EXAMPLE EXERCISE 4.1 Change of Physical State

Total Page:16

File Type:pdf, Size:1020Kb

EXAMPLE EXERCISE 4.1 Change of Physical State EXAMPLE EXERCISE 4.1 Change of Physical State State the term that applies to each of the following changes of physical state: (a) Snow changes from a solid to a liquid. (b) Gasoline changes from a liquid to a gas. (c) Dry ice changes from a solid to a gas. Solution Refer to Figure 4.1 for the changes of physical state. (a) The change from solid to liquid is called melting. (b) The change from liquid to gas is called vaporizing. (c) The change from solid to gas is called sublimation. Practice Exercise State the term that applies to each of the following changes of physical state: (a) A refrigerant changes from a gas to a liquid. (b) Water changes from a liquid to a solid. (c) Iodine vapor changes from a gas to a solid. Answers: (a) condensing; (b) freezing; (c) deposition Figure 4.1 Changes in Physical State As temperature increases, a solid melts to a liquid and then vaporizes into a gas. As temperature decreases, a gas condenses to a liquid and then freezes to a solid. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.1 Change of Physical State Continued Concept Exercise Identify the physical state (solid, liquid, gas) that corresponds to each of the following pictorial representations: Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.2 Element, Compound, or Mixture Consider the following properties of the element copper: (a) Copper metal cannot be broken down by a chemical change. (b) Copper reacts with oxygen in air to give copper oxide. (c) Copper, in the form of malachite ore, is found worldwide. (d) Copper and tin compose bronze alloy. Classify each of the following copper samples as an element, a compound, a homogeneous mixture, or a heterogeneous mixture: (a) copper wire (b) copper oxide (c) malachite ore (d) bronze alloy Solution Refer to Figure 4.2 to classify each sample. (a) Copper wire is a metallic element. (b) Copper oxide is a compound of the elements copper and oxygen. Figure 4.2 Classification of Matter Matter may be either (c) Malachite ore is a heterogeneous mixture of a mixture or a pure substance. The properties of a copper and other substances. heterogeneous mixture vary within the sample (oil and (d) Bronze alloy is a homogeneous mixture of copper water). The properties of a homogeneous mixture are and tin. constant (salt solution). A pure substance may be either a compound (water) or an element (gold). Left to right: oil and water; NaCl solution; H2O; and gold nugget. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.2 Element, Compound, or Mixture Continued Practice Exercise Consider the following properties of the element mercury: (a) Mercury liquid cannot be broken down by a chemical change. (b) Mercury oxide can be heated to give mercury and oxygen gas. (c) Mercury, in the form of cinnabar ore, is found in Spain and Italy. (d) Mercury and silver compose the alloy used for dental fillings. Classify each of the following mercury samples as an element, a compound, a homogeneous mixture, or a heterogeneous mixture: (a) mercury liquid (b) mercury oxide (c) cinnabar ore (d) dental alloy Answers: (a) element; (b) compound; (c) heterogeneous mixture; (d) homogeneous mixture Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.2 Element, Compound, or Mixture Continued Concept Exercise Classify each of the following as an element, a compound, or a mixture as shown in the illustration: Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.3 Properties of Metals Which of the following properties is not characteristic of a metal? (a) good conductor of heat (b) malleable (c) high melting point (d) reacts with other metals Solution Refer to Table 4.4 to classify each of the following properties: (a) Metals are good conductors of heat. (b) Metals are malleable. (c) Metals usually have high melting points. (d) Metals do not react with other metals; they mix to form alloys. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.3 Properties of Metals Continued Practice Exercise Which of the following properties is not characteristic of a nonmetal? (a) insulator of electricity (b) ductile (c) low density (d) reacts with nonmetals Answer: (b) Nonmetals crush to a powder and are not malleable or ductile. Concept Exercise Which of the following is a solid metal under normal conditions: calcium, phosphorus, mercury, or silicon? (Refer to Figure 4.7.) Answer: See Appendix G. Figure 4.7 Pictorial Periodic Table of the Elements The natural abundance is the percent by mass of an element in Earth’s crust, oceans, and atmosphere. The natural abundance of an element listed as rare is less than 1 mg per metric ton (1000 kg). An element listed as synthetic is made artificially and does not occur naturally. An element listed as unstable often disintegrates in a fraction of a second. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.4 Physical States of the Elements Indicate the physical state for each of the following elements at 25 °C and normal pressure; classify each element as a metal, nonmetal, or semimetal: (a) barium (b) boron (c) bismuth (d) bromine Solution Referring to Figures 4.5 and 4.6, we observe the following: (a) Barium (Ba) is on the left side of the periodic table; it is a solid metal under normal conditions. (b) Boron (B) is in the middle of the periodic table; it is a solid semimetal. (c) Bismuth (Bi) is to the right, but below the semimetals in the periodic table, it is a solid metal. (d) Bromine (Br) is on the right side of the periodic table; it is a liquid nonmetal at normal conditions. Figure 4.5 Metals, Nonmetals, and Semimetals The symbols of elements having metallic properties are on the left side of the periodic table, nonmetallic are on the right side, and semimetallic are midway between. Notice the special placement of hydrogen, a nonmetallic element. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.4 Physical States of the Elements Continued Figure 4.6 Physical States of the Elements At 25 °C and normal atmospheric pressure, all metals are in the solid state except Hg. Most nonmetals are gases except C, P, S, Se, and I, which are solids. The only elements in the liquid state at normal conditions are Hg and Br. Practice Exercise Indicate the physical state for each of the following elements at 25 °C and normal pressure; classify each element as a metal, nonmetal, or semimetal: (a) aluminum (b) hydrogen (c) helium (d) radium Answers: (a) solid metal; (b) gaseous nonmetal; (c) gaseous nonmetal; (d) solid metal Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.4 Physical States of the Elements Continued Concept Exercise Which of the following is a liquid nonmetal under normal conditions: sodium, mercury, bromine, or sulfur? (Refer back to Figure 4.7.) Answer: See Appendix G. Figure 4.7 Pictorial Periodic Table of the Elements The natural abundance is the percent by mass of an element in Earth’s crust, oceans, and atmosphere. The natural abundance of an element listed as rare is less than 1 mg per metric ton (1000 kg). An element listed as synthetic is made artificially and does not occur naturally. An element listed as unstable often disintegrates in a fraction of a second. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.5 Composition of Chemical Formulas State the total number of atoms in a molecule of vitamin B3, C6H6N2O. Solution The chemical formula for vitamin B3 indicates 6 carbon atoms, 6 hydrogen atoms, 2 nitrogen atoms, and 1 oxygen atom. Thus C6H6N2O has a total of 15 atoms. Practice Exercise Write the chemical formula for vitamin B6, if a molecule is composed of 8 carbon atoms, 11 hydrogen atoms, 1 nitrogen atom, and 3 oxygen atoms. Answer: C8H11NO3 (total of 23 atoms) Concept Exercise Examine the model for vitamin C and determine the molecular formula. In the model shown, the black sphere = C atom, white = H atom, and red = O atom. Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.6 Composition of Chemical Formulas State the total number of atoms in a molecule of glycerin, C3H5(OH)3. Solution The chemical formula for glycerin indicates 3 carbon atoms, 5 hydrogen atoms, and 3 OH units. Thus, C3H5(OH)3 has a total of 14 atoms. Practice Exercise Write the chemical formula for nitroglycerin if a molecule is composed of 3 carbon atoms, 5 hydrogen atoms, 3 oxygen atoms, and 3 NO2 units. Answer: C3H5O3(NO2)3 Concept Exercise State the total number of atoms in a molecule of nitroglycerin, C3H5O3(NO2)3. Answer: See Appendix G. Introductory Chemistry: Concepts and Critical Thinking, 6th Edition © 2011 Pearson Education, Inc. Charles H. Corwin EXAMPLE EXERCISE 4.7 Physical and Chemical Properties Classify each of the following properties as physical or chemical: (a) Water appears colorless and odorless at 20 °C. (b) Water dissolves sugar crystals.
Recommended publications
  • Physical Changes, Chemical Changes, and How to Tell the Difference
    LIVE INTERACTIVE LEARNING @ YOUR DESKTOP Physical Changes, Chemical Changes, and How to Tell the Difference Presented by: Adam Boyd December 5, 2012 6:30 p.m. – 8:00 p.m. Eastern time 1 Introducing today’s presenter… Adam Boyd Senior Education Associate Office of K–8 Science American Chemical Society 2 American Chemical Society Physical Changes, Chemical Changes, and How to Tell the Difference Adam M. Boyd Education Division American Chemical Society Our Goals Inquiry Based Activities – Clues of chemical change How to Science Background distinguish? – Chemical and Physical Properties – Chemical and Physical Change American Chemical Society 4 IYC Kits www.acs.org/iyckit American Chemical Society 5 IYC Kit Lesson Components 1. Lesson Summary 1 2. Key Concepts 3. Safety 2 4. The chemistry continues 5. Scientist introduction 6. Teacher demonstration(s) 3 7. Student activity Student activity sheet 8. Class discussion 9. Teacher demonstration 10. Application 4 American Chemical Society 6 IYC Kit Classic clues of chemical change? American Chemical Society 7 IYC Kit 1. Production of a gas Classic clues of chemical change? American Chemical Society 8 IYC Kit 1. Production of a gas Classic clues of chemical change? 2. Color change American Chemical Society 9 IYC Kit 1. Production of a gas Classic clues of chemical change? 2. Color change 3. Formation of a precipitate American Chemical Society 10 IYC Kit 1. Production of a gas Classic clues of chemical change? 2. Color change 3. Formation of a precipitate 4. Temperature change American Chemical Society 11 Chemical change or Physical change? Chemical change or Physical change? Chemical Change Physical Change IYC Kit 1.
    [Show full text]
  • Phase Transitions in Multicomponent Systems
    Physics 127b: Statistical Mechanics Phase Transitions in Multicomponent Systems The Gibbs Phase Rule Consider a system with n components (different types of molecules) with r phases in equilibrium. The state of each phase is defined by P,T and then (n − 1) concentration variables in each phase. The phase equilibrium at given P,T is defined by the equality of n chemical potentials between the r phases. Thus there are n(r − 1) constraints on (n − 1)r + 2 variables. This gives the Gibbs phase rule for the number of degrees of freedom f f = 2 + n − r A Simple Model of a Binary Mixture Consider a condensed phase (liquid or solid). As an estimate of the coordination number (number of nearest neighbors) think of a cubic arrangement in d dimensions giving a coordination number 2d. Suppose there are a total of N molecules, with fraction xB of type B and xA = 1 − xB of type A. In the mixture we assume a completely random arrangement of A and B. We just consider “bond” contributions to the internal energy U, given by εAA for A − A nearest neighbors, εBB for B − B nearest neighbors, and εAB for A − B nearest neighbors. We neglect other contributions to the internal energy (or suppose them unchanged between phases, etc.). Simple counting gives the internal energy of the mixture 2 2 U = Nd(xAεAA + 2xAxBεAB + xBεBB) = Nd{εAA(1 − xB) + εBBxB + [εAB − (εAA + εBB)/2]2xB(1 − xB)} The first two terms in the second expression are just the internal energy of the unmixed A and B, and so the second term, depending on εmix = εAB − (εAA + εBB)/2 can be though of as the energy of mixing.
    [Show full text]
  • Grade 6 Science Mechanical Mixtures Suspensions
    Grade 6 Science Week of November 16 – November 20 Heterogeneous Mixtures Mechanical Mixtures Mechanical mixtures have two or more particle types that are not mixed evenly and can be seen as different kinds of matter in the mixture. Obvious examples of mechanical mixtures are chocolate chip cookies, granola and pepperoni pizza. Less obvious examples might be beach sand (various minerals, shells, bacteria, plankton, seaweed and much more) or concrete (sand gravel, cement, water). Mechanical mixtures are all around you all the time. Can you identify any more right now? Suspensions Suspensions are mixtures that have solid or liquid particles scattered around in a liquid or gas. Common examples of suspensions are raw milk, salad dressing, fresh squeezed orange juice and muddy water. If left undisturbed the solids or liquids that are in the suspension may settle out and form layers. You may have seen this layering in salad dressing that you need to shake up before using them. After a rain fall the more dense particles in a mud puddle may settle to the bottom. Milk that is fresh from the cow will naturally separate with the cream rising to the top. Homogenization breaks up the fat molecules of the cream into particles small enough to stay suspended and this stable mixture is now a colloid. We will look at colloids next. Solution, Suspension, and Colloid: https://youtu.be/XEAiLm2zuvc Colloids Colloids: https://youtu.be/MPortFIqgbo Colloids are two phase mixtures. Having two phases means colloids have particles of a solid, liquid or gas dispersed in a continuous phase of another solid, liquid, or gas.
    [Show full text]
  • Introduction to Phase Diagrams*
    ASM Handbook, Volume 3, Alloy Phase Diagrams Copyright # 2016 ASM InternationalW H. Okamoto, M.E. Schlesinger and E.M. Mueller, editors All rights reserved asminternational.org Introduction to Phase Diagrams* IN MATERIALS SCIENCE, a phase is a a system with varying composition of two com- Nevertheless, phase diagrams are instrumental physically homogeneous state of matter with a ponents. While other extensive and intensive in predicting phase transformations and their given chemical composition and arrangement properties influence the phase structure, materi- resulting microstructures. True equilibrium is, of atoms. The simplest examples are the three als scientists typically hold these properties con- of course, rarely attained by metals and alloys states of matter (solid, liquid, or gas) of a pure stant for practical ease of use and interpretation. in the course of ordinary manufacture and appli- element. The solid, liquid, and gas states of a Phase diagrams are usually constructed with a cation. Rates of heating and cooling are usually pure element obviously have the same chemical constant pressure of one atmosphere. too fast, times of heat treatment too short, and composition, but each phase is obviously distinct Phase diagrams are useful graphical representa- phase changes too sluggish for the ultimate equi- physically due to differences in the bonding and tions that show the phases in equilibrium present librium state to be reached. However, any change arrangement of atoms. in the system at various specified compositions, that does occur must constitute an adjustment Some pure elements (such as iron and tita- temperatures, and pressures. It should be recog- toward equilibrium. Hence, the direction of nium) are also allotropic, which means that the nized that phase diagrams represent equilibrium change can be ascertained from the phase dia- crystal structure of the solid phase changes with conditions for an alloy, which means that very gram, and a wealth of experience is available to temperature and pressure.
    [Show full text]
  • Gp-Cpc-01 Units – Composition – Basic Ideas
    GP-CPC-01 UNITS – BASIC IDEAS – COMPOSITION 11-06-2020 Prof.G.Prabhakar Chem Engg, SVU GP-CPC-01 UNITS – CONVERSION (1) ➢ A two term system is followed. A base unit is chosen and the number of base units that represent the quantity is added ahead of the base unit. Number Base unit Eg : 2 kg, 4 meters , 60 seconds ➢ Manipulations Possible : • If the nature & base unit are the same, direct addition / subtraction is permitted 2 m + 4 m = 6m ; 5 kg – 2.5 kg = 2.5 kg • If the nature is the same but the base unit is different , say, 1 m + 10 c m both m and the cm are length units but do not represent identical quantity, Equivalence considered 2 options are available. 1 m is equivalent to 100 cm So, 100 cm + 10 cm = 110 cm 0.01 m is equivalent to 1 cm 1 m + 10 (0.01) m = 1. 1 m • If the nature of the quantity is different, addition / subtraction is NOT possible. Factors used to check equivalence are known as Conversion Factors. GP-CPC-01 UNITS – CONVERSION (2) • For multiplication / division, there are no such restrictions. They give rise to a set called derived units Even if there is divergence in the nature, multiplication / division can be carried out. Eg : Velocity ( length divided by time ) Mass flow rate (Mass divided by time) Mass Flux ( Mass divided by area (Length 2) – time). Force (Mass * Acceleration = Mass * Length / time 2) In derived units, each unit is to be individually converted to suit the requirement Density = 500 kg / m3 .
    [Show full text]
  • Partition Coefficients in Mixed Surfactant Systems
    Partition coefficients in mixed surfactant systems Application of multicomponent surfactant solutions in separation processes Vom Promotionsausschuss der Technischen Universität Hamburg-Harburg zur Erlangung des akademischen Grades Doktor-Ingenieur genehmigte Dissertation von Tanja Mehling aus Lohr am Main 2013 Gutachter 1. Gutachterin: Prof. Dr.-Ing. Irina Smirnova 2. Gutachterin: Prof. Dr. Gabriele Sadowski Prüfungsausschussvorsitzender Prof. Dr. Raimund Horn Tag der mündlichen Prüfung 20. Dezember 2013 ISBN 978-3-86247-433-2 URN urn:nbn:de:gbv:830-tubdok-12592 Danksagung Diese Arbeit entstand im Rahmen meiner Tätigkeit als wissenschaftliche Mitarbeiterin am Institut für Thermische Verfahrenstechnik an der TU Hamburg-Harburg. Diese Zeit wird mir immer in guter Erinnerung bleiben. Deshalb möchte ich ganz besonders Frau Professor Dr. Irina Smirnova für die unermüdliche Unterstützung danken. Vielen Dank für das entgegengebrachte Vertrauen, die stets offene Tür, die gute Atmosphäre und die angenehme Zusammenarbeit in Erlangen und in Hamburg. Frau Professor Dr. Gabriele Sadowski danke ich für das Interesse an der Arbeit und die Begutachtung der Dissertation, Herrn Professor Horn für die freundliche Übernahme des Prüfungsvorsitzes. Weiterhin geht mein Dank an das Nestlé Research Center, Lausanne, im Besonderen an Herrn Dr. Ulrich Bobe für die ausgezeichnete Zusammenarbeit und der Bereitstellung von LPC. Den Studenten, die im Rahmen ihrer Abschlussarbeit einen wertvollen Beitrag zu dieser Arbeit geleistet haben, möchte ich herzlichst danken. Für den außergewöhnlichen Einsatz und die angenehme Zusammenarbeit bedanke ich mich besonders bei Linda Kloß, Annette Zewuhn, Dierk Claus, Pierre Bräuer, Heike Mushardt, Zaineb Doggaz und Vanya Omaynikova. Für die freundliche Arbeitsatmosphäre, erfrischenden Kaffeepausen und hilfreichen Gespräche am Institut danke ich meinen Kollegen Carlos, Carsten, Christian, Mohammad, Krishan, Pavel, Raman, René und Sucre.
    [Show full text]
  • 42 the Reaction Between Zinc and Copper Oxide
    The reaction between zinc and copper oxide 42 In this experiment copper(II) oxide and zinc metal are reacted together. The reaction is exothermic and the products can be clearly identified. The experiment illustrates the difference in reactivity between zinc and copper and hence the idea of competition reactions. Lesson organisation This is best done as a demonstration. The reaction itself takes only three or four minutes but the class will almost certainly want to see it a second time. The necessary preparation can usefully be accompanied by a question and answer session. The zinc and copper oxide can be weighed out beforehand but should be mixed in front of the class. If a video camera is available, linked to a TV screen, the ‘action’ can be made more dramatic. Apparatus and chemicals Eye protection Bunsen burner • Heat resistant mat Tin lid Beaker (100 cm3) Circuit tester (battery, bulb and leads) (Optional) Safety screens (Optional) Test-tubes, 2 (Optional – see Procedure g) Test-tube rack Access to a balance weighing to the nearest 0.1 g The quantities given are for one demonstration. Copper(II) oxide powder (Harmful, Dangerous for the environment), 4 g Zinc powder (Highly flammable, Dangerous for the environment), 1.6 g Dilute hydrochloric acid, approx. 2 mol dm-3 (Irritant), 20 cm3 Zinc oxide (Dangerous for the environment), a few grams Copper powder (Low hazard), a few grams. Concentrated nitric acid (Corrosive, Oxidising), 5 cm3 (Optional – see Procedure g) Technical notes Copper(II) oxide (Harmful, Dangerous for the environment) Refer to CLEAPSS® Hazcard 26. Zinc powder (Highly flammable, Dangerous for the environment) Refer to CLEAPSS® Hazcard 107 Dilute hydrochloric acid (Irritant at concentration used) Refer to CLEAPSS® Hazcard 47A and Recipe Card 31 Concentrated nitric acid (Corrosive, Oxidising) Refer to CLEAPSS® Hazcard 67 Copper powder (Low hazard) Refer to CLEAPSS® Hazcard 26 Zinc oxide (Dangerous for the environment) Refer to CLEAPSS® Hazcard 108.
    [Show full text]
  • Changes: Physical Or Chemical? by Cindy Grigg
    Changes: Physical or Chemical? By Cindy Grigg 1 If you have studied atoms, you know that atoms are the building blocks of matter. Atoms are so small they cannot be seen with an ordinary microscope. Yet atoms make up everything in the universe. Atoms can combine with different atoms and make new substances. Substances can also break apart into separate atoms. These changes are called chemical changes or reactions. Chemical reactions happen when atoms gain, lose, or share electrons. What about when water freezes into ice? Do you think that's a chemical change? 2 When water freezes, it has changed states. You probably already know about the four states of matter. They are solid, liquid, gas, and plasma. Plasma is the fourth state of matter and is the most common state in the universe. However, it is rarely found on Earth. Plasma occurs as ball lightning and in stars. Water is a common substance that everyone has seen in its three states of matter. Water in its solid state is called ice. Water in the liquid state is just called water. Water as a gas is called water vapor. We can easily cause water to change states by changing its temperature. Water will freeze at 32 degrees Fahrenheit (0 Celsius). However, no chemical change has occurred. The atoms have not combined or broken apart to make a different substance; it is still water or H2O. When we heat water to a temperature of 212 F. or 100 Celsius, it will change into a gas called water vapor. Changes in states of matter are just physical changes.
    [Show full text]
  • Ways to Physically Separate a Mixture There Are 2 Types of Mixtures
    Mixtures 12 Mixtures Homogenous Compare Heterogeneous compounds and Suspension Mixtures. Colloid Solution Differentiate Solute/Solvent between solutions, suspensions, and colloids Comparing Mixtures and Compounds Mixtures Compounds Made of 2 or more substances Made of 2 or more substances physically combined chemically combined Substances keep their own properties Substances lose their own properties Can be separated by physical means Can be separated only by chemical means Have no definite chemical composition Have a definite chemical composition What method is used to separate mixtures Ways to physically separate a Mixture based on boiling • Distillation – uses boiling point point? • Magnet – uses magnetism What method is used • Centrifuge – uses density to separate mixtures based on density? • Filtering – separates large particles from smaller ones What method is used There are 2 types of mixtures: to separate mixtures (1) Heterogeneous Mixtures: the parts mixed together can still be based on particle size? distinguished from one another...NOT uniform in composition Give examples of a heterogeneous Examples: chicken soup, fruit salad, dirt, sand in water mixture Mixtures 12 (2) Homogenous Mixtures: the parts mixed together cannot be distinguished from one another...completely uniform in composition. Give examples of a homogenous Examples: Air, Kool-aid, Brass, salt water, milk mixture Differentiate Types of Homogenous mixtures between a homogenous 1. Suspensions mixture and a i.e. chocolate milk, muddy water, Italian dressing heterogeneous mixture. They are cloudy (usually a liquid mixed with small solid particles) Identify an example of a suspension. Needs to be shaken or stirred to keep the solids from Will the solid settling particles settle in a suspension? The solids can be filtered out 2.
    [Show full text]
  • Solving Mixture and Solution Verbal Problems
    SOLVING SOLUTION AND MIXTURE VERBAL PROBLEMS This type of problem involves mixing two different solutions of a certain ingredient to get a desired concentration of the ingredient. Before we can solve problems that involve concentrations, we must review certain concepts about percents. If you need to do this, go to the brush-up materials for solving percent problems on the Dolciani website. 1. Solution Problems Basic Equation: amount of solution concentration of substance = amount of substance Example: 40 ounces (amount of solution) of a 25% solution of acid (concentration) contains 25(40) = 10 ounces of acid Usual equation to solve for the variable: Amount of substance in solution 1 + Amount of substance in solution 2 = Amount of substance in solution 2. Mixture Problems Basic Equation: unit price # units = cost (or value) Example: 5 pounds of apples (# units) that sell for $1.20 per pound (unit price) costs 5(1.20) = $6 Using equation to solve for the variable: Cost of ingredient 1 + Cost of ingredient 2 = Cost of mixture Now let’s look at an actual mixture problem. It is easiest when solving a mixture problem to make a table to get the information organized. No matter the story line of the problem, the table can be used and labelled as necessary. Let’s look at a few examples. Example 1: Fatima’s chemistry lab stocks an 8% acid solution and a 20% acid solution. How many ounces of each must she combine to produce 60 ounces of a mixture that is 10% acid? Solution: We want to find how much of each solution must be in the mixture.
    [Show full text]
  • Mixtures Are a Combination 3.1 of Two Or More Substances MIXTURES
    Mixtures are a combination 3.1 of two or more substances MIXTURES A solution is a solute dissolved 3.2 in a solvent Mixtures can be separated according 3.3 to their physical properties 3.4 Mixtures can be separated according 3 to their size and mass What if? The different boiling points of liquids Case mix 3.5 can be used to separate mixtures What you need: a variety of different pencil cases (size, shape, colour) What to do: 1 Place all the pencil cases in Solubility can be used to one pile. 3.6 separate mixtures 2 List your pencil case’s properties that will allow it to DRAFT be identified easily (e.g. colour, shape, size and weight). 3 Give the list to another student. Can they identify your case by Waste water is a mixture that using the list? 3.7 can be separated What if? » What if you were blindfolded? Could you still find your pencil case? » What if the pencil cases were too small to feel? How could Materials recovery facilities you identify yours? 3.8 separate mixtures » What if all the pencil cases were exactly the same? Would it still be a mixture? Mixtures are a 3.1 combination of two or more substances Consider the things around you. Perhaps they are made of wood, glass or plastic. Wood, glass and plastic are all mixtures – each of these materials is made up of two or more substances. Some materials are pure substances. A pure substance is one where all the particles are identical.
    [Show full text]
  • Classification of Matter Section ●1 Composition of Matter
    266_277_Ch15_RE_896315.qxd 3/23/10 3:04 AM Page 266 S-034 113:GO00492:GPS_Reading_Essentials_SE%0:XXXXXXXXXXXXX_SE:Application_Files_ chapter 15 Classification of Matter section ●1 Composition of Matter What You’ll Learn Before You Read ■ what substances and mixtures are Matter is all around you. You breathe matter, sit on it, and ■ how to identify drink it every day. What words would you use to describe elements and different kinds of matter? compounds ■ the difference between solutions, colloids, and suspensions Read to Learn Underline Look for different descriptions of matter Pure Substances as you read each paragraph. Underline these descriptions. Have you ever seen a print that looked like a real painting? Read the underlined descriptions Did you have to touch it to find out? The smooth or rough again after you’ve finished surface told you whether it was a painting or a print. Each reading the section. material has its own properties. The properties of materials can be used to classify them into categories. Each material is made of a pure substance or of a mix of substances. A substance is a type of matter that is always made of the same material or materials. A substance can be either an element or a compound. Some substances you might recognize are helium, aluminum, water, and salt. What are elements? All substances are made of atoms. A substance is an element if all the atoms in the substance are the same. The graphite in your pencil is an element. The copper coating on most pennies is an element, too.
    [Show full text]