15mm) θ(deg) Meas(h=15mm) θ(deg) (c)(d)

Figure3.87–MeasuredandsimulatedradiationpatternsofCRA1at2.4GHz,Eθcomponent. (a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiationpatterns.(c) SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

Figure3.88showsthecomparisonofsimulatedandmeasuredgainoftheCRAwith threedifferentheights.Forthecaseofhequals115mm,themeasuredgainis10.9dBi andthesimulatedgainis11.8dBiat2.4GHz.Bothsimulationandmeasurementhave more than 5 dB gain if compared to the gain of monopole antenna without or with dielectric tubes (5.4 dBi). The same situation was observed when the CRA is in operatingmodeforthecaseofhisequalto54mm.Themeasuredandsimulatedgains, 10.8 dBi and 11.3 dBi respectively are a bit lower than the case of 115 mm. Nevertheless, these differences can be neglected since it is too small. The similar procedureswereappliedfortheCRAwithhisequivalentto15mminordertoreflect beam in the broadside direction. However, the antenna radiation pattern and performancearenotveryencouraging.Eventhoughagoodrelationbetweensimulation andmeasurementresultscanbeobserved,theCRAwith15mmofelementheightshas showndegradingresultscomparedtothetwopreviouscases.Thereductionofelement heightlesserthanresonatingelementmay explainthesecircumstances.Thereflection coefficientpatternismoremonopolealike andthemeasuredplasma gainonly3dB

130 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

higher than the gain of monopole antenna with the same size of ground plane. This furthersuggeststhat,aCRAwiththisconfigurationdoesnotefficientinreflectingthe omnidirectionalbeamtransmittedbythemonopoleantenna.

14 14

12 12

10 10

8 8

6 6

Sim(h=115mm) RealizedGain(dBi) 4 RealizedGain(dBi) 4 Meas(h=115mm) Sim(h=54mm) Sim(h=15mm) Meas(h=54mm) 2 2 Meas(h=15mm)

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b) Figure3.88–Antennagains.(a)Simulated(b)Measured.

Once the CRA isin operating mode, the operatingbandwidthbecomes wider and thesescenarioscanbeviewedinthesimulatedandmeasuredreflectioncoefficientsas showninFigure3.89.Thisisduetoscatteringeffectthatvariedtheantennaimpedance.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S 20 20 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) 25 Meas(h=54mm) Sim(h=15mm) 25 Meas(h=15mm)

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

Figure3.89–Magnitudeofreflectioncoefficient,S11.(a)Simulated.(b)Measured.

ByreferringtomeasuredreflectioncoefficientpatternsinFigure3.89(b),theCRA offersalmost1GHzofoperatingbandwidthespeciallyforthecaseofhequals54mm.

131 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.3.6.2.2 BeamshapesofplasmacornerreflectorantennawithSequals λ

ForthecaseofSisequaltoλ,CRA2onthesamegroundplaneisinoperatingmode while the CRA1 is in OFF mode. This case is measured based on the configuration showninFigure3.90.Thereare18activatedplasmaelementstoforwardanincoming beamfrommonopoleantennatoforwarddirection.

Figure3.90–CRA2isON(L2is8)andCRA1isOFFatthesametime(bluecolorrepresents activatedelement).

WhenevertheCRA2isactivated,andatthesametimetheCRA1isinOFFmode, theomnidirectionalbeamradiatedbythemonopoleantennawillbetransformedinto dualbeamsinthedirectionof isequalto±30°.ThesimulatedandmeasuredHplane radiationpatternsareshowninFigure3.91(a)and3.91(b)respectively.Forthecaseof his115mm,the3dBbeamwidthintheazimuthplaneforeachofthedualbeamsis 25°andintheelevationplane,the3dBbeamwidthis30°withthemaximumbeamis directedatθequals65°.Intheazimuthplane,anullisobservedat equals0°whichis belowthan10dB.Thenullissomehowsimilarwithanullseeninthesimulatedresult. The same situation occurs when the antenna element's height is reduced to 54 mm. However,theantennaradiationpatternseemedtobecomebroaderandproducingapoor backradiationprofilewhentheantennaelement’sheightisfurtherreducedto15mm. Yet, the double beams remain as those seen in the two cases. The Eplane radiation patterns are represented in Figure 3.91 (c) and in Figure 3.91 (d), for simulation and measurement. These radiation patterns are observed at azimuth angle of 30° which revealingthedoublebeams.

132 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB 30o 30o o o 5 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 o 0dB o o 0dB o 150 150 Meas(h=115mm)150 150 Sim(h=115mm) o o 180 Meas(h=54mm) 180 Sim(h=54mm) Sim(h=15mm) φ(deg) Meas(h=15mm) φ(deg) (a)(b) Eplane(φ=30°) Eplane(φ=30°) o o 0 0dB 0 0dB o o 30o 30o 30 5 30 5 10 10 o o 60o 15 60o 60 15 60 20 20 25 25

o 90o 90o 90 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 o o 150 0dB 150 150o 0dB 150o Sim(h=115mm) o Meas(h=115mm) o Sim(h=54mm) 180 Meas(h=54mm) 180

Sim(h=15mm) θ(deg) Meas(h=15mm) θ(deg) (c)(d)

Figure3.91–MeasuredandsimulatedradiationpatternsofCRA2at2.4GHz,Eθcomponent. (a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiationpatterns.(c) SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

Itisgoodtohighlightthat,inallcases,thecrosspolarizationremainsbelow15dB. Thefronttobackratioishigherthan10dBforallcasesexceptforthemeasuredone withhequals15mm.Onthewhole,eachofthemeasuredresultsisinagoodagreement withitscorrespondingsimulatedresult.

TheCRAperformancescanbeevaluatedbylookingtoitsreflectioncoefficient(S11) and antenna gain as can be seen in Figure 3.92 and Figure 3.93, respectively. By comparing simulated and measured reflection coefficients, there is a significant correlationbetweenthemandindeed,allCRAconfigurationsarematchedat2.4GHz.It isworthtonotethat,theCRA2ismatchedforabandwidthofmorethan0.5GHz.

133 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

0 0

5 5

10 10 (dB) (dB) 15 15 11 11 S S 20 20 Sim(h=115mm) Meas(h=115mm) Meas(h=54mm) 25 Sim(h=54mm) 25 Sim(h=15mm) Meas(h=15mm)

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

Figure3.92–Magnitudeofreflectioncoefficient,S11.(a)Simulated.(b)Measured.

Theantennagainpatternsareanalogousbetweensimulatedandmeasuredgainsas representedinFigure3.93.Themaximumgainsare10.5dBi,10.2dBi,and7.7dBifor thecorresponding115mm,54mmand15mmofelement’sheights.Thesegainsare approximately1dBlowerthanitscorrespondingsimulatedgains.

14 14

12 12

10 10

8 8

6 6 RealizedGain(dBi) RealizedGain(dBi) 4 4 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) Meas(h=54mm) 2 Sim(h=15mm) 2 Meas(h=15mm)

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b) Figure3.93–Antennagains.(a)Simulated.(b)Measured.

3.3.6.3 Beamshapingbyvaryingdihedralreflectorsidelength,Lwitha fixedelementheight

Inthissection,CRAradiationpatternsandperformancesforseveralvaluesof L

(denotedbyL1 and L2 in Figure 3.77) are discussed. Since the CRA elements canbe individually controlled by electronic switches, the side length of the reflector can be controlled by activating and deactivating plasma elements. Thus the investigation resultsdiscussedherearepresentedintwosections,withthefirstsubsectionwilldiscuss

134 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

aboutCRA1withvaryingL1whichconsistingof4and2numberofONelementson onesideofthereflector.ThesecondsubsectionwillbefocusingontheCRA2withfour

L2valueswhichare8,6,4and2respectively(numberofONelementsononesideof the reflector). Comparisons of antenna performances and radiation patterns are presentedinthissectionforthecaseofhequals115mm.

3.3.6.3.1 BeamshapesofplasmacornerreflectorantennawithSequals 0.5λandL1variesfrom4to2ONelements

Itissometimesnecessarytohaveawider3dBbeamwidthinordertocatersystem requirements.Forthatreasons,theCRA1wasdesignedtoprovidevariablebeamshapes withonefixfeedertovertexdistance,S.Theresultingbeamprofilesaredependingon

the number of activated elements (the L1). By changing the value of L1 the corner reflectorantennaaperturewillalsochangeaccordingly.Thus,insection,theresultsof twobeamshapesoftheCRA1arediscussed.Figure3.94illustratestwoconditionsof

CRA1withtwodifferentL1values;4and2ONelementsononesideoftheCRA1.

(a)(b) Figure3.94–TwoconfigurationsofCRA1(bluecolorrepresentsactivatedelement).(a)CRA1

isON(L1is4)andCRA2isOFFsimultaneously.(b)CRA1isON(L1is2)whilstCRA2isOFF.

Asaruleofthumb,whenevertheL1isreduced,theapertureofCRA1willalsotrim down.ForthecaseofL1isequivalentto2,theresultingsidelengthdoesnotobeyingthe minimumvalueofL(L=2S)requiredforsquarecornerreflectors.Asaresultawider beamshapeinthebroadsidedirectionwillbeproduced.Thisbehaviorcanbeobserved

in Figure 3.95 for the H and E planes radiation pattern, for the L1equals2and4 activatedelements.

135 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o 180o 180o Sim(L =4elements) Meas(L =4elements) 1 1 Sim(L =2elements) φ(deg) Meas(L =2elements) φ(deg) 1 1 (a)(b) Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o o o Sim(L =4elements) 180 Meas(L =4elements) 180 1 1 Sim(L =2elements) θ(deg) Meas(L =2elements) θ(deg) 1 1 (c)(d) Figure3.95–MeasuredandsimulatedradiationpatternsofCRA1withvariableLat2.4GHz,

Eθcomponent.(a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiation patterns.(c)SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

ThemeasuredHPBWare±50°(L1=2)and±20°(L1=4)andthesimulatedHPBW forL1equals2isslightlywider(±55°)thanitsmeasuredcase,howeverforthecaseof Lis4,thesameHPBW(±20°)asmeasuredcaseisnoticed.Eventhoughthebroadside

beamwidth profile is changed when the L1 is reduced to 2 activated elements, the elevationbeamprofilesareinsomewaysimilarforthetwocases.Theseconditionsare showninFigure3.95(c)and3.95(d).Certainly,areductionofgainwilloccuroncethe beamwidthgetswider.ThissituationisprovenasshowninFigure3.96(a)and3.96(b). Themeasuredgainat2.4GHzisreducedfrom10.9dBito8.3dBicorrespondingtothe

lessening of L1. Itisabout3.6dBreductionofgainoccursforthesimulationresult whichisoriginatingat11.8dBi.However,thereflectioncoefficientsforthetwocases are in a good correlation. The simulated and measured reflection coefficients are showingasimilarpatternascanbeseeninFigure3.96(c)andinFigure3.96(d).

136 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

14 14

12 12

10 10

8 8

6 6 RealizedGain(dBi) 4 RealizedGain(dBi) 4 Sim(L =4elements) Meas(L =4elements) 1 1 2 SimL =2elements) 2 Meas(L =2elements) 1 1

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b)

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S 20 20

Meas(L =4elements) Sim(L =4elements) 1 25 1 25 Sim(L =2elements) Meas(L =2elements) 1 1

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (c)(d) Figure3.96–Performancesofcornerreflectorantenna(CRA1)at2.4GHz.(a)Simulated realizedgains.(b)Measuredrealizedgains.(c)Magnitudeofsimulatedreflectioncoefficients,

S11.(d)Magnitudeofmeasuredreflectioncoefficients,S11.

3.3.6.3.2 BeamshapesofplasmacornerreflectorantennawithSequals λandL2variesfrom8to2ONelements

ForthecaseofSequalsλ,eightpossiblecasescanbemeasuredsinceeachofthe dihedralsideconsistsofeightelementsthatcanbecontrolledindividually.Forthesake ofsimplicity,thepatternevolutionisobservedbydeactivatingtwoelements(ateach sides of CRA2) at each time for simulation and measurement. Thus, this section

comparestheresultsofCRA2radiationpatternsandperformancesforthevalueofL2 equivalentto8,6,4and2activatedelements.Figure3.97illustratesfourconfigurations

ofCRA2forthecorrespondingL2values(8,6,4,and2ONelements)

137 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

(a)(b)

(c)(d) Figure3.97–FourconfigurationsofCRA2(bluecolorrepresentsactivatedelement).The

CRA2isONwithdifferentvaluesofL2whilstCRA1isOFF.(a)L2is8.(b)L2is6.(c)L2is4.

(d)L2is2.

Itisnoticedinsimulationsandmeasurementsthat,withcertainvalues of L2, the broadside beam profile will be transformed from dual beams to a single beam. The

CRA2exhibitstwobeamprofilesfortheL2of8and6activatedelements,andwillput on view a single beam profile when the L2 is minimized to 4 or even 2 activated elements.AnullseenwhentheL2isequalto8willslowlyextinguishwhentheL2is decreasing and thus producing a single beam profile. The drawback of these single beamsisthedegradingperformanceintermsoffronttobackratiowhicharelessthan 10 dB. A cardioids look like pattern is shown by the two single beam profiles. The

evolutionoftheradiationpatternwithrespecttothevaryingL2,isshowninFigure3.98 (a)(simulation)and3.98(b)(measurement)fortheHplane.Themaximumbeamsof thedoublebeamsaredirectedinthe±30°whilethetwosinglebeamsaredirectedinthe directionofphiiszerointheazimuthplane.Allcasesarehavingmaximumbeamsat equals65°intheelevationplane.Figure3.98(c)andFigure3.98(d)showthepattern evolutionintheelevationplaneforthesimulationandmeasurementrespectively.

138 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 Sim(L =8elements) 5 Meas(L =8elements) 5 2 2 o o o o Sim(L =6elements) 150 0dB 150 Meas(L =6elements) 150 0dB 150 2 2 180o 180o Sim(L =4elements) Meas(L =4elements) 2 2 Sim(L =2elements) φ(deg) Meas(L =2elements) φ(deg) 2 2 (a)(b) Eplane Eplane o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 Sim(L =8elements)(φ=30°) 5 Meas(L =8elements)(φ=30°) 5 2 2 o o o o Sim(L =6elements)(φ=30°)150 0dB 150 Meas(L =6elements)(φ150=30°) 0dB 150 2 o 2 o Sim(L =4elements)(φ=0°) 180 Meas(L =4elements)(φ=0°) 180 2 2 Sim(L =2elements)(φ=0°) θ(deg) Meas(L =2elements)(φ=0°) θ(deg) 2 2 (c)(d)

Figure3.98–MeasuredandsimulatedradiationpatternsofCRA2withvariableL2at2.4GHz,

Eθcomponent.(a)SimulatedHplaneradiationpatterns.(b)MeasuredHplaneradiation patterns.(c)SimulatedEplaneradiationpatterns.(d)MeasuredEplaneradiationpatterns.

The measured and simulated gain patterns are in good agreements. The gains of

antenna(Figure3.99)aredecreasingwiththelesseningofL2parameter.Themaximum realizedgainsare10.5dBi(asimilargainwhenL2isequalto8and6),7.8dBiand6.9 dBiforthedecreasingvalueofL2duringmeasurement.Thereis11.5dBdifference between simulated and measured gains. However, with L2 is equal to 6 activated elements,themeasurementandsimulationsharethesamegainat10.5dBi.

139 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

14 14

12 12

10 10

8 8

6 6

Sim(L =8elements) 2 Meas(L =8elements) RealizedGain(dBi) RealizedGain(dBi) 4 4 2 Sim(L =6elements) Meas(L =6elements) 2 2 Sim(L =4elements) 2 Meas(L =4elements) 2 2 2 Sim(L =2elements) Meas(L =2elements) 2 2 0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b) Figure3.99–Antennagains.(a)Simulated.(b)Measured.

Theantennaismatchedat2.4GHzforallvalueofLandthissituationcanbeseenin both measurement and simulation reflection coefficients. The antenna bandwidth performancesaredepictedinFigure3.100.

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S

20 Sim(L =8elements) 20 Meas(L =8elements) 2 2 Sim(L =6elements) Meas(L =6elements) 2 2 Sim(L =4elements) Meas(L =4elements) 25 2 25 2 Sim(L =2elements) Meas(L =2elements) 2 2

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

Figure3.100–Magnitudeofreflectioncoefficients,S11.(a)Simulated.(b)Measured.

3.3.6.4 Beamshapingbyactivatingallelements

ImaginetwoclassicalgriddedCRAbeingintegratedonasinglegroundplanewith theirvertexesareseparated0.5λbetweeneachotherandamonopoleis0.5λawayfrom the nearest vertex. Up to now, no one has ever integrated metallic CRAs on a single ground plane does leaving this question to be answered by assumptions and computations.Howeverwithplasmaimplementation,thisuncommonconfigurationcan be simulated and measured so that it behavior can be studied. The investigation has provedthat,thedoublebeamsthatshouldemergewiththeactivatedCRA2isnowno

140 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

longer seen if the CRA1 is activated at the same time. Figure 3.101 shows the configurationofCRAwhenCRA1andCRA2areactivatedsimultaneously.

Figure3.101–ConfigurationofCRAwhenCRA1andCRA2areactivatedatthesametime.

ThedoublebeamsproducedbyCRA2aredirectedtothebroadsidedirectionwith theaidofCRA1.ThereforebyactivatingCRA1andCRA2simultaneously,insteadof doublebeams,asinglebeamwillappearinthebroadsidedirection.Thesimulatedand measuredradiationpatternsintheHandEplanesarerepresentedinFigure3.102.

Hplane(θ=90°) Hplane(θ=90°) o o 0 0dB 0 0dB o o o o 30 5 30 30 5 30 10 10 60o 15 60o 60o 15 60o 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 150o 0dB 150o 150o 0dB 150o Sim(h=115mm) Meas(h=115mm) 180o 180o Sim(h=54mm) Meas(h=54mm) Sim(h=15mm) φ(deg) Meas(h=15mm) φ(deg) (a)(b)

141 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

Eplane(φ=0°) Eplane(φ=0°) o o 0 0dB 0 0dB o o 30o 30o 30 5 30 5 10 10 o o 60o 15 60o 60 15 60 20 20 25 25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 5 o o 150 0dB 150 150o 0dB 150o Sim(h=115mm) o Meas(h=115mm) o Sim(h=54mm) 180 180 Meas(h=54mm) Sim(h=15mm) θ(deg) Meas(h=15mm) θ(deg) (c)(d) Figure3.102–MeasuredandsimulatedradiationpatternsofCRA1andCRA2(activated

simultaneously)at2.4GHz,Eθcomponent.(a)SimulatedHplaneradiationpatterns.(b) MeasuredHplaneradiationpatterns.(c)SimulatedEplaneradiationpatterns.(d)Measured Eplaneradiationpatterns.

The only difference of the single beam radiation patterns generated by activating CRA1andCRA2simultaneouslyandthepreviouscase(activatingCRA1solely)isthe beamwidth size in the broadside direction. The beamwidth for the case of simultaneously activating CRAs is somehow wider than the case of activating CRA solely.ThisresultsleadtothesmalldecreasinginantennagainsasdepictedinFigure 3.103.Themeasuredgainsare10.3dBiforhisequalsto115mmand54mm,and7.9 dBiwhenthehis15mm.Whilethesimulatedgainsareroughly1and2dBhigherand the measured gains (11.3 dBi (115 mm), 11 dBi (54 mm) and 10 dBi (15 mm)). If comparedthemeasuredgainsinthiscasewiththegainsofCRA1(activatedsolelyfor single beam patterns), a 0.5 dB reduction of gain can be seen for the three different element’sheights(exceptfortheelement’sheightof15mmishaving1dBdifference). Thisisduetothebroadeningeffectinthebroadsidedirection.

142 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

14 14

12 12

10 10

8 8

6 6 RealizedGain(dBi) 4 RealizedGain(dBi) 4 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) Meas(h=54mm) 2 Sim(h=15mm) 2 Meas(h=15mm)

0 0 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 Frequency(GHz) Frequency(GHz) (a)(b) Figure3.103–Antennagains.(a)Simulated.(b)Measured

Both simulated and measured reflection coefficients of the antenna are in good agreementsasshowninFigure3.104.Moreover,thesepatternsaresimilarwiththose seen for the case of activating CRA1 as shown the earliest section. The antenna is matchedwith1GHzbandwidthwithtwohvalues(115mmand54mm).

0 0

5 5

10 10

(dB) 15 (dB) 15 11 11 S S 20 20 Sim(h=115mm) Meas(h=115mm) Sim(h=54mm) 25 25 Meas(h=54mm) Sim(h=15mm) Meas(h=15mm)

30 30 1 1.5 2 2.5 3 3.5 4 1 1.5 2 2.5 3 3.5 4 Frequency(GHz) Frequency(GHz) (a)(b)

Figure3.104–Magnitudeofreflectioncoefficients,S11.(a)Simulated.(b)Measured.

3.3.7 SummaryofresultanalysisofCRA

The third part of this chapter introduces a novel design of CRA that never been introducedbefore.Twocornerreflectorantennas(CRA1andCRA2)areintegratedona singlefinitegroundplanetoformareconfigurableCRAasawhole.Thedesignwas undergone optimizationprocedure in order to find an optimum CRA that uses fewer elements and can produce acceptable radiation pattern and exhibit good microwave performances. The optimized CRA was simulated and measured for several

143 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

configurationsandtheresultswerediscussedthoroughlyintheprevioussections.This includes four main parts, and the first one is the investigation of the influence of dielectrictube(arrangedinVcoordination)onominidirectinalpattern.Thesimulated and measured results are in satisfactory agreements. Thus, it was proven that, the dielectrictubesusedasantennaelements(unused)donotdeterioratetheomnidirectinal pattern.However,asmallbutnegligibleeffectisobservedwhentheheightofelements isthemaximum.

The second part presents the results of CRA with two values of feedertovertex distance,Swhichare0.5λ(CRA1)andλ(CRA2).TheCRA1wasproventoproducea singlebeaminthebroadsidedirectionwhileCRA2producesdualbeamsat 30in the azimuth plane. The CRA1 and CRA2 were simulated and measured with ± three element’s heights which are 115 mm, 54 mm and 15 mm. The generated beams demonstrateuniqueprofileswhentheelementheightischangingwhichcouldbenefit some applications in communication systems. By combining CRA1 and CRA2, and indeedamonopoleantenna,thewholesystemwilltransformanominidirectionalpattern into a single beam shape or double beam shapes by appropriately activating plasma elements. Moreover, this transformation proves that the CRA can be reconfigured electrically.

Theinfluenceofreflectorsidelength(L)onradiationpatternhasbeendiscussedin thethirdsubsection.Intheinvestigation,thesidelengthofCRA1andCRA2arevaried bydeactivatingtwoelementsateachofreflector’ssides.TheCRAsproducevarious beamprofilesincludingawider3dBbeamwidth.ForthecaseofCRA2,withafixedS, doublebeamscanbetransformedintosinglebeambyreducingthelengthofreflector’s sideaccordingly.

Inthelastpart,theeffectofactivatingCRA1andCRA2simultaneouslyhasbeen discussedforsimulatedandmeasuredcases.Thisisanotherwaytoproduceasingle beam in the broadside direction without need to deactivate CRA2. However, in practicalthisconfigurationwillconsumemoreelectricalpowersinceallelementsare switchedON.ThisbeamprofileissomehowsimilarwiththecaseofactivatingCRA1 and yet having much wider beam shape in the broadside direction with reduction in gain.Thisinvestigationisquiteuniquebecausethissituationcanonlyberealizedby usingplasmaelements.

Asawhole,thefabricatedCRAhasbeenproventoworkat2.4GHzandtheCRA canbereconfiguredelectricallytoconstructseveralbeamshapes.TheCRAalsocanbe fabricatedwithshorterelementheightsothattheoverallantennasizecouldbereduced withoutlosingtoomuchonitsperformance.

144 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

3.4 Conclusion

Although there are considerable amount of literatures have been published for reflector antennas, up to now there is no published paper which deals with plasma reflector antenna realization especially in ISM band frequencies except those in [57], [62],[64].Forthisreason,inthischapterthesimulatedandmeasuredresultsofaunique round reflector antenna (RRA) and a novel dual dihedral cornerreflector antenna are presented.TheRRAoffersbeamshaping,beamsteeringandbeamscanningcapability while the CRA offers beam shaping with three beam shapes. These beams are electricallyswitchablefromonetoanother.Theantennasweresimulated,fabricatedand finallyitsperformanceswerevalidatedthroughoutaseriesofagilemeasurements.The quick prove on the antennas reconfigurability were demonstrated through their omnidirectionalandbeamfocusingpatterns.Themeasuredreflectedradiationpatterns areinagoodagreementwithsimulatedones.Mostofthemeasuredgainsare5dBmore thanthegainofclassicalmonopoleantennawithcorrespondingidenticalsizeoffinite ground plane. Therefore the plasma model defined in the simulation can be used to analyzetheparticularCFLforfutureworks.Nottoforget,eventhoughnotpresented here,thecrosspolarizationremainslowandfronttobackratio(f/b)ismorethan10dB. Inaddition,itisworthtoemphasizethattheresultsinthisinvestigationhaveconfirmed thatthedielectrictubesusedtoencloseplasmahavenomajoreffectonaquarterwave antennaradiationpatternat2.4GHz.Thisconclusionismadebytakingintoaccountthe super thin phosphor layer inside the dielectric tubes. In general, up to now, the fabricatedplasmaRRAandCRAhavebeenproventhattheycanofferextraflexibility thatcannotbeofferedbyanytraditionalmetalreflector.

145 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

References

[1] D.Lee,S.Lee,C.Cheon,Y.Kwon,"Atwodimensionalbeamscanningantennaarray using composite right/left handed leakywave antennas," IEEE/MTTS International MicrowaveSymposium,pp.18831886,2007. [2] L.Chui,W.Wu,D.G.Fang,"Printedfrequencybeamscanningantennawithflatgain andlowsidelobelevels,"IEEEAntennasWirelessPropag.,Lett.,vol.12,pp.292295, 2013. [3] J.Y.Kim,C.W.Jung,B.Lee,"Reconfigurablebeamsteeringantennausingdouble loops,"APS/URSIpp.15701572,2011. [4] Y.Yamada,N.Michishita,S.Kamada, "Constructionofwideanglebeamscanning lensantennaanditsapplications,"Proceedingofthe2009InternationalConferenceon SpaceScienceandCommunication,pp.4146,Oct.2009. [5] O.Lafond,M.Himdi,H.Merlet,P.Lebars,"Anactivetransmitterantennawithbeam scanning and beam shaping capability for 60 GHz application," Proceedings of ISAP2012,pp.2632666,2012. [6] Y. Yang, X. Zhao,"Beamscanning antennas based on metamaterial planar lens antennas,"The5thEuropeanConferenceonAntennasandPropagation(EuCAP2010), pp.11051108,2010. [7] M.Kyro,D.Titz,V.M.Kolmonen,S.Ranvier,P.Pons,C.Luxey,P.Vainikainen,"5 x 1 linear antenn array for 60 GHz beam steering applications," The 5th European ConferenceonAntennasandPropagation(EuCAP2010),pp.12581262,2010. [8] S.Bildik,C.Fritzsch,A.Moessinger,R.Jakoby,"Tuneableliquidcrystalreflectarray withrectangularelements,"GermanMicrowaveConference,pp.14,2010. [9] K.Kitatani,T.Terada,Y.Okamura,"Mechanicalbeamscanningmicrostripcrankline antenna loaded movable dielectric," The 2ndEuropeanConferenceonAntennasand Propagation(EuCAP2007),2007. [10] C. Chiang, C. C. Tzuang, "Phaseshifterless beamsteering microslotline antenna," Elect.,Lett.,vol.38,no.8,pp.354355,Apr.2012. [11] E. Ojefors, S. Cheng, K. From, I. Skarin, P. Halljorner, A. Rydberg, "Electrically steerable singlelayer microstrip traveling wave antenna with varactor diode based phasedshifters,"IEEETrans.AntennasPropag.,vol.55,no.9,pp.24512460,Sept. 2007. [12] M.T.Ali,M.R.Kamarudin,M.N.MdTan,T.A.Rahman,"Reconfigurablebeam shapingantennawithwilkinsonpowerdividerat5.8GHz,"IEEEInternationalRFand MicrowaveconferenceProceedings,pp.436440,Dec.2008. [13] Y.G.Kim,T.H. Kim, S.G.Kang, I.G.Choi,"Electronicallybeamscanning array antennafor5.8GHz ISMbandapplication,"Theproceedingsofthe40th European MicrowaveConference,pp.457460,Sept.2010. [14] G.Augustin,ShynuS.V.,P.Mohanan,C.K.Aanandan,K.Vasudevan,"Wideband electronicallyscannableleakywaveantennaforlowcostbeamsteeringapplications," ProceedingsofAPMC,2005. [15] Z.Lu,X.Yang,"Anovelplanarbeamsteeringantenna,"IEEEInternationalWireless Symposium(IWS),2013. [16] M. Konca, S. Uysal, "Circular multidirectional patch antenna array with selectable beamsusinganovelfeedstrcutureandequilateraltriangularpatches,"Mediterranean MicrowaveSymposium,pp.440443,2010.

146 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

[17] N. Din, A. Afzal, J. Tahir, N. Hafeez, "Electronic beam scanning for radar applications,"HighCapacityOpticalNetworksandEnablingTechnologies(HONET), pp.355358,2011. [18] M.Adhikari,K.F.Warnick,"Miniatureradiationpatternreconfigurableantennafor 2.4 GHz band," IEEE Antennas and Propagation Society International Symposium (APSUSI),pp.14,2010. [19] J.C.Ke,C.W.Ling,S.J.Chung,"Implementationofamultibeamswitchedparasitic antenna for wireless applications," IEEE Antennas and Propagation Society InternationalSymposium(APS),pp.33683371,2007. [20] Z. Li, H. Mopidevi, O. Kaynar, B. A. Cetiner, "Beamsteering antenna based on parasiticlayer,"Elect.,Lett.,Vol.48,no.2,Jan.2012. [21] M.R.Islam,MAli,"A900MHzbeamsteeringparasiticantennaarrayforwearable wirelessapplications,"IEEETrans.,AntennasPropag.,vol.61,no.9,pp.45204527, Sept.2013. [22] S. Ha, C. W. Jung, "Single patch beam steering antenna with Uslot for wearable fabric applications," IEEE Antennas and Propagation Society International Symposium(APS/URSI),pp.15601562,2011. [23] Md.RashidulIslam,M.Ali,"Bodywearablebeamsteeringantennaarrayfor5.2GHz WLAN applications," The proceedings of International Conf., on Electrical and computerengineering,pp.447449,Dec.2012. [24] A.Kalis,M.J.Carras,"AsectoredphasedarrayforDBFapplications,"IEEETrans., VehicularTechnol.,vol.54,no.6,pp.19321936,Nov.2005. [25] S. K. Sharma, L. Shafai, "Beam focusing properties of circular monopole array antennaonafinitegroundplane,"IEEETrans.,AntennasPropag.,vol.53,no.10,pp. 34063409,Oct.2005. [26] M.T.Ali,T.A.Rahman,M.R.Kamarudin,R.Sauleau,M.N.MdTan,M.F.Jamlos, "Reconfigurable orthogonal antenna array (ROAA) based on separated feeding network,"The5thEuropeanConferenceonAntennasandPropagation(EuCAP2010), Apr.2010. [27] P. Ratajczak, P. Brachat, J. M. Fargeas, "An adaptive beam steering antenna for mobile communications," IEEE Antennas and Propagation Society International Symposium(APS),pp.418421,2006. [28] JohnD.Kraus,"Thecornerreflectorantenna,"Proceedingofthe IRE,pp.513519, 1940. [29] Oakley M. Woodward Jr., "A circularlypolarized corner reflector antenna," IRE Trans.,AntennasPropag.,pp.290297,1957. [30] T. S. Ng, K. F. Lee, "Theory of cornerreflector antenna with titled dipole," ProceedingoftheIEE,vol.129,pt.H,no.1,pp.1117,Feb.1982. [31] N.Okamoto,"Electroniclobeswitchingby90° corner reflectorantenna withferrite cylinders",IEEETrans.,onAntennasandPropag.,vol.23,pp.527531,1975. [32] R.W.Klopfenstein,"Cornerreflectorantennas witharbitrarydipoleorientationand apexangle,"IRETrans.,AntennasPropag.,pp.297305,1957. [33] E. F. Harris, "An experimental investigation of the cornerreflector antenna," ProceedingoftheIRE,pp.645651,1953. [34] A. C. Wilson, H. V. Cottony, "Radiation patterns of finitesize cornerreflector antennas,"IRETrans.,AntennasPropag.,vol.AP8,no.2,pp.144157,Mar.1960. [35] NaokiInagaki,"Threedimensionalcornerreflectorantenna,"IEEETrans.,Antennas Propag.,pp.580582,July1974. [36] H.M.Elkamchouchi, "Cylindrical andthreedimensionalcorner reflectorantennas," IEEETrans.onAntennasandPropag.,vol.AP31,No.3,pp.451455,May1983.

147 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

[37] H.M.Elkamchouchi,M.Elrakaiby,"Solutionofthethreedimensionalcornerreflector antenna problems using the method of moments," Proceedings of the 13th National RadioScienceConference,Mar,1996. [38] K. Miyata, "Radiation pattern analysis of corner reflector antennas by boundary elementmethod,"IEEEAntennasandPropagationSocietyInternationalSymposium (APS),pp.371374,1989. [39] A. D. Olver, U. O. Sterr, "Radiation from gridded cornerreflector antennas using FDTD,"IEEEAntennasandPropagationSocietyInternationalSymposium(APS),pp. 16421645,1997. [40] J.L.Wong,H.E.King,"Awidebandcornerreflectorantennafor240to400MHz," IEEETrans.onAntennasandPropag.,vol.AP33,No.8,pp.891892,Aug.1983. [41] B. M. Duff, O. Tranbarger", A broadband directional corner reflector antenna for borehole applications," IEEE Antennas and Propagation Society International Symposium(APS),pp.278281,1989. [42] N.Okamoto,"Electroniclobeswitchingby90° corner reflectorantenna withferrite cylinders,"IEEETrans.onAntennasandPropag.,vol.23,pp.527531,1975. [43] A. Harmouch, C. El Moucary, M. Ziade, J. Finianos, C. Akkari, S. Ayoub, "Enhancementofdirectionalcharacteristicofcornerreflectorantennasusingmetallic scatters,"inProc.19thICT,pp.14,2012. [44] B. H. Henin, M. H. Al Sharkawy and A. Z. Elsherbeni, "Enhanced performance of cornerreflectorantennausingmetamaterialcylinders,"The2ndEuropeanConference onAntennasandPropagation(EuCAP2007),2007. [45] K. T. Mathew, J. Jacob, S. Mathew, U. Raveendranath, "Triple corner reflector antennaanditsperformanceinHplane,"Elect.,Lett.,vol.32,no.16,pp.1342,Aug. 1996. [46] U.O.Sterr,A.D.OlverandP.J.B.Clarricoats,"Variablebeamwidthcornerreflector antenna,"Electron.Lett.,vol.34,no.11,pp.10501051,May1998. [47] D.C.Chang,B.H.Zeng,J.C.Liu,"Reconfigurableangulardiversityantennawith quadcornerreflectorarraysfor2.4GHzapplications,"Microw.,AntennasPropag.,pp. 522528,2009. [48] T.D.Dimousios,S.A.Mitilineos,C.Panagiotou,C.N.Capsalis,"Designofacorner reflector reactively controlled antenna for maximum directivity and multiple beam formingat2.4GHz,"IEEETrans.,onAntennasandPropag.,vol.59,no.43,pp.1132 1136,April2011. [49] A. Nesic, Z. Micic, S. Javanovic, I. Radnovic, D. Desic, "Millimeter wave corner reflectorantennaarray,"EuropeanMicrowaveConference,2005. [50] Wallace M. Manheimer, "Plasma reflectors for electronic beam steering in radar systems",IEEETrans.,PlasmaSci.,vol.19,no.6,pp.12281234,December1991. [51] P.Linardakis,G.Borg,N.Martin,"Plasmabasedlensformicrowavebeamsteering," Elect.,Lett.,vol.42,no.8,Apr.2006. [52] J. Mathew, Robert A. Meger, Joseph A. Gregor, Robert E. Pechachek, Richard F. Fernsler, W. M. Manheimer, "Electrically steerable plasma mirror for radar applications,"IEEEInternationalRadarConference,pp.742747,1995. [53] A. E. Robson, R. L. Morgan, R. A. Meger, "Demonstration of a Plasma Mirror for Microwaves,"IEEETrans.PlasmaSci.,vol.20,no.6,pp.10361040,Dec.1992. [54] J.Mathew,R.A.Meger,J.A.Gregor,D.P.Murphy,R.E.Pechachek,R.F.Fernsler, W. M. Manheimer, "Electronically steerable plasma mirror," IEEE International SymposiumonPhasedArraySystemsandTechnology,pp.5862,1996. [55] J. Mathew, "Electronically steerable plasma mirror based radar concept and characteristics,"IEEEAESSystemsMagazine,pp.3844,Oct.1996.

148 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA

[56] R.A.Meger,R.F.Fernsler,J.A.Gregor,W.Manheimer,J.Mathew,D.P.Murphy, M.C.Myers,R.E.Pechachek, "XBandmicrowavebeamsteeringusing aplasma mirror,"IEEEAerospaceConferenceProceedings,pp.4956,1997. [57] I. Alexeff, T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, P. Hulloli, "Experimental and theoretical results with plasma antennas," IEEE Trans., Plasma Sci.,vol.34,no.2,pp.166172,April2006. [58] T. Anderson, I. Alexeff, N. Karnam, E. P. Pradeep, N. R. Pulasani, J. Peck, "An operatingintelligentplasmaantenna,"IEEE34thInternationalConferenceonPlasma Science(ICOPS2007),pp.353356,2007. [59] I. Alexeff, T. Anderson, E. Farshi, N. Karnam, N. R. Pulasani, "Recent results for plasmas,"Phys.Plasmas15,057104(2008). [60] Theodore Anderson, "Plasma antenna windowing," in Plasma Antennas, Artech House,MA:Norwood,2011,pp.5378. [61] Theodore Anderson, "Smart plasma antenna," in Plasma Antennas, Artech House, MA:Norwood,2011,pp.79112. [62] X.P.Wu,J.M.Shi,Z. S.Chen,B. Xu, "Anewplasmaantennaofbeamforming," ProgressInElectromagneticsResearch(PIER),vol.126,pp.539553,2012. [63] J.P.Rayner,A.P.Whichello,A.D.Cheetham,"Physicallycharacteristicsofplasma antennas,"IEEETrans.,PlasmaSci.,vol.32,no.1,pp.269281,Feb.2004. [64] C. A. Balanis, "Reflector antennas," in Antenna Theory Analysis and Design 3rd Edition,JohnWiley&Sons,NJ:Hoboken,2005,pp.883892. [65] J.D.Kraus,R.J.Marhefka,"Flatsheet,cornerandparabolicreflectorantennas,"in AntennasforAllApplications3rdEdition,McGrawHill,NY:NewYork,2002,pp. 347374.

149

CHAPTER3–RECONFIGURABLEREFLECTORANTENNA Appendix3.1

151 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA Appendix3.2

152 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA Appendix3.3

153 CHAPTER3–RECONFIGURABLEREFLECTORANTENNA Appendix3.4

154 CHAPTER4–PLASMAASRADIATINGELEMENT

Chapter4 Plasmaasradiatingelement

Thischapteraimstodiscussandexplaintheuseofplasmaasradiatingelements.The state of the art of plasma antennas is discussed in the first part of this chapter. The secondpartisdealingwithplasmaantennarealizationusingcommerciallyavailableU shaped compact fluorescent lamp (CFL). Further discussions on the prototypes of plasma antennas are elaborated in the third part while the measurement setup is explained in the fourth part. The measurement results are discussed for the two fabricatedantennasintermsoftheirradiationpatternsespeciallyonthecomparisons betweenONandOFFstatesofplasmainordertovalidatethattheplasmaisradiating. Finally,aconclusionisdrawnbasedontheworksdoneandtheresultsofthefabricated plasmaantennas.

4.1 Introduction Plasmahasbeenproventoworkasradiatorusedtotransmitradiosignaljustlike metallicmaterialssuchascopperwireandcopperrods.Theplasmaradiatorisknownas plasmaantenna.Intheearliestofitsintroductionincommunicationsystems,mostofthe plasma antennas are meant to operate at lower frequency band typically in UHF and VHFbands.Differfromitsmetalorcoppercounterparts,theplasmarequiresaninitial step which is plasma excitation for it to create electrical conductivity so that it can imitatethemetallicmaterials.Byhavingtheconductivity,surfacewavecanpropagate alongplasmacolumnsothatitcanberadiated.Oneofthemostimportantadvantagesof plasma antenna over metallic antenna is that, plasma antenna can be turn off in microseconds[1],[2].Thustheplasmaantennaexhibitsstealth[3]abilitybecauseitcan beconsiderednotexistsintheeyesofradars.Otherthanthat,plasmaantennacanbe reconfiguredtomeetvaryingrequirementssuchasswitchableoperatingfrequencyand thiscanbeachievedbyalteringtheplasmaantennaelectricallengthaccordingly.

155 CHAPTER4–PLASMAASRADIATINGELEMENT 4.1.1 Stateofthearts

Primarily,theworkingconceptsofplasmaantennascanbedividedintotwoparts which are the excitation technique and the coupling technique. The technique of excitationisameantogenerateplasmaorinotherwordisreferredasamethodtoionize gasindielectrictubes.Severalexcitationtechniqueshavebeendiscussedpreviouslyin Chapter2.Thecouplingtechniquereferstothemethodtojoinradiosignalontoplasma column. If radio signal is used to excite plasma, there will be an important filtering deviceinthereceiverpartwhichisusedtofilterouttheexcitationsignalandtoallow the receiving signal. In the case of cylindrical plasma antenna, surface wave used to carryinformationsignalpropagatesalongplasmacolumnsothatitcanbetransmittedin thefreespace[47].Theconceptofsurfacewaveanditspropertiesarediscussedin[8]. Ithasbeenstudiedinmanyresearchpapersthattheplasmacharacteristicscanbealtered by changing the input parameters. For example pump power used to ionize the encapsulated gas in dielectric tubes can be varied. By increasing this pump power, plasma density canbe increased [912] and at the same time improving the electrical conductivity [13]. Essentially, conductivity plays an important role in order for the plasmatobehaveasgoodelementinradiatingradiosignals.Conversely formetallic materials,theelectricalconductivityisalwayshigh(intermsof107Siemenspermeter) anditisnotanissueindesigningantennas.Thefollowingaretheexampleofseveral waystoincreaseplasmaconductivity.

 Pumppowertheincrementofpumppowerwillleadtohigherrateofionization thusincreasingplasmadensity[1],[4].

 Gaspressuretheincrementofgaspressurecanalsoincreasetheionizationrate [10].

Theefficiencyofcylindricalplasmaantennawithrespecttopumppowerhasbeen presented in [11]. The plasma antenna efficiency was compared to its twin copper antennaandthecomparisonresultisshowninFigure4.1.Theefficiencyshowninthe Figure4.1tellsthathowgoodtheplasmaantennaworkswithrespecttothetraditional metallicantenna.

156 CHAPTER4–PLASMAASRADIATINGELEMENT

Figure4.1–Plasmaefficiencyasafunctionofthenetpumppower[11].

Forthecopperantennatherewasnochangeinefficiencywheneverthepumppower inincreasedto100W.Thisisduetothehighconductivityofcopperthusitcannotbe influenced by the applied power. Differ to copper antenna; plasma antenna is totally dependingonthepresenceofconductivitywhichiscontrolledbythepumppower.The higher pump power will increase ionization rate thus increasing the conductivity. Regardlesswhatisthepumppowerappliedtoplasmacolumn,decreasingpatternsin conductivity were observed as the signal propagates along plasma column. These scenariosareillustratedinFigure4.2.

Figure4.2–Conductivityofplasmatubeversustheaxiscoordinate,recoveredfromreflection measurements[11].

Generally,asstatedin[14],whenanintensefieldisappliedtoapointondielectric tube, the electron density corresponding to the point starts to increase. At the point

where it reaches nDasshowninFigure4.3,theelectromagneticwaveintheformof surface wave starts to propagate along plasma column but its reduces along the way. Indirectly,thisphenomenonsomehowtellsthattheconductivityoftheplasmacolumnis decreasinginthesamemanner.

157 CHAPTER4–PLASMAASRADIATINGELEMENT

Figure4.3–Plasmadensitywithregarditsplasmacolumnlength[14]. Oneofaseriousdiscussiononplasmacolumncharacteristicwaspresentedin[15]. Itwasfoundthatwhen plasmarelativepermittivityintherangeof , the plasma columns tends to behave like a dielectric and reduces the effective electrical lengthoftheantenna. Intherangeof , where the plasma frequency is higherthantheoperatingfrequency,theplasmaactslikealossyconductingmediumin the sense that it reflects waves which are incident upon it [15]. To support to these findings,thesameagreementwasreportedin[16].In[1719],studiesoftheregime whereplasmaworksasreflectorandabsorberhavebeenconducted.Italsohavebeen proven that, magnetized plasma with high density is greatly reflects and absorbs microwave signals [17] and to that extend; the rate of collision frequency plays an important role to determine the absorbing characteristic of plasma [18]. Thus, magnetizedplasmacouldbetailoredtoacteitherreflectororabsorberofmicrowave signals. Plasma is in the absorbing region when the incoming wave is lesser than collisionfrequency wasstatedbyStefanA.Maierinhisbookin[20]. Inthefollowingsubsections,plasmaantennacouplingtechniques,typeofplasma antennabasedonitsgeometryshapes,andthenoiseassociatedwithplasmaantennasare reviewed.

4.1.1.1 Couplingtechniques In contrast to conventional metallic antennas, it is impossible to make a direct electrical contact with the plasma conductor because the plasma is encapsulated in a dielectrictube.Forthatreason,itisnecessarytousecapacitiveorinductivecouplingto launchsurfacewavesasawaytoradiateradiosignals.Thecapacitivecouplingisthe mostfavorablecouplingtechniquecomparedtoinductivecouplingbecauseitissimple toimplementandnotcausingextracomplexityindesigningantenna.Moreover,itwas introducedandusedinmanypublishedpapers[1],[2135].

158 CHAPTER4–PLASMAASRADIATINGELEMENT Inorderforthesignaltobetransferredtoplasmaantenna,thecapacitivecoupling requiresonlyasmallportionofcylindricalplasmaantennatobecoveredbymetallic (conductor) materials. The conductor material is well known as coupling sleeve and normally,acoppersheetispreferredtobeused.Ingeneralthelengthofthecoupling sleeveisapproximately20mm30mmanditisusedforVHFantennas[1],[21],[28], [36].TheFigure4.4showsexamplesofcapacitivecouplingusedintheliteratures.A coppersleeveisplacedarounddielectrictubeandconnectedtoaSMAconnector.

Figure4.4–Couplingsleeveinaexcitationbox.(a)Inthiscasetwo25mmcouplingsleeves wereemployedtoexciteplasmaandtotransmitinformationsignal[1].(b)Two30mm couplingsleeveswereusedtorealizedplasmaantenna[21],[37]. TherearetwocouplingsleevesshowninFigure4.4,oneisusedtogenerateplasma andanotheroneisusedtosendinformationsignalintheformofsurfacewave.These twocouplingsleevesareconnectedtotwodifferentports.Inthiscase,itisnecessaryto haveaproperdecouplingnetworksincethepresenceofconductivitycouldcouplethe twoports.Highconductivitymeanshighcouplingbetweenthem.Adecouplingnetwork wasalsoproposedin[22]toavoidunnecessarycouplingbetweenexcitationportand useful information signal port. Figure 4.5 shows the measured coupling magnitude betweenthetwoportswhentheplasmaisexcited.Acoppertubeisusedtosimulatethe presence of conductivity. A strong coupling can be seen between exciting port and signalport.

159 CHAPTER4–PLASMAASRADIATINGELEMENT

Figure4.5–Couplingbetweenthetwoports,withplasma(blackandthickline)andwithout (greyandthinline)plasma[22],[36]. In[28],acomparisonofdifferentcouplingstructureswaspresentedwithapurpose to find an effective way to transfer the information signal. The comparison was conducted for three coupling structures which are inductive, double inductive and capacitive.ThecouplingstructuresareshowninFigure4.6.

Figure4.6–Couplingstructures[28].(a)Inductivecoupling;(b)Doubleinductivecoupling. (c)Capacitivecoupling. Asimilarsizeofcoppertubeisusedtosubstituteplasmacolumnforthecoupling comparison. The capacitive coupling has significant capacitance in the circuit due to existenceofdielectrictubebetweenthecouplingsleeveandtheplasma,whereaswith theinductivecouplingoption,itispossiblethattheantennamaynotfeedeffectivelyoff thegroundplane.Thuspriortothiscomparison,amatchingnetworkmustbeincluded toensurethemaximumavailablepoweristransferredtotheplasmacolumn.Thereforea block diagram of plasma antenna circuit and measurement system as illustrated in Figure4.7wasproposedin[28].Adoublestubtunerisusedtomatchthenetworkanda signalselectionisdonebyalowpassfilter.

160 CHAPTER4–PLASMAASRADIATINGELEMENT

Figure4.7–Blockdiagramoftheplasmaantennacircuitandmeasurementssystems[28].

The comparison results in term of transmission characteristic (S21) are shown in Figure 4.8. The findings explained that the double inductive is the least effective in coupling RF power into the plasma antenna. The longer inductive and capacitive couplerswerefoundtobemoreeffectivethantheshortonesandthesetwostructures were equally effective. Separation gapbetween coupling sleeve and the groundplane hadalittleeffectonthetransmissioncharacteristic.

Figure4.8–Transmissioncharacteristics(S21)fortwotypeofcouplingstructureswith differentconfigurations[28].

4.1.1.2 Typeofplasmaantennabasedonphysicaldimension

Thissectionisintendedtoelaborateseveraltypesofplasmaantennasbasedonits physicalshapes.Theseincludethehomemadeandthecommerciallyavailableplasma

161 CHAPTER4–PLASMAASRADIATINGELEMENT sources. The non straight plasma antennas such as helix and whip antennas are also explainedinthissection.Briefreviewsonantennaradiationpatternsandperformance arealsoincluded.

4.1.1.2.1 Cylindricalplasmaantennas

Aruleofthumb,plasmaantennaisuncomplicatedtobeanalyzedifitisintheform ofcylindricalshape.Asaconsequencenumerousstudieshaveattemptedtoexplainthe plasmacharacteristicsbasedonthisshape[10],[11],[14],[37].Plasmacolumndoes not carry conduction current but a surface wave propagates along the column [6]. Therefore the performance of plasma antenna is totally dependent to the electrical characteristicoftheplasmacolumn. Itisinterestingtostudytheradiationpatternof plasmaantennaaspresentedinseveral researchpapers[26],[28],[3033],[38].The limitation of physical experiment apparatus to evaluate plasma characteristics for differentplasmastructuresleadstotheusageofnumericalsimulationinplasmaresearch activities. Therefore, another way to analyze cylindrical plasma antenna radiation patternisbyusingFDTD[6],[39],[40].

In2007MaxChungetal.,havepresentedin[41]radiationpatternof60cmplasma antenna measured at 4.2 GHz. The plasma frequency in the experiment was 8 GHz resulted from other microwave transmission experiment. The plasma antenna was constructedbyusingaglasstubewith12mmouterdiameterand10mminnerdiameter andtheglasstubeisfilledwithneon(Ne)gasat2~5Torr.Thegeometryandschematic oftheplasmaantennaareshowninFigure4.9(a)andFigure4.9(b),respectively.The photographofthefabricatedantennaisshowninFigure4.9(c)

Onbothsideofthetube,therearetwohollowcathodetypecylindricalelectrodes used to excite plasma. Two wires for DC bias current are used to connect these electrodestoahighvoltagepowersupply.Thecommunicationsignaliscoupledtothe antennausingcapacitiveacouplingasshowninFigure4.9(a).Theradiationpatterns whentheantennaisinverticalpositionanditscorrespondingantennagainareshownin Figure4.10.Theplasmaantennagainissomehowlowerthan0dBiat4.2GHzandthe incrementofgaininupperfrequenciescouldbeduetotheradiatingcouplingsleeve.

162 CHAPTER4–PLASMAASRADIATINGELEMENT

(a) (b)(c) Figure4.9–StructureofDCpreionizedplasmaantenna.(a)(b)Twocopperfoilareusedfor signalcouplingmeasurementwithtwodifferentcouplinglocations,atthebottomendandat thecenterofthetube.(c)Photographof60cmplasmaantenna[41]. (a) (b) Figure4.10–Plasmaantennaperformances.(a)TheEplaneradiationpatternofthe60cm plasmaantennaat4.2GHz.(Redcurveisthecopolarandbluecurveisthecrosspolar).(b) Gain[41]. MaxChungetal.laterenhancetheirfindingontheeffectofdifferenttypeoflow pressuregasinadielectrictubetoitsradiationpatternperformance.Thefindinghas beenreportedin[42]withhigheroperationfrequencywhichis8.2GHzandwithtwo differentgaseswhichareneon(Ne)andgascombinationofargonandmercuryvapor (Ar + Hg). Furthermore in [43], with similar objective, plasma antennas were constructedusingthreenoblegaseswhichareneon,argonandxenon.Themeasured returnlossesforallantennasmadebythesegaseswerereportedbelow10dBfrom3.4 GHzto5GHz.

V. Kumar et al. in [27] have presented the result of radiation pattern of 20 cm plasma column as monopole antenna. The plasma column is made from the

163 CHAPTER4–PLASMAASRADIATINGELEMENT commerciallyavailablefluorescentlampswithdiameterof1cm.AnACdischargeswas implementedintheexperimentwithtunablefrequenciesfrom25Hzto200Hz.The experimentsetupisshowninFigure4.11.

(a)(b) Figure4.11–Experimentalsetupofplasmaantenna.(a)Photographof20cmcylindrical plasmaantenna.(b)Measurementsetupformeasuringreturnloss.[27]. TheauthorsconcludedthatwithhigherACfrequency,themeasuredreturnlosswas at 34 dB and this could lead to better efficiency. The measured co and cross polarizations radiation patterns of the plasma antenna in the Hplane are shown in Figure 4.12. It can be seen in Figure 4.12 the co and cross polarizations are approximatelyinthesamelevelfortheanglebetween0°to60°.Thissituationisdueto scatteringoffieldsfromcoaxialcableusedtosupplypowertotheupperelectrodeofthe fluorescenttube.

Figure4.12–A20cmmonopoleantennaradiationpatternat590MHz.Array1(redline)isthe copolarizationandArray2(blueline)isthecrosspolarization[27].

164 CHAPTER4–PLASMAASRADIATINGELEMENT Inaddition,theeffectofcollisionfrequencyonantennaradiationpatternwasstudied andpresentedin[9].Inwhichtheauthorconcludedthat,thegoodconductivity(higher plasmadensity)ofplasmawillproduceradiationpatternsthatarecloselysimilartoits metallicantennacounterpart.

4.1.1.2.2 Nonstraightstructureofplasmaantennas

Investigationforplasmaantennaradiationpatternfornonstraightstructuressuchas triangular monopole and annular plasma antenna have been presented in [44] and in [45],respectively.BothstudieshavebeendoneforVHFfrequencyband.Thetriangular plasmaantennaasshowninFigure4.13wassimulatedusingHFSStostudytheeffect of operating frequency, collision frequency and bend angle of triangular shape on its radiationpattern.Ithasbeenreportedthatwhentheplasmafrequencyisamplyhigher than operating frequency and collision frequency is corresponding low, the plasma antennacanoperateatsimilarcharacteristicwithmetalantenna.

Figure4.13–Geometryofthetriangularplasmamonopoleantennaoninfinitemetalplane [44].

An experiment to study gain and VSWR of plasma antenna using annular fluorescent lamp is presented in [45]. The measurements were conducted with two excitationsetupinordertodevelopplasmainsidethefluorescentlamp.Thefirstone wasusing220ACsourceandforthesecondone,RFwasdeployed.TheACandRF source arefedthroughtheelectrodes.A1:4transmissionlinetransformerisusedas baluntoconnecttheRFpowergeneratorwithapowerscaleof40Wtotheantenna.The setupisillustratedinFigure4.14.

165 CHAPTER4–PLASMAASRADIATINGELEMENT

(a)(b) Figure4.14–Theannularplasmaantennaexcitationsetup.(a)The220VACdrivenplasma antenna.(b)TheRFdrivenplasmaantenna[45].

Inthemeasurement,threedifferentresonantfrequencieshavebeenobservedwhen comparing to a metal antenna with similar dimension as a reference andby changing excitation method from AC driven to RF driven, see Figure 4.15 (a). The reference antennaresonates at320MHzwhiletheRFdrivenplasmaantennaresonatesat290 MHz,30MHzlowerthanthereference.TheACdrivenantennawasatmuchlower frequencyduetounavoidableleadswires.

(a)(b) Figure4.15–(a)VSWRcurvesfordifferentantennas.(b)Plasmarelativegaintothatofthe referenceantenna[45].

Thegainofthetwoplasmaantennasareroughlyinthesamelevelandthiscanbe seeninthe gainpatternsshowninFigure4.15 (b).The gainsofRF andACdriven plasma antennas were at 6.7 dB and 6 dB lower than that of the reference metallic antenna. Overall, the gain at lower frequency band is better than the gain at higher frequencyband.Theresultsreportedinthepaperweresolelyevaluatedwithouttaken into account the effect of balun loss, which the author claimed it was difficult to considerquantitatively.

166 CHAPTER4–PLASMAASRADIATINGELEMENT ByusingnumericalmethodFDTD,plasmawhipantennaandplasmahelixantenna performances have been reported in [46] and in [47], respectively. The whip antenna structureisshowninFigure4.16.Theplasmawhipantennaismadeofaglasstubewith arelativepermittivityof3.4andawallthickness,tof2mm.Thedimensionofplasma rectangular cylinder is d x d x l which d is equal to 10mm whilethe l is varying parameter.

Figure4.16–Amodelofaplasmawhipantennalocatedondielectricsubstratewithrelative permittivityof2.35andthethickness,his2mm[46].

Theplasmawhipantennaisexcitedbyacoaxialprobewithradiusofaequals0.5 mm and the b is about twice of a. The antenna is simulated for different plasma frequencies,collisionfrequenciesandplasmalengths.Theresultsareshownin4.17are comparedtoitsidenticalmetalantenna.Basedontheresults,theresonantfrequencyis shiftedupwhenthelvariesfrom160mmto140mm.Theresonantfrequencyofthe plasmawhipantenna alsochangeswhentheplasmafrequencyisincreasing from20 GHzto40GHz.Thisbehaviorindicatesthattheoperatingfrequencyofplasmacanbe achievedbycontrollingplasmadensity.Forthecaseofvaryingcollisionfrequency,it wasobservedthattheamplitudeofreturnlossreduceswiththeincrementofcollision frequency.Thisisduetothefactthattheconductivityofplasmaisalsocontributedby collisionfrequency.

167 CHAPTER4–PLASMAASRADIATINGELEMENT

(a) (b)

(c) Figure4.17–Returnlossofplasmawhipantennaversusoperatingfrequencyfordifferent parameters;(a)length,(b)plasmafrequency,(c)collisionfrequency[46].

In[47],thehelixantennawassimulatedtostudytherelationbetweenitsradiation patternandplasmacharacteristicsat1GHzfordifferentvaluesofplasma(from3GHz upto300GHz)andcollision(from5MHzupto500GHz)frequencies.Themodelof helixantennaisshowninFigure4.18.Theplasmaisexcitedatthejointbetweenthe plasmatubeandthecoaxialline,andtheplasmadensityisassumeduniformalongthe tube.Thehelixischosentobe19.08cminlength(L),with4turns(N),9.54cmin diameter(D)and5cmuniformradiusforthewiretube.Thegroundplanediameteris setto12.5cm(R).Ithasbeenconcludedthattheplasmawillbehavelikeametalwhen theplasmafrequencyis10timeslargerthanoperatingfrequency.Theradiationpatterns of the helix antenna for different operating frequencies are shown in Figure 4.19 whereasfordifferentcollisionfrequenciesaredepictedinFigure4.20.

168 CHAPTER4–PLASMAASRADIATINGELEMENT

Figure4.18–Theidealmodelofplasmahelixantenna.(R=12.5cm,D=9.54cm,histhe lengthofthecoaxiallinewhileSisthelengthbetweentwoturns)[47].

BasedonFigure4.19,theradiationpatternsofplasmahelixantennaisclosertothe radiationpatternofmetallichelixantennawhentheplasmafrequencyislargerthanthe operatingfrequency.

Figure4.19–Theradiationpatternsofplasmahelixantennainhorizontalandverticalplanes at1GHz.Theplasmafrequencyisvariedfrom3GHzupto300GHzandthecollision frequencyisfixedat5MHz.(a)Horizontalplane.(b)Verticalplane[47].

169 CHAPTER4–PLASMAASRADIATINGELEMENT Fortheeffectofvaryingplasmacollisionfrequencyfrom5MHzto500GHz,the radiation pattern of plasma helix antenna is getting closer to its metallic counterpart whenthecollisionfrequencyisdecreasingfromhightolowvalue.Thisbehaviorcanbe observedinFigure4.20.

Figure4.20–Theradiationpatternsofplasmahelixantennainhorizontalandverticalplanes at1GHzwhenthecollisionfrequencyisvariedfrom5MHzto500GHz.Theplasmafrequency isfixedat300GHz.(a)Horizontalplane.(b)Verticalplane[47].

However,theselectionofplasmafrequencyandplasmacollisionfrequencystudied inthispaperareveryhighandnotrealistic.Yet,somehowthepaperabletoshowthe variationeffectofthesetwoparametersontheantenna’sradiationpattern.

4.1.1.3 Theassociatednoiseofplasmaantennas

Plasmas are wellknown sources of noise through to microwave frequencies particularlyforDCormaindrivenACfluorescenttube.Thepossiblenoisesourcesfora lowpressuregasplasmatubeexcitedbyDCorlowfrequencyACcurrentcanbelisted asfollows[1];

 Thermal (Johnson) noise due to random motion of electrons characterized by electrontemperatureofnoisepowerspectraldensity, W/Hz  ShortNoiseduetoDCcurrentofspectraldensity, A2/W  Cathodeprocessesincludingthermionicandsecondaryemission

 Noiseinvicinityoftheionplasmafrequency

170 CHAPTER4–PLASMAASRADIATINGELEMENT However, many of these noise sources do not occur when the surface wave of plasmatubeisused.Onlythermalnoiseandthenoiseassociatedwithplasmafrequency areidentifiedasthemaincontributors.

In [25] and [26], the investigation of noise associated with plasma antenna was conducted. The experiment aimed to compare the noise level between two excitation techniques which are AC driven plasma antenna and surface wave driven plasma antenna.Ametalantennatotransmitandreceivesignalbetween330MHzhasbeen usedforbaselinecomparison.ThesketchofexperimentsetupisshowninFigure4.21.

Figure4.21–Schematicdiagramofsurfacewavedrivenplasmaantenna[26].

The experiment has been performed to demonstrate that surface wave can form plasmaoverthefrequencyrangeof3MHz2.5GHz.Theargongashasbeenemployed at1Torrintheexperiment.Thecollisionrate, is5x108s1andtheplasmadensityis 5x1017m3thustheplasmafrequencyisalmost6.4GHz.Ithasbeenobservedthatat 30 MHz, the plasma behaves as a metal with conductivity is equal to 28 S/m ( .Thefollowingarethethreeantennasusedtoreceivesignalsinthefrequency rangeof030MHz.

a) Aplasmaantennaoflength1.2mdrivenby240V50HzACappliedbetween electrodesattheendsofthetube.A60mmlongplasmacouplerwasemployed todetectsignalsintheHFbandforbothplasmaantennas.

b) A plasma antenna of length 2.2 m, driven by surface wave excitation at 140 MHz.ThissignalwassuitablyfilteredsoasnottoappearattheHFport.

c) Ametalantennaforbaselinecomparison.

Themeasurementresultsintheformofnoisespectrareceivedbytheantennasare showninFigure4.22.Thenoisefloorof50HzACdrivenplasmaantennahasnoise

171 CHAPTER4–PLASMAASRADIATINGELEMENT levelsthatare1030dBhigheracrosstheband.Surfacewavedrivenplasmaantenna hasshownsimilarnoisespectrawithmetalantenna.

Figure4.22–Noisespectraofthreeantennas.(a)The50HzACcurrentdrivenfluorescent tube.(b)Asurfacewavedrivenplasmaantenna.(c)Ametalantenna.[25].

Howeverthisnoisemeasurementwasnotanabsolutenoisemeasurementbecause there was a considerable background noise in the laboratory. Besides, the author highlightedthattheexperimentaltechniqueisseverelylimitedbythenoisefloorofthe spectrumanalyzer.

4.1.1.4 Summary

Several published papers were focused on experimental approach where plasma antennascharacteristicswereexaminedexperimentally.Generally,acylindricalplasma antennaistheeasierplasmasourcetobeused.But,veryfewpapersreportedonother shapesofplasmaantenna.Sinceplasmaantennaperformancesaretotallydependenton theplasmaantennaparameters,theconductedexperimentsonlyvalidfortheparticular shapesofantenna.Thereforeitisveryimportanttoselfexperimentingvariousshapesof plasmaantennasinordertounderstandandtoconcludeitsbehavior.

Thelimitationofphysicalexperimentapparatustoevaluateplasmacharacteristics for different plasma structures leads to the usage of numerical simulation in plasma researchactivities.Mostofexistingplasmastructuresisnotexperimentalfriendlysince

172 CHAPTER4–PLASMAASRADIATINGELEMENT its serve different purposes. Therefore this numerical simulation serves as a tool to evaluate the potentials of plasma antennas at low cost and to provide flexibility of choosing verities of geometrical properties. Many papers have reported numerical simulationforafewplasmastructurestostudy theircharacteristicssuchasradiation patternandgain.Infactthedefinitionsandassumptionsmadearedifferentbetweenone researchpaperstoanother.Theresearchesmainlydonebasedondifferentbenchmarks such magnetic field intensity, collision frequency, type of low pressure gas and tube size. This approach basically is based on direct integration (DI) and recursive convolution (RC) methods which have been integrated to be Finitedifference Time domain(FDTD).

Thenoiseassociateswithplasmaantennabasicallyarecomingfromtheexcitation techniqueusedandveryminorontheplasmaitself.Itwasstudiedthat,surfacewave driven plasma antenna exhibit good noise performance with respect to its metallic counterpart.However,tocomewiththisapproachextracircuitssuchasfilteringand decouplingareessential.Asaresult,itincreasesthecomplexityofthewholeantenna circuit.Differtothisapproach,eventhoughACdrivenplasmaantennaisalittlebit noisyifcomparedtosurfacewavedrivenplasmaantenna,yetthenoiselevelisbelow than40dBaspresentedin[25].Moreover,theACdrivenplasmaantennaissimplerin designandverypracticalsincethewholecircuitdoesnotneedfilteringordecoupling circuitstoseparatetwodifferentsignals(excitationandinformationsignals).Thus,with theusedofACsupplymayhelpresearchertorapiddesignandexperimentingplasma antennas.

4.2 TherealizationofplasmaantennausingUshapedcompact fluorescentlamp

Themeasuredplasmaantennasinthischapteraredifferenttotheonesdiscussedand presentedinliteratures.Theplasmaantennaintroducedinthischapterwasconstructed usingUshapedCFLanditwasexcitedusingACsupply.Theantennaspecificationis explainedinthissection.

TheplasmaantennaismadeofacommerciallyavailableUshapedCFLthatworks asradiatingelementinthisstudy.Incontrasttothecouplingsleevesproposedinthe literatures,thecouplingsleeveinthisstudyisplacedunderneathgroundplaneanditis notenclosedbymetallicorabsorberbox.Byplacingitbelowthegroundplane,the radiationofcouplingsleeveintheupperpartofgroundplanewouldbereducedifthe plasmaisindeactivatedmode.Smallradiationintheupperpartofgroundplaneis expectedbecauseoftheexistenceofholewhichisusedtoinserttheCFLmayallow signaltopassthrough.

173 CHAPTER4–PLASMAASRADIATINGELEMENT Therearetwocaseswereinvestigatedfortheplasmaasradiatingelementusinga similartypeanddimensionsofplasmasource(CFL).Thedimensionsoftwofabricated plasmaantennasareillustratedinFigure4.23andFigure4.24,respectively.Thesimilar type of plasma source as in Appendix 3.3 was employed as radiating element. The difference between these antennas is on its height (measured from the ground plane surface)andtheexistenceofextrapartofplasmasourcejustundercouplingsleeve.

TheFigure4.23showsthedimensionsofplasmaantennawiththeantennaheight equals35.7mmwhereastheFigure4.24showstheplasmaantennadimensionwhenthe antennaheightisincreasedto77mm.Thecouplingsleevesareremainedatthesame position with respect to the bottom of ground plane for these two antennas. Consequently,withtheheightof35.7mmthereisabout41.3mmextrapartofplasma sourcewhichisexposedjustbelowthecouplingsleeve.Theantennasdimensionsare summarizedinTable4.1.

z

y

(a) x 3 35.7

y 50 SMA 115 connector 35 30 28 17.5

dielectric 15 z cube 41.3 y (b) (c) Figure4.23–Plasmaantenna.(a)Anoverviewofplasmaantenna.(b)Thesideviewofplasma antennarevealingthecouplingpartandtheextrapartofplasmasourcejustbelowthecopper sleeve.(c)Thebottomviewofplasmaantennashowingthedielectricsupport.(Unitinmm).

Forthepurposeoffabrication,thecopperconnectorlengthissetto17.5mmwithan intentionofprovidingaspacetosolderthecopperconnectorwiththecoppersleeve.In

174 CHAPTER4–PLASMAASRADIATINGELEMENT ordertoholdtheplasmasource(CFL)inthefixposition,adielectriccubewasattached tothebottompartofthegroundplanesothataCFLcradlesupport(toclipandholdthe lamp)canbefixedontoit.ThedielectricsupportismadeofcestileneHD500witha relativepermittivityisequalto2.4.

z

y

(a) x 3

y 50 77 z

115 y 28

SMA dielectric 15 connector cube 35 30 17.5 (b) (c) Figure4.24–Plasmaantenna.(a)Anoverviewofplasmaantenna.(b)Thesideviewofplasma antennarevealingthecouplingpart.(c)Thebottomviewofplasmaantennashowingthe dielectricsupport.(Unitinmm). Table4.1Thedimensionsoffabricatedplasmaantennas.

Groundplanethickness,gndt 3mm Groundplanesize 1000mmx1000mm Metalsupportthickness,lms 3mm Spacegapbetweencoupling sleeveandthebottomof 5mm groundplane,g Antennaheight,hradiate 35.7mm 77mm Antennaheightunder 41.3mm 0mm couplingsleeve,hbase Couplingsleeveheight,hsleeve 30mm Copperconnector,lc 17.5mm Metalsupportheight,hms 35mm Metalsupportwidth,wms 50mm

175 CHAPTER4–PLASMAASRADIATINGELEMENT 4.3 Prototypeofplasmaantenna

Theprototypemodelofplasmaantennaswere fabricatedon3mmthickground plane based on the geometry given in Table 4.1. Excitation power to energize the 9 WattsCFLsissuppliedbyanelectronicballastthatiscontrolledbyasmallsinglepole switch. There is a set of four wires to be connected to the CFL and these wires are connected to the CFL pins using connector boxes. The photograph of the electronic ballastandtheconnectorboxesareshowninFigure4.25.

connector boxes

(a)(b) Figure4.25–Electricalapparatustoenergizetheplasmasource(CFL).(a)Anelectronic ballastwithspecificationof220240V,5060Hz.(b)Asetoffourconnectorboxesusedto linktheCFLpinsandthewires.

Forthecouplingsleeve,acopperscotchof30mmx41mmwasused.Thiscopper scotchismeanttoenclosethelowerpartofdielectrictubesothatitcanbeusedto transferinformationsignalontoplasmaoncetheplasmaisformed.Thecoppersleeveis showninFigure4.26.

30mm

Figure4.26–Couplingsleevemadeofcopperscotchwithadimensionof30mmx41mm.

176 CHAPTER4–PLASMAASRADIATINGELEMENT Acopperrodwithalengthof17.5mmandadiameterof1.25mmisusedtolinkthe SMAconnectorandcoppersleeve.Theconnectionbetweencoppersleeveandcopper rodisstrengthenedbysolderingatthepointofconnectionasshowninFigure4.27.The electricalconnectionbetweenthemwastestedusingstandardelectronicmultimeter.

17.5mm

(a)

(b) Figure4.27–Photographsoflowerpartsofthefabricatedplasmaantennas.(a)Plasma

antennawithhradiate=77mm.Theinsetshowsacopperrod(17.5mm)usedtoconnecttheSMA

jackandcoppersleeve.(b)Plasmaantennawithhradiate=35.7mm.

It easy to see from the photographs in Figure 4.27 that the environments of the bottom part of plasma source (CFL) are not the same for the two fabricated plasma antennas.

ThedielectriccubemadeofcestileneHD500usedtoplacethecradlesupportso thatitcanholdtheCFLinfixedpositionisshowninFigure4.28.Thespecificationof thecestileneHD500andthecradlesupportarelistedinAppendix4.1andAppendix 4.2.

177 CHAPTER4–PLASMAASRADIATINGELEMENT

dielectriccube (cestileneHD500)

cradlesupporttohold plasmasource(CFL)

Figure4.28–Photographofthedielectriccubeusedtoplacecradlesupport.

The coupling part of plasma antenna underneath its ground plane was leaving uncover.Thereforeradiationpatternscausedbythecouplingpartcanbeobservedfor the two antennas. Furthermore, the back radiation for two different cases of plasma antennaheightscanalsobecompared.

4.4 Measurementsetupofplasmaantenna

Theantennainputimpedancemeasurementswereconductedusingsimilarsetupas thoseexplainedinChapter3.Thesemeasurementswereconductedinasmallanechoic chamber.Fortheradiationpatternmeasurements,aSATIMO32anechoicchamberwas employed. Photographs of plasma antenna in the SATIMO 32 anechoic chamber are depictedinFigure4.29.Theantennaundertest(AUT)isplacedonasupportfixtureas can be seen in Figure 4.29 (a). Figure 4.29 (b) shows the plasma antennas is in operating mode while the Figure 4.29 (c) and Figure 4.29 (d) show photographs underneathgroundplane.

Theradiationpatternmeasurementswerecarriedoutforwiderangeoffrequency which is from 400 MHz up to 2 GHz, for the two plasma antennas because it was difficulttoanticipatethegoodworkingfrequencyoftheseantennas.Sincethesetwo antennassharedthesamegroundplane,themeasurementswereconductedonebyone. Oncethefirstantennawasmeasured,itwasdetachedfromthegroundsothatthesecond antenna (CFL) can be inserted from the bottom of the ground plane. The same procedures(connectionbetweencoppersleeveandcopperconnectorisstrengthenedby soldering) were repeated to ensure there is an electrical connectivity between copper connectorandcouplingsleeve.

178 CHAPTER4–PLASMAASRADIATINGELEMENT

(a)(b)

(c)(d)

Figure4.29–PhotographofplasmaantennaintheSATIMO32anechoicchamber(hradiate= 77mm).(a)Theplasmaantennaindeactivatedmode.(b)Plasmaantennainactivatedmode. (c)(d)Thelowerpartofplasmaduringactivatedmode.

4.5 Measurementresultsofplasmaantenna

This section is discussing about radiation pattern of the two fabricated plasma

antennas(hradiate=35.7mmandhradiate=77mm).Theradiationpatternsarepresented onlyfortwofrequencieswhichare900MHzand450MHzinthissectionforeasier reading.Theradiationpatternsforotherfrequencies,reflectioncoefficientsandantenna gainsareincludedinAppendix4.3andAppendix4.4

4.5.1 Radiationpatternofplasmaantennawithhradiateequals35.7mm

The measured radiation patterns of plasma antenna with antenna’s height of 35.7 mmat900MHzareshowninFigure4.30.ThepatternsarecomparedfortheOFFand ONcases.

179 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 OFFcopolar 150o 0dB 150o OFFcopolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o o 180o 180

φ(deg) θ(deg) (c)(d)

Figure4.30–Normalizedmeasuredradiationpatterns,EθandE componentsat900MHz.(a) (b)CopolarizationintheHandEplanesrespectively.(c)(d)CrosspolarizationintheH andEplanesrespectively.

FromFigure4.30(a)andFigure4.30(b),whentheplasmaisactivated,theantenna seemstoradiatesincethereisalargedifferencebetweenOFFandONstateswhichis about15dB(inthemaximumdirection).ThesmallradiationseenintheHplanewhen theplasmaantennaisOFFstateisduetotheradiatingcouplingsleeveplacedbeneath thegroundplane.Thesignalfromthecoppersleeveradiatesthroughaspacethatexists betweenthedielectrictubeandthegroundplane.Asignificantbackradiationseenin theEplaneisduetothefeedingpart,inwhichthecoppersleeveandcopperrodarealso radiate at 900 MHz even though the plasma antenna is deactivated. The cross polarizationpatternsintheHplanearebelowthan15dBasdepictedinFigure4.30(c). IntheEplane,thecrosspolarizationpatternsarebelowthan10dBwithsmallpartof theOFFstatepatternisslightlyhigherthan10dB,asshowninFigure4.30(d).

Toconfirmthatthehighbackradiationpatternoccurredat900MHziscontributed bythefeedingpart;thesameantennawasmeasuredat450MHz.Theantennaradiation patternswhentheplasmaisONandOFFstatesat450MHzareshowninFigure4.31.

180 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 o o OFFcopolar 150 0dB 150 OFFcopolar 150o 0dB 150o o 180 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

o 90o 90o 90 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

Figure4.31–Normalizedmeasuredradiationpatterns,EθandE componentsat450MHz.(a) (b)CopolarizationintheHandEplanesrespectively.(c)(d)CrosspolarizationintheH andEplanesrespectively

TherearesignificantdifferenceswhichcanbeseenbetweenONandOFFstatesof plasmaantennaintheHandEplanesinFigure4.31(a)and4.31(b),respectively. These scenarios again confirm that the plasma antenna is radiating at 450 MHz. MoreoverthebackradiationpatternintheEplanewhichisbelowthan15dBcanbe usedtoproveandexplainthatthehighbackradiationseeninFigure4.30(b)isdueto the feeding part. The cross polarization radiationpatterns of this plasma antenna are below than 10 dB in the two principal planes. Other than that, this plasma antenna configurationthatcomeswithanextrapartofplasmasourceexposedjustbelowthe coupling sleeve as shown in Figure 4.27 (b), is also radiating in the lower direction (lowerpartofgroundplane)whentheplasmaisactivated.

181 CHAPTER4–PLASMAASRADIATINGELEMENT

4.5.2 Radiationpatternofplasmaantennawithhradiateequals77mm

Theradiationpatternsofplasmaantennawithantenna’sheightequals77mmare representedinFigure4.32for900MHzandinFigure4.33for450MHzrespectively.

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 OFFcopolar 150o 0dB 150o OFFcopolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

Figure4.32–Normalizedmeasuredradiationpatterns,EθandE componentsat900MHz.(a) (b)CopolarizationintheHandEplanesrespectively.(c)(d)CrosspolarizationintheH andEplanesrespectively.

The plasma antenna is radiating at 900 MHz since there is coherent difference betweenONandOFFplasmastates.Thedifferenceismorethan10dBcanbeseenin the maximum direction as shown in Figure 4.32 (a) and 4.32 (b). However, back radiationsforONandOFFplasmastatesaresignificantlyhighandthismaybedueto theantennafeedingpartasprovedinthepreviouscase.Theantennacrosspolarization radiationpatternsarebelowthan15dBintheHplaneandbelowthan8dBintheE plane.

182 CHAPTER4–PLASMAASRADIATINGELEMENT Forfurtherinvestigations,thesameantennawasmeasuredat450MHz.However, themeasurementresultsinFigure4.33showthattheantennaisnotefficientinradiating signalat450MHz(theantennaconfigurationisillustratedinFigure4.24andFigure 4.27(a)).

Hplane(θ=60°) Eplane(φ=0°) o 0 o 0dB 0 0dB 30o 30o o o -5 30 -5 30 -10 -10 o o 60 -15 60 60o -15 60o -20 -20 -25 -25

o 90 90o 90o 90o 25 25 20 20 15 15 o o 120o 120o 120 10 120 10 ONcopolar 5 ONcopolar 5 o 0dB o OFFcopolar 150o 0dB 150o OFFcopolar 150 150 o 180o 180

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o 30o 30o 30 -5 30 -5 -10 -10 o o 60o -15 60o 60 -15 60 -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 o o OFFxpolar 150 0dB 150 OFFxpolar 150o 0dB 150o o 180 180o

φ(deg) θ(deg) (c)(d)

Figure4.33–Normalizedmeasuredradiationpatterns,EθandE componentsat450MHz.(a) (b)CopolarizationintheHandEplanesrespectively.(c)(d)CrosspolarizationintheH andEplanesrespectively

Although the normalized radiation pattern in the Hplane (plasma ON state) is somehowsimilartoomnidirectionalpatternandthecrosspolarizationradiationpatterns in the both planes are below than 10 dB (Figure 4.33 (c) and Figure 4.33 (d)), the radiation pattern in Eplane tells that the antenna is not an efficient radiator because thereisnonoteworthydifferencebetweenONandOFFascanbeseeninFigure4.33 (b). The broad back radiation patterns seen in Figure 4.33 (b) were caused by the feedingpartoftheantenna.

183 CHAPTER4–PLASMAASRADIATINGELEMENT 4.6 Conclusion

Basedonthemeasurementresults,itcanbeconcludedthat,thecompactfluorescent lamp(CFL)withanACexcitationcanbeusedtoradiateradiosignals.Twoplasma

antennas(hradiate=35.7mmandhradiate=77mm)werefabricatedandmeasuredat900 MHzand450MHz.At900MHzbothantennaswereobservedtoradiatesincethereare noteworthy difference on antenna radiation patterns between ON and OFF states of

plasma.However,at450MHzonlyplasmaantennawithhradiateequals35.7mmexhibits significantradiationpatternbetweenONandOFFstates,whereastheplasmaantenna

withhradiateisequalto77mmdoesnotworkingasanefficientradiator.Thereasonof thissituationisduetotheDCfeedingpartandthecloseproximitydistancebetweenAC

feedinglineandthecoppersleeve.Whentheheightoftheantenna,hradiateisincreased from35.7mmto77mm,thecouplingsleevehastobeplacedinthecloseproximity withthebottompartofCFLwhichisusedtoconnecttotheACsupply(Figure4.27 (a)).Thus,thissituationmayinduceunintendedinteractionbetweenfeedingpartofthe antennaandtheACfeedinglinewhichcouldpreventtheelementtoworkasaradiator. Furthermore, the bottom part of CFL behaves as black box in this situation and its interactiontowardsfeedingpartishardtoanticipate.

Broadbackradiationswereseenwhenthetwoplasmaantennasinthedeactivating modeat900MHz.Thecauseofthesebehaviorswasinvestigatedanditwasfoundthat

at450MHz(hradiate=35.7mm)whentheplasmaisOFF,thebackradiationislower than15dB.Therefore,itcanbeconcludedthatthebroadbackradiationseenat900 MHz is caused by the DC feeding elements which consists of coupling sleeve and copper rod. The back radiation contributed by the copper rod can be reduced by optimizingtherod’slength.

Theradiationpatternsofthetwoplasmaantennasmeasuredfrom450MHzto900 MHzarequitesimilartotheradiationpatternofclassicaldipoleantenna.Iftheantenna ismeanttoworkasmonopoleantenna,thefeedingpartthatislocatedunderneaththe groundplanehastobecoveredbyanabsorber.However,theexistinglossduetothe feedingpartisstillcontributingtotheplasmaantennaperformance.Thusafurtherstudy tooptimizefeedingsystemoftheplasmaantennaisveryessentialforfuturework.

184 CHAPTER4–PLASMAASRADIATINGELEMENT References

[1] J.P.Rayner,A.P.Whichello,A.D.Cheetham,"Physicallycharacteristicsofplasma antennas,"IEEETrans.,PlasmaSci.,vol.32,no.1,pp.269281,Feb2004. [2] T. Anderson, I. Alexeff, N. Karnam, E. P. Pradeep, N. R. Pulasani, J. Peck, "An operatingintelligentplasmaantenna,"IEEE34thInternationalConferenceonPlasma Science(ICOPS2007),pp.353356,2007. [3] I. Alexeff, T. Anderson, S. Parameswaran, E. P. Pradeep, J. Hulloli, P. Hulloli, "Experimentalandtheoreticalresultswithplasmaantennas," IEEETrans.,Plasma Sci.,vol.34,no.2,pp.166172,April2006. [4] D. Qian, D. Jun, G. ChenJiang, S. Lei, "On characteristics of a plasma column antenna," The International Conference on Microwave and Millimeter Wave Technology(ICMMT2008),2008. [5] H. Q. Ye, M. Goa, C. J. Tang, "Radiation theory of the plasma antenna," IEEE Trans.,AntennasPropag.,vol.59,no.5,pp.14971502,May2011. [6] Y.Lee,S.Ganguly,"FDTDanalysisofaplasmacolumnantenna,"IEEEAntennas andPropagationSocietyInternationalSymposium,pp.430433,2005. [7] Y.Liu,C.Tang,X.Xu,"Rigidmethodfordispersionrelationofplasmaantenna," The Second International Conference on Mechanic Automation and Control Engineering(MACE),pp.15901593,2011. [8] Francis J. Zuck, "Surfacewave antennas," in Antenna Engineering Handbook, McGrawHill,NY:NewYork,2007,pp.132. [9] W.Jiayin,S.Jiaming,W.Jiachun,X.Bo,"Studyoftheradiationpatternofunipole plasmaantenna,"The7thInternationalSymposiumonAntennas,Propagation,&EM Theory(ISAPE06),2006. [10] P.Russo,G.Cerri,E.Vecchioni,"Selfconsistentmodelforthecharacterizationof plasmaignitionbypropagationofanelectromagneticwavetobeusedforplasma antennas design," IET Microwaves, Antennas & propagation, vol. 4, iss. 12, pp. 22562264,2010. [11] G. Cerri, V. Mariani Primiani, P. Russo, E. Vecchioni, "FDTD approach for the characterization of electromagnetic wave propagation in plasma for application to plasma antennas," The 2nd European Conference on Antennas and Propagation (EuCAP2007),2007. [12] G. Cerri, P. Russo, E. Vecchioni, "A selfconsistent FDTD model of plasma antennas," The 5th European Conference on Antennas and Propagation (EuCAP 2010),2010. [13] G. Cerri, P. Russo, E. Vecchioni, "Electromagnetic characterization of plasma antennas," The 3rd European Conference on Antennas and Propagation (EuCAP 2008),2008. [14] P.Russo,G.Cerri,R.DeLeo,E.Vecchioni,"Selfconsistentanalysisofcylindrical plasmaantenna,"IEEETrans.,AntennasPropag.,vol.59,no.5,pp.15031511,May 2011. [15] C. Ting, B. Roa, W. A. Saxton, "Theoretical and experimental study of a finite cylindricalantennainaplasmacolumn,"IEEETrans.,AntennasPropag.,vol.AP 16,no.2,pp.246255,March1968. [16] I.L.Morrow,J.R.James,"Fundamentallimitationsonexcitationofasurfacewave on a plasma column," IEEE Antenna and Propagation Society International Symposium,pp.272275,2002.

185 CHAPTER4–PLASMAASRADIATINGELEMENT [17] M. Laroussi, J. R. Roth, "Numerical calculation of the reflection, absorption, and transmissionofmbyanonuniformplasmaslab,"IEEETrans.,PlasmaSci.,vol.21, no.4,pp.366372,August1993. [18] D. L. Tang, A. P. Sun, X. M. Qui, Paul K. Chu, "Interaction of electromagnetic waveswithamagnetizednonuniformplasmaslab," IEEETrans.,PlasmaSci.,vol. 31,no.3,pp.405410,June2003. [19] Y. Yi, S. D. Lin, "The reflection, transmission, and absorption of microwave in nonuniform plasma," Asiapacific Conference on Environmental Electromagnetics (CEEM2003),pp.518522,Nov.2003. [20] Stefan A. Maier, "Electromagnetic of metals," in Plasmonics : Fundamentals and Applications,Springer,Bath:TheUK,2007,pp.1213. [21] G. Cerri, R. De Leo, V. Mariani Primiani, P. Russo, "Plasma antenna characterization," The 18th International Conference on Applied Electromagnetics andCommunications(ICECom2005),2005. [22] G.Cerri,R.DeLeo,V.MarianiPrimiani,P.Russo,"Measurementoftheproperties ofaplasmacolumnusedasaradiatingelement,"IEEETrans.,Instrum.,Meas.,vol. 57,no.2,pp.242247,Feb.2008. [23] OvsyanikovV.V.,ReznichenkoI.A.,Ol’shevs’kiyA.L.,Popel’V.M.,RodinK.V., andRomanenkoY.D.,"Widebandpropertiesofnewantennamadeofcoldplasma," The4thInternationalConferenceonUltrawidebandandUltrashortImpulseSignals, (UWBUSIS2008),pp.7779,2008. [24] P. Russo, V. Mariani Primiani, G. Cerri, R. De Leo, E. Vecchioni, "Experimental characterization of a surfaguide fed plasma antenna," IEEE Trans., Antennas Propag.,vol.59,no.2,pp.425433,Feb.2011. [25] G.G.Borg,J.H.Harris,N.M.Martin,D.Thorncraft,R.Miliken,D.G.Miljak,B. Kwan,T.Ng,J.Kircher,"Plasmasasantennas:theory,experimentandapplications," Phys.,Plasmas,vol.7,pp.21982202,2000. [26] G.G.Borg,J.H.Harris,N.M.Martin,D.Thorncraft,R.Miliken,D.G.Miljak,B. Kwan, T. Ng, J. Kircher, "An investigation of the properties and applications of plasmaantennas,"SwitzerlandMilleniumConferenceonAntennasandPropagation Davos,April2000. [27] V.Kumar,M.Mishra,N.K.Joshi,"Studyofafluorescenttubeasplasmaantenna," ProgressinElectromagneticsResearchLetters,vol.24,pp.1726,2011. [28] M. Hargreave. J. P. Rayner, A. D. Cheetham, G. N. French. A. P. Whichello, “Coupling power and information to a plasma antenna,” Proceeding of the 11th InternationalCongressonPlasmaPhysics,vol.669,pp.388391,June2003. [29] I. Alexeff, T. Anderson, E. Farshi, N. Karnam, N. R. Pulasani, “Recent results of plasmaantenna,”Phys.,Plasmas15,057104(2008). [30] R.Kumar,D.Bora,“Wirelesscommunicationcapabilityofareconfigurableplasma antenna,”J.,Appl.,Phys.109,063303(2011). [31] L. Wei, Q. Jinghui, L. Shu, S. Ying, “Analysis and design of plasma monopole antenna,” The proceeding of the 6th International ICST Conference and CommunicationsandNetworkinginChina(CHINACOM),pp.921924,2011. [32] R.Kumar,D.Bora,“Experimentalstudyofparametersofaplasmaantenna,”Plasma Sci.,Technol.,vol.12,no.5,pp.592600,Oct.2010. [33] B.Anton,G.Volodymyr,O.Viktor,O.Volodymyr,R.Olexandr,S.Valerii,S.Olga, "Research of antennas made gas plasma on microwave band," The 5th European ConferenceonAntennasandPropagation(EuCAP2010),2010. [34] R. Kumar, D. Bora, “Experimental investigation of different structures of a radio frequencyproducedplasmamedium,”Phys.,Plasmas17,043503(2010).

186 CHAPTER4–PLASMAASRADIATINGELEMENT [35] H.M.Zali,M.T.Ali,N.A.Halili,H.Ja'afar,I.Pasya,"Studyofmonopoleplasma antenna using fluorescent tube in wireless transmission experiments," The proceeding of The 1st IEEE International Symposium on Telecommunication Technologies,pp.5255,2012. [36] G.Cerri,R.DeLeo,V.MarianiPrimiani,P.Russo,"Measurementoftheproperties of a plasma column used as a radiating element," Instrument and Measurement TechnologyConference(IMTC2006),pp.483486,April2006. [37] T.J.Dwyer,J.R.Greig,D.P.Murphy,J.M.Perin,R.E.Pechachek,M.Raleigh, "OnthefeasibilityofusingatmosphericdischargeplasmaasanRFantenna,"IEEE Trans.,AntennasPropag.,vol.AP32,no.2,pp.141146,Feb.1984. [38] J. Sun, Y. Xie, Y. Xu, "Progress of UHF/VHF plasma antenna research," The proceeding of The 10th International Symposium Propagation & EM Theory (ISAPE),pp.2325,2012. [39] X.Li,F.Luo,B.Hu,"FDTDanalysisofradiationpatternperformanceofcylindrical plasmaantenna",IEEEAntennasWirelessPropag.,Lett.,vol.8,pp.756758,2009. [40] X. Li, B. Hu, "FDTD analysis of a magnetoplasma antenna with uniform of nonuniform distribution," IEEE Antennas Wireless Propag., Lett., vol. 9, pp. 175 178,2010. [41] M. Chung, W. Chen, B. Huang, C. Chang, K. Ku, Y. Yu, T. Suen, "Capacitive couplingreturnlossofanewpreionizedmonopoleplasmaantenna,"IEEERegion 10Conference(TENCON2007),2007. [42] M.Chung,W.Chen,Y.Yu,Z.Y. Liou, "PropertiesofDCbiasedplasmaantenna," InternationalConferenceonMicrowaveandMillimeterWaveTechnology(ICMMT 2008),2008. [43] N.A.Halili,M.T.Ali,H.M.Zali,H.Ja'afar,I.Pasya,"Astudyonplasmaantenna characteristics with different gases," The proceeding of The 1st IEEE International SymposiumonTelecommunicationTechnologies,pp.5659,2012. [44] F. Etesami, F. Mohajeri, "On radiation characteristics of a plasma triangular monopole antenna," The 19th Iranian Conference Electrical Engineering (ICEE), 2011. [45] Z. Longgen,C. Lihiu,Z.Zhigang,"Studyonthegainofplasmaantenna,"The8th InternationalSymposiumonAntenna,PropagationandEMTheory,(ISAPE2008), pp.222224,2008. [46] Z. H. Qian, K. W. Leung, R. S. Chen, D. X. Wang, "FDTD analysis of a plasma whipantenna," IEEEAntennasandPropagationSociety InternationalSymposium, pp.166169,2005. [47] M. Liang, G. Qinggong, "FDTD analysis of a plasma helix antenna," IEEE InternationalConferenceonMicrowaveandMilimeterWaveTechnology(ICMMT 2008),2008.

187 CHAPTER4–PLASMAASRADIATINGELEMENT Appendix4.1

188 CHAPTER4–PLASMAASRADIATINGELEMENT Appendix4.2

189 CHAPTER4–PLASMAASRADIATINGELEMENT Appendix4.3

Radiationpatternsofplasmaantennawithhradiateequals35.7mm Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 OFFcopolar 150o 0dB 150o OFFcopolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

FigureA.4.3.1–Normalizedmeasuredradiationpatterns,EθandE componentsat600MHz. (a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationinthe HandEplanesrespectively.

190 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 ONcopolar 5 ONcopolar o 0dB o OFFcopolar o 0dB o OFFcopolar 150 150 150 150 o 180o 180

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB 30o 30o o o -5 30 -5 30 -10 -10 o o 60 -15 60 60o -15 60o -20 -20 -25 -25

o 90 90o 90o 90o 25 25 20 20 15 15 o o 120o 120o 120 10 120 10 ONxpolar 5 ONxpolar 5 o o OFFxpolar 150o 0dB 150o OFFxpolar 150 0dB 150 o 180o 180

φ(deg) θ(deg) (c)(d)

FigureA.4.3.2–Normalizedmeasuredradiationpatterns,EθandE componentsat700MHz. (a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationinthe HandEplanesrespectively. Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 o o OFFcopolar 150o 0dB 150o OFFcopolar 150 0dB 150 o 180o 180

φ(deg) θ(deg) (a)(b)

191 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o 30o 30o 30 -5 30 -5 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 o o OFFxpolar 150 0dB 150 OFFxpolar 150o 0dB 150o o 180 180o

φ(deg) θ(deg) (c)(d)

FigureA.4.3.3–Normalizedmeasuredradiationpatterns,EθandE componentsat800MHz. (a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationinthe HandEplanesrespectively.

0 0

5 5

10 10

(dB) 15 15 11 S 20 20 Measuredgain(dBi) PlasmaOFF 25 25 PlasmaON PlasmaOFF PlasmaON

30 30 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 450 500 550 600 650 700 750 800 850 900 Frequency(GHz) Frequency(MHz) (a)(b)

FigureA.4.4.4–(a)Measuredmagnitudeofreflectioncoefficients,S11.(b)Measuredantenna gains.

192 CHAPTER4–PLASMAASRADIATINGELEMENT Appendix4.4

Radiationpatternsofplasmaantennawithhradiateequals77mm Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 ONcopolar 5 OFFcopolar 150o 0dB 150o OFFcopolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

FigureA.4.4.1–Normalizedmeasuredradiationpatterns,EθandE componentsat600MHz. (a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationinthe HandEplanesrespectively.

193 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONcopolar 5 5 ONcopolar OFFcopolar 150o 0dB 150o o 0dB o OFFcopolar 150 150 180o 180o

φ(deg) θ(deg) (a)(b) Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

o 90o 90o 90 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

FigureA.4.4.2–Normalizedmeasuredradiationpatterns,EθandE componentsat700 MHz.(a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationin theHandEplanesrespectively. Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 5 ONcopolar ONcopolar 5 o o OFFcopolar 150 0dB 150 OFFcopolar 150o 0dB 150o o 180 180o

φ(deg) θ(deg) (a)(b)

194 CHAPTER4–PLASMAASRADIATINGELEMENT

Hplane(θ=60°) Eplane(φ=0°) o o 0 0dB 0 0dB o o o o 30 -5 30 30 -5 30 -10 -10 60o -15 60o 60o -15 60o -20 -20 -25 -25

90o 90o 90o 90o 25 25 20 20 15 15 o o o o 120 10 120 120 10 120 ONxpolar 5 ONxpolar 5 OFFxpolar 150o 0dB 150o OFFxpolar 150o 0dB 150o 180o 180o

φ(deg) θ(deg) (c)(d)

FigureA.4.4.3–Normalizedmeasuredradiationpatterns,EθandE componentsat800 MHz.(a)(b)CopolarizationintheHandEplanesrespectively.(c)(d)Crosspolarizationin theHandEplanesrespectively.

0 0

5 5

10 10

(dB) 15 15 11 S PlasmaOFF 20 PlasmaON 20 Measuredgain(dBi)

25 25 PlasmaOFF PlasmaON

30 30 0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 450 500 550 600 650 700 750 800 850 900 Frequency(GHz) Frequency(MHz) (a)(b)

FigureA.4.4.4–(a)Measuredmagnitudeofreflectioncoefficients,S11.(b)Measuredantenna gains.

195

CHAPTER5–RADARCROSSSECTION

Chapter5 Radarcrosssection(RCS)

Thischapterinvestigatestheradarcrosssection(RCS)ofplasmareflectorantennas.The basicfundamentalsofradarcrosssectionareexplainedinthefirstpartofthischapter. ThesecondpartdealswithradarcrosssectionanalysisinwhichtheRCSofthewell knownshapesmadeofperfectconductorarecomparedtothesimulationresultsofthe similar shapes with the identical dimensions. The excellent agreements from this comparisonconfirmthatthesimulationsetupandtechniqueusedisvalidanditcanbe usedforfurtherinvestigation.Inthesamesection,thesimulatedRCSofRRAandCRA arepresentedat2.4GHzand8GHz.Inthethirdpartofthischapter,themeasuredRCS of the reflector antenna is presented. Finally, a conclusion is drawn based on the simulatedandmeasuredfindings.

5.1 Introduction

ThetermofradarisanacronymforRadioDirectionAndRange.Theradardetection ability is measured in terms of radar cross section (RCS). The higher value of RCS means the target object can be easily detected by radar. In general, the strength of detection(thestrengthofreflections)isdependingonthesizeofthetargetobject,its shapeanditselectricalparameterssuchasconductivityandrelativepermittivity.

Therefore RCS is an important issue in military radar applications. The quest is alwaystoreducetheRCSvaluessothathostile’sradarwillnotbeabletodetectthe existenceofradartargetsofitscounterpart(suchasantennas,fighterjetsandships). BasicallytherearetwowaystoreducetheRCS[1];byappropriatelydesigntheradar targetsshapeandtheselectionofmaterialstobeused(suchasradarabsorbinglayer material). However it is not easy to come out with less detectable shape since other factors such as aerodynamic specification of complex objects such as fighter jet, missilesorotherflyingobjectsareessential.Ontheotherhand,itisaruleofthumbin reducingRCSbytakingcareoftheobject'sshapesuchasreplacingsquarecornerto roundcorners,avoidflatandconcavesurfaces. Tooptimizetheperformanceofradar target, this rule with the use of right material should be combined. Another way to reducetheRCSistointroducethesecondaryscattererstocancelthe"bare"target.

197 CHAPTER5–RADARCROSSSECTION 5.1.1 Basictypeofradar

Forthebasiccomprehensiontheradardetectionandrangingcanbedividedinto threecategoriesofradarsuchasfollows;

a) Bistatic radar [2] the transmitting and receiving antennas are at different location as viewed from the target. For example the ground transmitter and an airbornereceiverorbothtransmittingandreceivingareonthesamegroundlevelas suggestedinFigure5.1.

b)Monostaticradar[1],[2]thetransmittingandreceivingmodulesareusingthe same antenna. This means that, the transmitting and receiving antennas are collocatedasviewedfromthetarget.

c) Quasi monostatic radar the transmitting and receiving antennas are slightly separatedbutstillappeartobeatthesamelocationasviewedfromthetarget.For theexampletransmitandreceivingantennasareonthesameaircraft.

Wedge Monostaticradar small reflection

θr θi Bistaticradar Receiving Transmitting antenna Large antenna reflection Figure5.1–Monostaticandbistaticreflectionsfromwedge.Themonostaticreflectionfromthe wedgeissmallbutthebistaticreflectionfromtheflatsideofthewedgeislargewiththeangleof reflectionisequaltotheangleofincidence(θr=θi)[2].

Theseradarscanbefurtherclassifiedbasedonitsapplicationpurposes.Table5.1 lists the usage of radars in two main criterions, the civilian and military. Moreover, because of the radar technology advancement, today's cars are likely to be equipped withradardetectionsysteminordertoavoidcollision.

198 CHAPTER5–RADARCROSSSECTION Table5.1Listofradarapplicationsforcivilianandmilitaryusage. Users Applications Civilian Military Weatherdetectionandavoidance √ √ Navigationandtracking √ √ Searchandsurveillance √ √ Highresolutionimagingandmapping √ √ Proximityfuzes √ Countermeasures √ Spaceflight √ Sounding √

5.1.2 DefinitionofRadarCrossSection

Theobjectsthatareilluminatedbytheradarwill reflect energy to some extent. Radar cross section (RCS) or echo area of a target which is defined as the area interceptingthatamountofpowerwhich,whenscatteredisotropically,producesatthe receiveradensitywhichisequaltothatscatteredbytarget[1].TheRCSisaparameter denotedbyσ,usedtocharacterizethescatteringpropertiesofaradartarget.Itrepresents thetarget’ssizeasseenbytheradarandhasthedimensionsofsquaremeters.RCSarea is not the same as physical area, but a measure of a target’s ability to reflect radar signalsinthedirectionofthereceivingantenna.Thus,ingeneral,theRCSofatargetis afunctionofthepolarizationoftheincidentwave,theangleofincidence,theangleof observation,thegeometry ofthetarget,theelectricalpropertiesofthetargetandthe frequencyofoperation.Therefore,twoormoretargetswithsimilarphysicalsizemay havedifferentRCSvalues.

Forthemonostaticradarsystem,let'sstartwiththepowerdensity(W/m2)radiated byanisotropicantennaisequalto

(5.1) andforaradar,adirectiveantennaisusedtodirecttheradiatedpower,Ptinaparticular directionofthetarget.Thusthepowerdensityatthetargetbecomes

(5.2) withtheantennagain,G.Bythedefinitionofradarcrosssection,thetargetissupposed toreradiateisotropicallythepowerthatithasintercepted.Asaresult,thepowerdensity illuminatedtotheradarisequivalentto

199 CHAPTER5–RADARCROSSSECTION

(5.3) Sincetheradarhavingitsownmaximumeffectiveantennaaperture,Ae,thereceived power,Prbytheradarisequalto

(5.4) Thisequationisknownasradarequationandfromthisequationtheradarcrosssection, σbecomes

(5.5)

Bysubstituting inEq.5.5,theRCSequationformonostaticradarisequalto

(5.5) This RCS equation is true for polarizationmatched antennas that are aligned for the maximumdirectionalradiationandreception.TheRCSofsometypicaltargetsarelisted inTable5.2.

Table5.2–TypicalradartargetsandradarcrosssectionvaluesinXband[1]. RCS Radartargets m2 dBsm Pickuptruck 200 23 Automobile 100 20 Jumbojetairliner 100 20 Commercialjet 40 16 Cabincruiserboat 10 10 Largerfighteraircraft 6 7.78 Smallfighteraircraft 2 3 Adultmale 1 0 Conventionalwingedmissile 0.5 3 Bird 0.01 20 Insect 0.00001 50 Advancedtacticalfighter 0.000001 60

200 CHAPTER5–RADARCROSSSECTION 5.2 Radarcrosssection(RCS)analysis

The radar cross section (RCS) of perfectly conducting objects with well known shapessuchassphere,flatplateandcylindercanbeeasilycalculatedbyassumingthe objects are large enough compared to the wavelength. The RCS formulas of these objectsarelistedinTable5.3.Tonote,theRCSofspheredoesnotdependontheradar frequency(wavelength’ssize)anditisequivalenttoitscrosssectionalarea.

Table5.3–RCSformulasforperfectlyconductingobjects[2]. Radartargets RCS(σ) Sphere,radiusa Flatplate,areA Cylinder,radiusa,lengthL

5.2.1 Simulationofradarcrosssectionforclassicalcaseofasphereanda flatplate In this section simulations of classical cases for well known shapes (sphere and squareflatplate)arepresented.ThesimulationsareconductedbyusingCSTsoftware. Thedimensionoftheflatplateis1000mmx1000mmandthesphereiswithradiusof 500mmasillustratedinFigure5.2.

z y θ

x

(a)

201 CHAPTER5–RADARCROSSSECTION

z y θ

x

(b) Figure5.2–Thewellknownshapes.(a)Flatplatewithdimensionof1000mmx1000mm.(b) Spherewithradiusof500mm.Thepolarizationofelectricfield, isalongxaxis.

Aplanewavethatisnormaltothe xy plane is impinged to the objects and the simulatedRCSpatternsforthreefrequencies(2.4GHz,8GHzand10GHz)areshown inFigure5.3.

50 50 2.4GHz 40 2.4GHz 40 8GHz 8GHz 10GHz 10GHz 30 30

20 20

10 10

RCS(dBsm) 0 RCS(dBsm) 0

10 10

20 20

30 30 90 60 30 0 30 60 90 90 60 30 0 30 60 90 θ(deg) θ(deg) (a) (b) Figure5.3–TheRCSpatternofmetallicobjects.(a)PECsquareflatplate.(b)PECsphere.

ThecomparisonbetweenthesimulatedRCSandthetheory(formulasinTable5.3) arelistedinTable5.4.

Table5.4ComparisonbetweensimulatedRCSandcalculatedRCS. Object Frequency(GHz) Calculated(dBsm) Simulated(dBsm) 2.4 29 29.3 Metallic 8 39.5 39.6 plate 10 41 40.9 2.4 1.05 0.4 Metallic 8 1.05 2.7 sphere 10 1.05 0.2

202 CHAPTER5–RADARCROSSSECTION TheTable5.4validatesthatthesimulationsetupgivesgoodresultscomparedtothe theoryandcanbeusedtosimulateothercasessuchasplasmareconfigurableantennas

Forfurtherinvestigations,asetofsimulationsforplasmaobjectswereconducted. Thesimilarsizesofobjectswithrespecttothemetallicobjectswereemployed.Inthe simulationstheplasmafrequencyis7GHzandtheneutralcollisionfrequencyofplasma is900MHz(similarparametersusedinChapter3).Itisgoodtomentionthatplasmais a dispersive material and it behavior is depending on the electromagnetic wave impingedonit.Atcertainfrequencytypicallywhenthefrequencyofanincomingwave ismorethantheplasmafrequency,theincomingwavecansimplypropagatesthrough theplasmaobjectsthusreducingtheRCSlevel.However,thisscenarioisalsotiedby theshapeoftheobject.TheRCSpatternsforplasmaflatplateandsphereareshownin Figure5.4.

30 30 2.4GHz 2.4GHz 20 8GHz 20 8GHz 10GHz 10GHz 10 10

0 0

10 10

RCS(dBsm) 20 RCS(dBsm) 20

30 30

40 40

50 50 90 60 30 0 30 60 90 90 60 30 0 30 60 90 θ(deg) θ(deg) (a) (b) Figure5.4–TheRCSpatternofplasmaobjects.(a)Plasmasquareflatplate.(b)Plasma sphere.(Plasmafrequencyis7GHz).

Basedonthesimulationresults,theRCSofplasmaplatecanbediscussedbasedon theincomingradarfrequencies.At2.4GHztheRCSofplasma(17.5dBsm)isquitethe sametoitcorrespondingmetallicflatplatebecauseoftheplasmaactslikeametalatthis frequency(radarfrequency<<plasmafrequency).Howeverat8GHz(12.5dBsm)and 10GHz(4dBsm),theRCSlevelsofplasmaflatplateareabout20dBand30dBlower thanitsmetalliccounterpartsbecauseatthesefrequenciesplasmabehaveslikealossy dielectricmedium.

203 CHAPTER5–RADARCROSSSECTION 5.2.2 SimulationofRRAradarcrosssection

ThesimulationsofRCSoftheRRAwereperformedfortwoRRAconfigurations whicharethe7and9elementsconfigurations(Chapter3).Aplanewaveisappliedin thedirectionofxasshowninFigure5.5.

y

x

Figure5.5–TheRCSsimulationofRRAwith9elementsconfiguration.Aplanewaveis appliedfromthexdirectionandthepolarizationofelectricfield, isalongzaxis.(Darkblue colorrepresentsplasmawhilethelightbluerepresentsdielectrictubesfilledwithair).

To better compare the RCS of plasma reflector, three RRA conditions were examined.Theseincludewhentheplasmaisinactivatedmode(ON),deactivatedmode (OFF) and also by replacing plasma elements with metallic elements. The ordinary annealedcopperwaschosenastoreplacetheplasma.Thesimulationresultsofthetwo configurations(the7and9elementsconfiguration)areshowninFigure5.6andFigure 5.7.

204 CHAPTER5–RADARCROSSSECTION

20 20 Metal Metal 10 PlasmaON(7elements) 10 PlasmaON(9elements) PlasmaOFF PlasmaOFF

0 0

10 10 RCS(dBsm) RCS(dBsm) 20 20

30 30

40 40 90 60 30 0 30 60 90 90 60 30 0 30 60 90 φ(deg) φ(deg) (a) (b) Figure5.6–TheRCSpatternsofthe7andthe9elementsRRAat2.4GHz.(a)The7 elementsRRA.(b)The9elementsRRA.

20 20 Metal Metal PlasmaON(9elements) 10 PlasmaON(7elements) 10 PlasmaOFF PlasmaOFF

0 0

10 10 RCS(dBsm) RCS(dBsm) 20 20

30 30

40 40 90 60 30 0 30 60 90 90 60 30 0 30 60 90 φ(deg) φ(deg) (a) (b) Figure5.7–TheRCSpatternsofthe7andthe9elementsRRAat8GHz.(a)The7elements RRA.(b)The9elementsRRA.

At2.4GHz,themaximumRCSof7elementsRRA(9.9dBsm)is5dBhigherthan themaximumRCSof9elementsRRA(14.5dBsm).Thearrangementof7activated plasmaelementsmayhelptosumupthescatteringeffectcausedbytheplasmaelements thatactlikeametalthusproducinghigherRCSlevelattheradar.However,forthe9 activated plasma elements this situation is different, where the arrangement of the 9 elementsmaycancelsomeofthescatteringeffectsothatthecorrespondingRCSlevelis lowerthanthe7elementsconfiguration.Forbothconfigurations,theRCSpatternof metallic RRA (7.5 dBsm) is somehow similar with its plasma counterpart (10.5 dBsm).Whentheplasmaisindeactivatedmode,themaximumRCSlevelsofboth configurationsarethesame(22.5dBsm)whichismorethan10dBofRCSsuppression comparedtothetwocorrespondingmetallicRRAs.Hence,at2.4GHzthedeactivated plasmaantennaisjustlikeafurtiveobjectifcomparedtothemetalone.

205 CHAPTER5–RADARCROSSSECTION At frequency of 8 GHz, the RCS patterns of activated and deactivated plasma RRAs are comparable and approximately 10 dBsm (9 dBsm for both ON configurations).IfcomparedthemaximumRCSlevelsofplasmaRRAswithitsmetallic counterparts,thereismorethan10dBreductioninRCSlevel.Therefore,at8GHz,the plasmaantennaishardlytobespottedbyradarsinceitoperatesstealthily.

5.2.3 SimulationofCRAradarcrosssection

FortheCRA,theRCSsimulationswereconductedforthreeconfigurations(CRA1, CRA2 and simultaneously activating CRA1 and CRA2). The plane wave is coming fromthexdirectionasdepictedinFigure5.8.

y

x Figure5.8–TheactivatedCRA2withanincomingplanewaveinthedirectionof–xandthe polarizationofelectricfield, isalongzaxis.(Darkbluecolorrepresentsplasmawhilethe lightbluerepresentsdielectrictubesfilledwithair).

ThesimulationresultsofRCSpatternsforthethreeCRAconfigurationsrepresented inFigure5.9,Figure5.10andFigure5.11,respectively.

206 CHAPTER5–RADARCROSSSECTION

20 20 Metal Metal PlasmaON(S=0.5λ) PlasmaON(S=0.5λ) 10 10 PlasmaOFF PlasmaOFF

0 0

10 10 RCS(dBsm) RCS(dBsm) 20 20

30 30

40 40 90 60 30 0 30 60 90 90 60 30 0 30 60 90 φ(deg) φ(deg) (a) (b) Figure5.9–TheRCSpatternsofactivatedCRA1.(a)2.4GHz.(b)8GHz.

20 20 Metal Metal 10 PlasmaON(S=λ) 10 PlasmaON(S=λ) PlasmaOFF PlasmaOFF

0 0

10 10

RCS(dBsm) 20 RCS(dBsm) 20

30 30

40 40 90 60 30 0 30 60 90 90 60 30 0 30 60 90 φ(deg) φ(deg) (a) (b) Figure5.10–TheRCSpatternsofactivatedCRA2.(a)2.4GHz.(b)8GHz.

20 20 Metal(allelements) Metal(allelements) PlasmaON(allelements) 10 PlasmaON(allelements) 10 PlasmaOFF PlasmaOFF

0 0

10 10

RCS(dBsm) 20 RCS(dBsm) 20

30 30

40 40 90 60 30 0 30 60 90 90 60 30 0 30 60 90 φ(deg) φ(deg) (a) (b) Figure5.11–TheRCSpatternsofsimultaneouslyactivatedCRA1andCRA2.(a)2.4GHz.(b) 8GHz.

207 CHAPTER5–RADARCROSSSECTION At2.4GHz(forthethreeconfigurations),theRCSpatternsaresomehowsimilar betweenplasmaCRAandmetallicCRAandthemaximumRCSlevelsarebelowthan0 dBsm and mainly are between 1 dBsm and 10 dBsm. By deactivating the plasma CRA,themaximumRCSisreducedfromitsrespectiveactivatedplasmabymorethan 10dBasshowninFigure5.9(a),Figure5.10(a)andFigure5.11(a).

Iftransmittingradarisworkingat8GHz,theactivatedplasmaCRA(CRA1(5.5 dBsm),CRA2(5dBsm))ishardlytobedetectedifcomparedtoitsmetallicequivalent (8.5 dBsm and 11.1 dBsm, respectively). Moreover, the deactivated plasma CRA exhibitssimilarRCSpatternaswhentheplasmaCRAisinactivatingmode.Ingeneral, whethertheplasmaCRAisoperateornot,itscorrespondingmaximumRCSlevelisfar below than it corresponding metallic CRA (>10 dBsm). This is true for all configurationsascanbeseeninFigure5.9(b),Figure5.10(b)andFigure5.11(b).

5.3 Measurement of radar cross section of reconfigurable reflectorantenna In the beginning of this research work, the radar cross section measurement was conducted in an anechoic chamber for the round reflector antenna (RRA). The measurementsetupconsistsofanetworkanalyzerandapairofwidebandhornantennas withagainof10dBiat2.4GHz(refertoAppendix2.1).Theantennawasmountedona rotatorpillarwhichislocated8.6meterawayfromthehornantennas.Therotatorcanbe controlledsothatthedesiredDUTsurfacecanbemadefacingthehornantenna.The polarization of the horn antennas is similar with the RRA (horizontalhorizontal polarization). This polarization is corresponding to the polarization in simulation. PhotographsofthemeasurementsetupareshowninFigure5.12.

(a)(b)

208 CHAPTER5–RADARCROSSSECTION

(c)(d) Figure5.12–PhotographofRCSmeasurementsetup.(a)(b)TheRRAismountedonarotator. (c)(d)Twowidebandhornantennasareplaceonatowerwhichis8.6awayfromtheDUT.

In order to get the RCS level of the RRA, the data of measured transmission

coefficient(S21)whichweregatheredfromthemeasurementhavetobeprocessedand calculatedbyusingEq.5.5.

However, due to the far distance (8.6 meter) between horn antennas and AUT (RRA),thecalculatedRCSlevelsyieldedfromthemeasurementwerenotvalid.Thisis because the coupling between the two horn antennas (56.33 dB) is higher than the

anticipatedS21(simulation)oftheRRAforthesimilarmeasurementsetup.Furthermore, themeasurementisabouttomeasureverylowRCSlevel.Asaresult,outputfromthe measurement was incorrect since the measurement was measuring signal below than noise level. To overcome this problem which is due to the coupling between horn antennas and the separation distance between transmitter and target, the RCS measurementshavebeenconductedusingonly onehornantenna asshowninFigure 5.13.

Figure5.13–SinglehornantennaisbeingutilizedduringRCSmeasurement.Thetransmitter andthetargetareseparatedwithadistanceof3.58meter.

209 CHAPTER5–RADARCROSSSECTION The horn antenna placement in the anechoic chamber is about 3.58 meter from AUTswhichis5.02meterlesserthanthepreviousmeasurementsetup.Thesamesetup wasappliedtomeasureRCSofCRAwiththehelpofcontrollablemountingrotator.The photographsoftheCRAduringmeasurementareshowninFigure5.14.

(a)(b) Figure5.14–TheCRAismountedonarotator.(a)ThefrontviewofCRAthatisdirectfacingto thetransmitter.(b)ThesideviewoftheCRA.

Ingeneral,theRCSmeasurementisquitedifficulttobeconductedbecauseofthe existencealotofunknownparameters.Thusbyconductingthemeasurementsandby takingintoaccountfactorsthatcouldinfluencetheresults,themeasurementsaresetto aimanestimationofRCSofthetwoantennas(RRAandCRA).InordertogettheRCS estimation,severalmeasurementsneedtobeconductedsothatthedatagatheredarethe desiredones.Asaresultofthesemeasurements,therearefourvariablesthathavebeen indentifiedwhicharehornantennamismatch,hornantennatransferfunction,targetand the diffraction in chamber as illustrated in Figure 5.15. The factors due to the horn antenna are independent of rotator angle and the diffraction occur in the chamber is partiallyindependentoftherotatoranglewhichincludesthebackofthechamber.By knowingthedependencyoftheseparameterswiththemeasurementsetup,thedatacan betranslatedintoinformationofplasmaRCS.TheresultswereprocessedusingMatlab byapplyingFouriertransformandtimegatewhichwasbyapplyingHanningwindow.

Figure5.15–Radarcrosssectionvariablesduringmeasurement.

210 CHAPTER5–RADARCROSSSECTION ThemeasurementresultsaredepictedinFigure 5.16,where Figure5.16(a)isfor RRAwith7elementsandFigure5.16(b)isforCRA2.Sincetheresultswereyielded from real monostatic RCS measurement, the only information that can be compared withsimulationistheeffectofthepresence(ON)andtheabsence(OFF)ofplasmaat equalsto0°.ForthatreasontheestimationofRCSforRRAandCRA2are3dBand19 dB at comparison point. This is much lower than what have been expected in the simulations.Asmentionearlieraboutthedifficultiestoconductsuchmeasurement,itis adequatetoprovethatwithplasmaimplementationasantennaelement,theRCScanbe reducedtocertainlevelwithregardtotheoperatingfrequencyoftheradar.

ONandOFFdifferenceHHpolarization ONandOFFdifferenceHHpolarization 20 35 RRA7elements 30 CRA2 15 25

20 10 15 Ratio(dB) Ratio(dB)

10 5 5

0 0 30 25 20 15 10 5 0 5 10 15 20 25 30 30 25 20 15 10 5 0 5 10 15 20 25 30 φ(deg) φ(deg) (a) (b) Figure5.16–TherealmonostaticRCSestimationofplasmareflectorantennasat2.4GHz.(a) RRAwith7activatedelements.(b)CRA2.

5.4 Conclusion

Asmentionedinliteratures,implementationofplasmaasantennaelementcanlower downtheradarcrosssection.Thesescenarioshavebeenproveninthesimulationresults gatheredfromthisstudy.Byreplacingmetallicelementswithplasmaelements,theRCS ofreflectorantennas(RRAandCRA)wereseentoimprove.

Generally,theRCSperformancesofplasmareflectorantennasarecomparabletoits metalliccounterpartswhentheradartransmittingat2.4GHz.Thissimilarityisdueto theplasmaitselfsinceitbehaveslikeametalliconeatfrequencieslowerthanplasma frequency. However, when the radar is working within X band frequencies, the maximum RCS of plasma reflector antennas is more than 10 dB below than the maximumRCSofitsmetallicequivalents.Theplasmawillallowmicrowavesignalto propagatethroughitiftheincomingmicrowavesignalishigherthanplasmafrequency. ThisconditionexplainsthereductionofplasmaRCSlevelandmoreover,regardlessthe plasmaantennasareactivatedornot,theplasmaRCSpatternsaresimilar.

211 CHAPTER5–RADARCROSSSECTION Inallsimulationcasesthathavebeendiscussedearlier,themaximumRCSlevelof metallicreflectorantennascanbesuppresseduptomorethan10dBbydeactivating plasma if plasma is used to replace the metallic elements of the reflector antennas. Therefore, the plasma RRA and CRA are barely to be detected by radar since these antennasbehavelikeafurtiveobjectwhentheplasmaisdeactivated.

The RCS measurements of RRA and CRA have been conducted with the best capabilitiesofthelab’sfacilities.EventhoughitisquitehardtogettheactualRCSof thesetwoantennasbecauseofthenatureofthedesiredsignal,theestimationresultsare adequateenoughtoprovethattheimplementationofplasmacansuppresstheRCSof theparticularantennawithregardtoitsmetalliccounterparts.

212 CHAPTER5–RADARCROSSSECTION References [1] C.A.Balanis,"Fundamentalparametersofantennas,"inAntennaTheoryAnalysisand Design3rdEdition,JohnWiley&Sons,NJ:Hoboken,2005,pp.27115. [2] J. D. Kraus, R. J. Marhefka, "Antenna temperature, remote sensing and radar cross section,"inAntennasforAllApplications3rdEdition,McGrawHill,NY:NewYork, 2002,pp.401426.

213

GENERALCONCLUSION

Generalconclusion

The implementation of plasma medium in communication systems is very interestingsinceplasmacanbeformedandextinguishedinmilliseconds.Eventhough, literaturespertainingtothephysicsofplasmaaregreatlyextensive,onlyafewpapers deal with plasma reflectors and plasma antennas realization especially in ISM band frequencies. Especially in terms of validation of simulation results through measurements.

Thereforeinthebeginningofthisthesisabriefreviewofplasmaasthefourthstate ofmattershasbeendiscussed.Thecutofffrequencyofplasmaisverycrucialtodefine plasmaworkingregionandastheplasmacomplexpermittivityisalsodependingonthe cutoffandtransmittingfrequencies,itisnecessarytoestimatethevaluesofthesetwo parameters. Several experiments have been conducted to get an approximation of plasma cutoff frequency and the electronneutral collision frequency. Based on the measurementresultsthefrequenciesof7GHzand900MHzareidentifiedtobeplasma frequency and the electronneutral collision frequency. These parameters values are adequatetorepresenttheactualplasmamodel.

Two types of plasma reflector antennas have been simulated, fabricated and measured.ThefirstoneisRRAandthesecondoneisCRA.TheperformancesofRRA have been validated and it was proven to provide beam shaping and beam scanning capability. The measured radiation patterns are in a good agreement with simulation ones.Themeasuredgainis5dBmorethanthegainofclassicalmonopoleantennawith anidenticalsizeoffinitegroundplane.Crosspolarizationremainslowandfronttoback ratio(f/b)ismorethan10dB.ThecapabilityofRRAisexceptionalsinceitcansteerits mainbeamfrom0°upto360°.Moreover,thescanninggainremainsthesameasthe mainbeamisbeingmovedfromonedirectiontoanother.

TheCRAthathasbeenintroducedinthisthesisisanoveldesignsinceitintegrates two cornerreflector antennas on a single ground plane. The CRA offers three beam shapes which are electrically switchable from one shape to another. The CRA was simulated,fabricatedandfinallyitsperformanceswerevalidatedthroughoutaseriesof agilemeasurements.Themeasuredreflectedradiationpatternsareingoodagreements withthesimulationones.Themeasuredgainsare5dBhigherthanthegainofclassical monopoleantennawithanidenticalsizeoffinitegroundplaneandnottoforgetthe crosspolarizationremainslowandthef/bismorethan10dB.

TheRRAandCRAweremeasuredwithdifferentelementheightsbyintroducinga secondlayergroundplane.Theobjectiveofthismeasurementistoverifythesereflector performancesatthreedifferentheightssothatitcanmimicthecompactversionofthe

215 GENERALCONCLUSION RRAandCRA.Indeed,theantennasperformancesaresatisfactorywithshorterelement height(54mm).Thus,basedonthereflectorperformances,itwasproventhat,theRRA andCRAcanbefabricatedincompactsizeusingcommerciallyavailableplasmasource.

The quick prove of the reflectors reconfigurability was demonstrated through its switchablepatterns.Sincethemeasuredresultsarehighlycomparabletothesimulated ones,plasmamodeldefinedinthesimulationcanbeusedtoanalyzetheparticularCFL forotherantennadesigns.Inaddition,itisworthtoemphasizethattheresultsinthe investigation has confirmed that the dielectric tubes used to enclose plasma have no majoreffectonquarter wave antennaradiationpattern.This conclusionwasmadeby takingintoaccountthesuperthinphosphorlayerinsidethedielectrictubes.Ingeneral, thefabricatedplasmaRRAandCRAhavedemonstratedthatitcanofferextraflexibility thatcannotbeofferedbyanyothertraditionalmetallicreflector.

Byusingthesimilarplasmasource(CFL),twoplasmaantennas(hradiate=35.7mm andhradiate=77mm)werefabricatedandmeasuredat900MHzand450MHz.Basedon themeasurementresults,itcanbeconcludedthat,thecompactfluorescentlamp(CFL) with an AC excitation can be used to radiate radio signals. However, the feeding techniqueandthelocationoffeedingpointplayimportantroleindeterminingplasma antennaperformance.Theradiationpatternsofthetwoplasmaantennasmeasuredfrom 450 MHz to 900 MHz are quite similar to the radiation pattern of classical dipole antenna.Therefore,ifthefabricatedantennasaremeanttoworkasmonopoleantenna, theycanbefurtheroptimizedtoexhibitbetterperformance.

Asdiscussedinliteratures,implementationofplasmaasantennaelementcanreduce the percentage of metallic materials therefore could minimize the radar cross section. These scenarios have been proven in the simulation results shown in this thesis. By replacing metallic elements with plasma elements, the maximum RCS of reflector antennas (RRA and CRA) were improved. The maximum RCS level of metallic reflectorantennascanbereducedtomorethan10dBbydeactivatingplasmaifplasma isusedtoreplacethemetallicelementsofthereflectorantennas.Forthehigherradar frequencysuchasintheXband,theRRAandtheCRAarebarelytobedetectedwhen comparingtoitsrespectingmetallicreflectorantennas.

216 PERSPECTIVEANDFUTUREWORKS

Perspectiveandfutureworks

Basedontheworksdoneonplasmaantennas,thefollowingaresomeotherprospective studiesthatcanbecarriedoutinfuture:

a) Sincethereconfigurableplasmaroundreflectorantenna(RRA)andtheplasma cornerreflectorantenna(CRA)wereproventoworkat2.4GHz,theseantenna can also be designed and optimized to operate at other frequencies such as at GSMfrequencyband(900MHzwith890MHz915MHzuplinkfrequencies and935MHz960MHzdownlinkfrequencies).Anewplasmamodelhastobe developed in order to accommodate the loss sensitivity in plasma at lower frequencyband.

b) ThecompactversionofCRAandRRAworkingat2.4GHzcanalsoberealized byusingsmallercompactfluorescentlamps.Thisisbecausethemeasurement resultstomimicsimilarcasesreportedinthisthesishaveshowngoodantenna performances.

c) ThenoveldesignofreconfigurableCRAat2.4GHzcanbefurtherenhancedso thatthemainbeamcanbeswitchedfrom0°to180°.Thepreliminarysimulation ofthisdesignisillustratedinthefigurebelow.

y

x

TheproposedreconfigurableCRAthatcanmoveitsmainbeamdirectionfrom0°to180°.The (Darkbluecolorrepresentsplasmawhilethelightbluerepresentsdielectrictubesfilledwith air).

217 PERSPECTIVEANDFUTUREWORKS d) Based on the research works done on plasma antenna and also the results of fabricated plasma antenna, it can be conclude that, the fabricated plasma antennasinthisresearchworksneedtoundergoneanoptimizationprocess.A new research work could be brought forward to further analyze the plasma antennacouplingpartforthespecificplasmasource(theCFLusedinthisstudy). Especiallyonthefeedingtechniqueinordertotransferthemaximumavailable powertoplasmaantennaandalsoonhowtoreducethebackradiationobserved inthisstudy.

218 PUBLICATIONS

Listofpublications

Peerreviewedinternationaljournals M.T.Jusoh,O.Lafond,F.Colombel,M.Himdi,"Performanceandradiationpatternsofa reconfigurableplasmacornerreflectorantenna",IEEEAntennasWirelessPropag.Lett.,vol. 12,pp.11371140,Sept.2013. M.T.Jusoh,O.Lafond,F.Colombel,M.Himdi,"Performanceofareconfigurablereflector antennawithscanningcapabilityusinglowcostplasmamedium,"Micro.Opt.Tech.Lett., vol.55,no.12,pp.28692874,Dec.2013. Peerreviewedinternationalconferences M. T. Jusoh, O. Lafond, F. Colombel, M. Himdi, "Scanning capability of reconfigurable plasmareflectorantenna,"inProc.43rdEuMC,pp.8083,2013. M. T. Jusoh, O. Lafond, F. Colombel, M. Himdi, "Realization of a Dual Dihedral Corner ReflectorAntennabyUsingLowCostPlasma,"inProc.8thEuCAP,April,2014.

219

VU : VU :

Le Directeur de Thèse Le Responsable de l'École Doctorale

VU pour autorisation de soutenance

Rennes, le

Le Président de l'Université de Rennes 1

Guy CATHELINEAU

VU après soutenance pour autorisation de publication :

Le Président de Jury, (Nom et Prénom)

Abstract Plasma is the 4th state of matter with complex permittivity that can be exploited to give advantages in communicationsystem.Itsnegativepermittivityhasbeenstudiedinmanyresearchpapersanditwasprovento havesimilarcharacteristicsasmetalmaterialintermsofelectricalconductivity.Whilekeepingpermeabilityin thepositiveregion,plasmawillrespondtoelectromagneticwavesinthesimilarmannerasmetal.Therefore,this thesisaimedtouseplasmaasanalternativetometalintheconstructionofreconfigurableantennas.Thefirstpart ofthisthesisisdedicatedtocharacterizeaplasmamodelbasedonthecommerciallyavailableplasmasource. Since there are many type of plasma source in terms of their electrical properties and physical shapes, it is importanttocharacterizeaparticularplasmasourcesothatitcanbemodeledinsimulationstoconstructother typesofplasmaantennas.Thesecondpartpresentstherealizationofplasmareflectorantennas.Twotypesof plasmareflectorantennashavebeensimulated,fabricatedandmeasuredat2.4GHz.Thefirstoneisareround reflectorantenna(RRA)andthesecondoneiscornerreflectorantenna(CRA).TheperformancesofRRAhave beenvalidatedanditwasproventoprovidebeamshapingandbeamscanningcapability.Themeasuredradiation patternsareinagoodagreementwithsimulationones.ThecapabilityofRRAisexceptionalsinceitcansteerits mainbeamfrom0°upto360°.Moreover,thescanninggainremainsthesameasthemainbeamisbeingmoved from one direction to another. The CRA that has been introduced in this thesis is a novel design since it integratestwocornerreflectorantennasonasinglegroundplane.TheCRAoffersthreebeamshapeswhichare electrically switchable from one shape to another. The CRA was simulated, fabricated and finally its performances were validated throughout a series of agile measurements. The measured reflected radiation patternsareingoodagreementswiththesimulationones.ThemeasuredgainsoftheRRAandCRAare5dB higherthanthegainofclassicalmonopoleantennawithanidenticalsizeoffinitegroundplane.Thefourthpart deals with plasma as radio waves radiator. Two plasma antennas using commercially available Ushaped compactfluorescentlamp(CFL)havebeenfabricatedandmeasuredanditwasproventhattheseantennascanbe to radiate radio signal. The last part discusses about radar cross section performance of the plasma reflector antennas. The two plasma reflector antennas (RRA and CRA) were tested and measured for their RCS performance. Keywords : Reconfigurable antenna, plasma antenna, reflector antenna, reconfigurable plasma antenna, reconfigurablereflectorantenna Résumé Lemilieuplasmacorrespondau4èmeétatdelamatièreprésentantunepermittivitédiélectriquecomplexequipeut être exploitée pour les systèmes de communication. Sa permittivité négative a été étudiée dans de nombreux travauxderecherchedémontrantqueleplasmapeutavoirdescaractéristiquessimilairesàcellesd’unmétalen termes de conductivité électrique. En considérant une perméabilité positive, le plasma peut ainsi réagir de la mêmemanièrequ’unmétalenprésenced’uneondeélectromagnétique.Cettethèseapourobjectifdedémontrer queleplasmaestunealternativeaumétalpourlaréalisationd’antennesreconfigurables.Lapremièrepartiedu travailconcernelacaractérisationdumilieuplasmaenutilisantdessourcesplasmacommercialesàsavoirdes lampes à Néon. Cette caractérisation est primordiale afin de pouvoir ensuite simuler ce type de source. La secondepartiedesrecherchesaconcernélaconceptionetlaréalisationd’antennesplasmareconfigurablesen rayonnementetceciàlafréquencede2.4GHz.Lepremierconceptestunréflecteurcirculaireetlesecondun réflecteuràangledroittouslesdeuxréalisésàpartirdedifférenteslampesàNéonetilluminésparuneantenne source monopole. Le réflecteur circulaire permet de dépointer le faisceau d’antennes sur 360° alors que le réflecteuràangledroitpermettredereconfigurerlefaisceaurayonnantetdepasserd’unfaisceaudirectifàdeux faisceauxavecuncreuxdansl’axe.CesdispositifsrayonnantsinnovantsbaséssurdeslampesàNéonontété validés expérimentalement et les résultats de mesure (S11 et rayonnement) sont en bonne adéquation avec les résultatsdesimulation.Cesdeuxtypesd’antennesréflecteurspossèdentégalementdebonsrésultatsentermes de gain, ce qui valide l’utilisation et la caractérisation des lampes plasma de commerce utilisées. Dans la troisième partie du travail, ce même type de lampe à néon a été utilisé pour concevoir cette fois un élément rayonnantexcitéparcouplagecapacitif.Laréalisationd’unprototypeàpermisdedémontrerlafaisabilitéd’une tellesourcerayonnante.Enfin,ladernièrepartiedesrecherchesconcerneuneétudedelaSurfaceEquivalente Radardesantennesréflecteurconçuesprécédemment.L’étudeadémontréquecesantennesréflecteursplasma présentent des SER largement inférieures lorsqu’elles sont éteintes ainsi qu’à fréquence haute (8 GHz) comparativementàcellesd’antennesmétalliqueséquivalentescequienfaitdesantennesfurtivesd’unpointde vueradar. Motsclés:Antennereconfigurable,antenneàplasma,antenneréflecteur,antenneàplasmareconfigurable, antenneréflecteurreconfigurable