Taoglas Catalog
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ANTENNAS for LOW POWER APPLICATIONS Basic Full
ANTENNAS FOR LOW POWER APPLICATIONS By Kent Smith Introduction: There seems to be little information on compact antenna design for the low power wireless field. Good antenna design is required to realize good range performance. A good antenna requires it to be the right type for the application. It also must be matched and tuned to the transmitter and receiver. To get the best results, a designer should have an idea about how the antenna works, and what the important design considerations are. This paper should help to achieve effective antenna design. Some Terms: Wavelength; Important for determination of antenna length, this is the distance that the radio wave travels during one complete cycle of the wave. This length is inversely proportional to the frequency and may be calculated by: wavelength (cm)=30000 / frequency (Mhz). Groundplane; A solid conductive area that is an important part of RF design techniques. These are usually used in transmitter and receiver circuits. An example is where most of the traces will be routed on the topside of the board, and the bottom will be a mostly solid copper area. The groundplane helps to reduce stray reactances and radiation. Of course, the antenna line needs to run away from the groundplane. dB, or decibel; A logarithmic scale used to show power gain or loss in an rf circuit. +3 dB is twice the power, while -3 dB is one half. It takes 6 dB to double or halve the radiating distance, due to the inverse square law. The Basic Antenna, and how it works. An antenna can be defined as any wire, or conductor, that carries a pulsing or alternating current. -
High Frequency Communications – an Introductory Overview
High Frequency Communications – An Introductory Overview - Who, What, and Why? 13 August, 2012 Abstract: Over the past 60+ years the use and interest in the High Frequency (HF -> covers 1.8 – 30 MHz) band as a means to provide reliable global communications has come and gone based on the wide availability of the Internet, SATCOM communications, as well as various physical factors that impact HF propagation. As such, many people have forgotten that the HF band can be used to support point to point or even networked connectivity over 10’s to 1000’s of miles using a minimal set of infrastructure. This presentation provides a brief overview of HF, HF Communications, introduces its primary capabilities and potential applications, discusses tools which can be used to predict HF system performance, discusses key challenges when implementing HF systems, introduces Automatic Link Establishment (ALE) as a means of automating many HF systems, and lastly, where HF standards and capabilities are headed. Course Level: Entry Level with some medium complexity topics Agenda • HF Communications – Quick Summary • How does HF Propagation work? • HF - Who uses it? • HF Comms Standards – ALE and Others • HF Equipment - Who Makes it? • HF Comms System Design Considerations – General HF Radio System Block Diagram – HF Noise and Link Budgets – HF Propagation Prediction Tools – HF Antennas • Communications and Other Problems with HF Solutions • Summary and Conclusion • I‟d like to learn more = “Critical Point” 15-Aug-12 I Love HF, just about On the other hand… anybody can operate it! ? ? ? ? 15-Aug-12 HF Communications – Quick pretest • How does HF Communications work? a. -
3794 Series Granger Wideband Conical Monopole Antennas
3794 Series Granger Wideband Conical Monopole Antennas ● 2-30 MHz Bandwidth permits Frequency change without antenna tuning ● Up to 25 KW average power rating ● 50 Ohm input provides 2.0:1 nominal VSWR without impedance transformers ● Single tower ● Short, medium, long-range communications General Description The Model 3794 series antenna is a vertically polarized, omnidirectional broadband antenna for transmitting or receiving applications. It is designed for high power area coverage. The 3794 Wideband Conical Monopole Antenna is an inverted cone- like structure with it’s apex pointing downwards. The array is supported by a 17 inch (431 mm) face steel guyed tower and consists of a number of evenly spaced radiator wires. The radiators spread out from the tower top to an outer guyed catenary then converge back down at the tower base. The antenna is fed at the apex of the cone through a 50 ohm coaxial connector. A ground screen is laid over the area below the antenna and consists of a radial pattern of wire laid on the ground with it’s centre at the apex of the antenna. The radiating elements of the array are prefabricated to facilitate installation. All radiators are manufactured from aluminum clad steel wire for maximum conductivity and corrosion resistance. The mechanical arrangement provides high strength while keeping both manufacturing and installation costs to a minimum. Application The 3794 Wideband Conical Monopole Antenna Series provides a cost effective solution for the vertical omnidirectional antenna if the reduced ground area offered by the 1794 Monocone is not required. The broad frequency range permits use of the optimum frequency for any distance. -
Performance Analysis of Helical Antenna for Different Physical Structure
International Journal of Innovative Research in Electronics and Communications (IJIREC) Volume 5, Issue 4, 2018, PP 21-25 ISSN 2349-4050 (Online) & ISSN 2349-4042 (Print) DOI: http://dx.doi.org/10.20431/2349-4050.0504004 www.arcjournals.org Performance Analysis of Helical Antenna for Different Physical Structure Rahul koshti1, Simran Yadav2, Shikha Sharma3 MPSTME, NMIMS, Shirpur *Corresponding Author: Rahul koshti, MPSTME, NMIMS, Shirpur Abstract: Wireless technology is such of the potent areas of scan in the presence of communication systems today and a design of communication systems is incomplete without a perspective of the activity and fabricatio n of antennas. Helical antenna is used as easily done and shrewd radiators completely the get by few decades, this antenna can be utilized as an encourage for an explanatory dish for higher additions.. So in this we have varied various parameters of helical antenna. Manipulations for this helical antenna antenna have been done with the assist of Matlab softwar Keywords: helical antennas, Antenna gain, Directivity. 1. INTRODUCTION In 1946 Kraus invented the helix form of antenna that is helical antenna. For longer period of time this helical antenna gets famous. [1] Helical antennas are further called as unfiled helix. By the all of diameter D in large helical antenna is revitalizing by a coaxial line along the little ground plane. In communication system helical antenna have a very large approach, so there is a foist of broadband circular polarized antennas [2].This antenna is most significantly used nowadays in point communications, telephone, and television and Information communication. The normal mode helical antenna is particularly attractive for mobile communication and adaptable equipment [3].The shape of helix antenna is a cross breed of two straightforward emanating essentials, the dipole and circle reception apparatuses. -
An Electrically Small Multi-Port Loop Antenna for Direction of Arrival Estimation
c 2014 Robert A. Scott AN ELECTRICALLY SMALL MULTI-PORT LOOP ANTENNA FOR DIRECTION OF ARRIVAL ESTIMATION BY ROBERT A. SCOTT THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Adviser: Professor Jennifer T. Bernhard ABSTRACT Direction of arrival (DoA) estimation or direction finding (DF) requires mul- tiple sensors to determine the direction from which an incoming signal orig- inates. These antennas are often loops or dipoles oriented in a manner such as to obtain as much information about the incoming signal as possible. For direction finding at frequencies with larger wavelengths, the size of the array can become quite large. In order to reduce the size of the array, electri- cally small elements may be used. Furthermore, a reduction in the number of necessary elements can help to accomplish the goal of miniaturization. The proposed antenna uses both of these methods, a reduction in size and a reduction in the necessary number of elements. A multi-port loop antenna is capable of operating in two distinct, orthogo- nal modes { a loop mode and a dipole mode. The mode in which the antenna operates depends on the phase of the signal at each port. Because each el- ement effectively serves as two distinct sensors, the number of elements in an DoA array is reduced by a factor of two. This thesis demonstrates that an array of these antennas accomplishes azimuthal DoA estimation with 18 degree maximum error and an average error of 4.3 degrees. -
Investigating Energy Harvesting Technology to Wirelessly Charge Batteries of Mobile Devices
Investigating energy harvesting technology to wirelessly charge batteries of mobile devices By Neetu Ramsaroop (19751797) Submitted in fulfilment of the requirements of the Master of Information and Communications Technology degree In the Department of Information Technology in the Faculty of Accounting and Informatics Durban University of Technology Durban, South Africa July, 2017 DECLARATION I, Neetu Ramsaroop, declare that this dissertation represents my own work and has not been previously submitted in any form for another degree at any university or institution of higher learning. All information cited from published and unpublished works have been acknowledged. ________________________ ____________________________ Student Date Approved for final submission Supervisor: ___________________________ ____________________________ Prof. O. O. Olugbara Date Co-supervisors: ___________________________ ____________________________ Esther D. Joubert Date i DEDICATION To My family and my supportive friends ii ACKNOWLEDGMENTS I am grateful to God for embracing me with the strength and inspiration all through this research journey. My sincere gratitude is accorded to my Supervisor, Professor O.O. Olugbara, for his dedication, academic knowledge, expertise, guidance, patience, direction, feedback, comments and meticulous checking of this study. Not to mention his “reminder” phone calls to keep me in check. I would also like to express my deepest appreciation to my Co-Supervisor, Mrs Esther Joubert, for her dedication, constant encouragement, guidance, motivation, outstanding academic writing, patience with my messages at odd hours, dealing with my panic moments and the pleasant manner in which she provided direction in this study. I am thankful to all my friends, DUT colleagues and work colleagues for their support, motivation and advice during this work. -
The 3-D Folded Loop Antenna
The 33---DD Folded Loop Antenna Dave Cuthbert WX7G Introduction This article will introduce you to an antenna I call the 3-Dimensional Folded Loop. This antenna is the result of my continuing efforts to compact full-size antennas by folding and bending the elements. I will first describe the basic 3-DFL and then provide construction details for the 2-meter and 10-meter 3-DFL antennas. Here are some features of the 3-DFL: • Reduced height and footprint • Full-sized antenna performance • Wide bandwidth • Ground independent • Can be built using standard hardware store parts Description The 3-D Folded Loop, or simply the 3-DFL, is a one-wavelength loop that is reduced in height and width by being folded into three dimensions. A 28-MHz loop that is normally 9 feet on a side becomes a box-shaped antenna that is 3 by 3 by 5 feet. It exhibits performance that is competitive with a ground plane yet requires only 15 square feet of ground area versus 50 for the ground plane. So, compared to a ground plane it is only 60% as tall and has a footprint only 30% as large. And the 2-meter 3-DFL is so compact it can be placed on a table and connected to your HT for added range and reduced RF at the operating position. 1 3-DFL Theory of Operation The familiar one-wavelength square loop is shown in Fig. 1 and is fed in the center of one vertical wire. Note that the current in the vertical wires is high while the current in the horizontal wires and is low. -
A Flexible 2.45 Ghz Rectenna Using Electrically Small Loop Antenna
A Flexible 2.45 GHz Rectenna Using Electrically Small Loop Antenna Khaled Aljaloud1,2, Kin-Fai Tong1 1Electronic and Electrical Engineering Department, University College London, London, UK, [email protected] 2Electrical Engineering Department, King Saud University, Riyadh, Saudi Arabia Abstract—We present the concept and design of a compact schlocky diode connected in series to one of the two feed flexible electromagnetic energy-harvesting system using electri- terminals of the antenna and to the coplanar transmission line, cally small loop antenna. In order to make the integration of the a capacitor to minimize the ripple level. The reported system system with other devices simpler, it is designed as an integrated system in such a way that the collector element and the rectifier in this letter is sufficiently capable of reusing low microwave circuit are mounted on the same side of the substrate. The energy for both flat and curved configurations. rectenna is designed and fabricated on flexible substrate, and its performance is verified through measurement for both flat and curved configurations. The DC output power and the efficiency II. DESIGN AND RESULT are investigated with respect to power density and frequency. It is observed through measurements that the proposed system The two main parts of rectenna system are largely designed can achieve 72% conversion efficiency for low input power level, individually and unified through the matching network. In this -11 dBm (corresponding power density 0.2 W=m2), while at the work, the proposed rectenna is built as an integral system, and same time occupying a smaller footprint area compared to the thus the rectifier circuit is matched to the collector to maximize existing work. -
The Classic Rain-Gutter Loop Antenna – Is It Any Good?
The Classic Rain-Gutter Loop Antenna – Is it any Good? A simple technical look at an HF horizontal loop of wire strung around your house at rain-gutter height, plus. some novel loop disguise techniques. By John Portune W6NBC Compromise disguise antennas are no strangers to hams, especially on HF. But which ones are worth the effort? We often just put them up and hope for the best. But when I moved to a CC&R restrictive mobile home park recently, I wanted better answers, particularly for the classic rain-gutter loop, Figure 1. I couldn’t put up more of an HF antenna without the neighbors noticing. But was it any good, or only little more than a dummy load? Figure 1: Classic rain-gutter-height loop, elevated on standoffs (stylized for emphasis) To find out, I challenged the rain-gutter loop with EZNEC antenna modeling software. This required best-case and worst-caswe models to encompass most house variables: (1) two loop heights, (2) two house types and (3) several bands. These would place most houses somewhere within these limits. Loop heights were: 10 ft. (rain-gutter height) and 25 ft. (a more conventional loop height). House types were: all wood (best case) and stucco/chicken wire (worst case). Bands were: 40M, 20M and 10M. Why didn’t I include 80M and 160M? Well, I did at first, but right up front, EZNEC revealed something very important about horizontal loops – Rule of Thumb 1. RULE OF THUMB 1 To be efficient, a closed loop must have a perimeter greater than one wavelength (1λ) on the lowest band in use. -
3.1Loop Antennas All Antennas Used Radiating Elements That Were Linear Conductors
SECX1029 ANTENNAS AND WAVE PROPAGATION UNIT III SPECIAL PURPOSE ANTENNAS PREPARED BY: MS.L.MAGTHELIN THERASE 3.1Loop Antennas All antennas used radiating elements that were linear conductors. It is also possible to make antennas from conductors formed into closed loops. Thereare two broad categories of loop antennas: 1. Small loops which contain no morethan 0.086λ wavelength,s of wire 2. Large loops, which contain approximately 1 wavelength of wire. Loop antennas have the same desirable characteristics as dipoles and monopoles in that they areinexpensive and simple to construct. Loop antennas come in a variety of shapes (circular,rectangular, elliptical, etc.) but the fundamental characteristics of the loop antenna radiationpattern (far field) are largely independent of the loop shape.Just as the electrical length of the dipoles and monopoles effect the efficiency of these antennas,the electrical size of the loop (circumference) determines the efficiency of the loop antenna.Loop antennas are usually classified as either electrically small or electrically large based on thecircumference of the loop. electrically small loop = circumference λ/10 electrically large loop - circumference λ The electrically small loop antenna is the dual antenna to the electrically short dipole antenna. That is, the far-field electric field of a small loop antenna isidentical to the far-field magnetic Page 1 of 17 SECX1029 ANTENNAS AND WAVE PROPAGATION UNIT III SPECIAL PURPOSE ANTENNAS PREPARED BY: MS.L.MAGTHELIN THERASE field of the short dipole antenna and the far-field magneticfield of a small loop antenna is identical to the far-field electric field of the short dipole antenna. -
Broadband Antenna 1
Broadband Antenna Broadband Antenna Chapter 4 1 Broadband Antenna Learning Outcome • At the end of this chapter student should able to: – To design and evaluate various antenna to meet application requirements for • Loops antenna • Helix antenna • Yagi Uda antenna 2 Broadband Antenna What is broadband antenna? • The advent of broadband system in wireless communication area has demanded the design of antennas that must operate effectively over a wide range of frequencies. • An antenna with wide bandwidth is referred to as a broadband antenna. • But the question is, wide bandwidth mean how much bandwidth? The term "broadband" is a relative measure of bandwidth and varies with the circumstances. 3 Broadband Antenna Bandwidth Bandwidth is computed in two ways: • (1) (4.1) where fu and fl are the upper and lower frequencies of operation for which satisfactory performance is obtained. fc is the center frequency. • (2) (4.2) Note: The bandwidth of narrow band antenna is usually expressed as a percentage using equation (4.1), whereas wideband antenna are quoted as a ratio using equation (4.2). 4 Broadband Antenna Broadband Antenna • The definition of a broadband antenna is somewhat arbitrary and depends on the particular antenna. • If the impendence and pattern of an antenna do not change significantly over about an octave ( fu / fl =2) or more, it will classified as a broadband antenna". • In this chapter we will focus on – Loops antenna – Helix antenna – Yagi uda antenna – Log periodic antenna* 5 Broadband Antenna LOOP ANTENNA 6 Broadband Antenna Loops Antenna • Another simple, inexpensive, and very versatile antenna type is the loop antenna. -
Helical Feed Manipulation for Parabolic Reflector Antenna Gain Control
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-4 Issue-2, December 2014 Helical Feed Manipulation for Parabolic Reflector Antenna Gain Control Zohair Mohammed Elhassan Hussein, Abdelrasoul jabar kizar alzubaidi Abstract Helical antennas have long been popular in A sketch of a typical helical antenna is shown in Figure (1). applications from VHF to microwaves requiring circular The radiating element is a helix of wire, driven at one end polarization, since they have the unique property of naturally and radiating along the axis of the helix. A ground plane at providing circularly polarized radiation. One area that takes the driven end makes the radiation unidirectional from the advantage of this property is satellite communications. Where far (open) end. There are also configurations that radiate more gain is required than can be provided by a helical antenna alone, a helical antenna can also be used as a feed for perpendicular to the axis, with an unidirectional pattern. a parabolic dish for higher gains. The helical antenna can be W e shall only consider the axial-mode configuration. an excellent feed for a dish, with the advantage of circular Typical helix dimensions for an axial-mode helical antenna polarization. One limitation is that the usefulness of the have a helix circumference of one wavelength at the center circular polarization is limited since it cannot be easily frequency, with a helix pitch of 12 to 14 degrees. Kraus reversed to the other sense, left- handed to right-handed or defines the pitch angle α as: vice-versa. This paper deals with applying an electronic technique to control the helical feed of the parabolic reflector = ………………..(1) feed.