Photooxygenation in Polymer Matrices: En Route to Highly Active Antimalarial Peroxides*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cinnamoyl Esters of Lesquerella and Castor Oil: Novel Sunscreen Active Ingredients David L
Cinnamoyl Esters of Lesquerella and Castor Oil: Novel Sunscreen Active Ingredients David L. Compton*, Joseph A. Laszlo, and Terry A. Isbell New Crops and Processing Technology Research Unit, USDA, ARS, NCAUR, Peoria, Illinois 61604 ABSTRACT: Lesquerella and castor oils were esterified with querolin (2). Therefore, LO in essence contains two moles of cinnamic acid (CA) and 4-methoxycinnamic acid (MCA). Esteri- hydroxy functionality per mole of triglyceride (TG). fication of the hydroxy oils reached 85% completion with CA The hydroxy functionality of the FA of the TG can be ex- and 50% conversion with MCA. The hydroxy oils were esteri- ploited by esterification to form estolides. The majority of re- fied at 200°C under a nitrogen atmosphere within a sealed sys- search has focused on the estolides of hydroxy FA and TG tem. Unreacted CA and MCA were removed from the reaction formed with oleic acid. The esterification of hydroxy TG and mixtures by sublimation at 100°C under vacuum. The resultant free lesquerolic acid with oleic acid using a cobalt catalyst (4) methoxycinnamic oils possessed a broader, more blue-shifted or a lipase catalyst (5) has been reported. Also, the acid-cat- UV absorbance, 250 to 345 nm with a λmax of 305 nm, com- pared with the cinnamic oils, which absorbed from 260 to 315 alyzed formation of estolides from CO and LO with oleic acid has been patented (6). Recently, a detailed study of the effect nm, λmax of 270 nm. The methoxycinnamic oils provide better UV-B absorption and thus are better candidates to be used as of oleic acid concentration and temperature on catalyst-free sunscreen active ingredients. -
Unit One Part 2: Naming and Functional Groups
gjr-–- 1 Unit One Part 2: naming and functional groups • To write and interpret IUPAC names for small, simple molecules • Identify some common functional groups found in organic molecules O CH3 H3C N H N O N N O H3C S N O N H3C viagra™ (trade name) sildenafil (trivial name) 5-(2-ethoxy-5-(4-methylpiperazin-1-ylsulfonyl)phenyl)-1-methyl-3-propyl-1H- pyrazolo[4,3-d] pyrimidin-7(6H)-one dr gareth rowlands; [email protected]; science tower a4.12 http://www.massey.ac.nz/~gjrowlan gjr-–- 2 Systematic (IUPAC) naming PREFIX PARENT SUFFIX substituents / minor number of C principal functional functional groups AND multiple bond group index • Comprises of three main parts • Note: multiple bond index is always incorporated in parent section No. Carbons Root No. Carbons Root Multiple-bond 1 meth 6 hex Bond index 2 eth 7 hept C–C an(e) 3 prop 8 oct C=C en(e) 4 but 9 non C≡C yn(e) 5 pent 10 dec gjr-–- 3 Systematic (IUPAC) naming: functional groups Functional group Structure Suffix Prefix General form O –oic acid acid –carboxylic acid carboxy R-COOH R OH O O –oic anhydride anhydride –carboxylic anhydride R-C(O)OC(O)-R R O R O –oyl chloride acyl chloride -carbonyl chloride chlorocarbonyl R-COCl R Cl O –oate ester –carboxylate alkoxycarbonyl R-COOR R OR O –amide amide –carboxamide carbamoyl R-CONH2 R NH2 nitrile R N –nitrile cyano R-C≡N O –al aldehyde –carbaldehyde oxo R-CHO R H O ketone –one oxo R-CO-R R R alcohol R OH –ol hydroxy R-OH amine R NH2 –amine amino R-NH2 O ether R R –ether alkoxy R-O-R alkyl bromide bromo R-Br (alkyl halide) R Br (halo) (R-X) gjr-–- 4 Nomenclature rules 1. -
Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL
United States Office of Pollution EPA 744-B-97-001 Environmental Protection Prevention and Toxics June 1997 Agency (7406) Polymer Exemption Guidance Manual POLYMER EXEMPTION GUIDANCE MANUAL 5/22/97 A technical manual to accompany, but not supersede the "Premanufacture Notification Exemptions; Revisions of Exemptions for Polymers; Final Rule" found at 40 CFR Part 723, (60) FR 16316-16336, published Wednesday, March 29, 1995 Environmental Protection Agency Office of Pollution Prevention and Toxics 401 M St., SW., Washington, DC 20460-0001 Copies of this document are available through the TSCA Assistance Information Service at (202) 554-1404 or by faxing requests to (202) 554-5603. TABLE OF CONTENTS LIST OF EQUATIONS............................ ii LIST OF FIGURES............................. ii LIST OF TABLES ............................. ii 1. INTRODUCTION ............................ 1 2. HISTORY............................... 2 3. DEFINITIONS............................. 3 4. ELIGIBILITY REQUIREMENTS ...................... 4 4.1. MEETING THE DEFINITION OF A POLYMER AT 40 CFR §723.250(b)... 5 4.2. SUBSTANCES EXCLUDED FROM THE EXEMPTION AT 40 CFR §723.250(d) . 7 4.2.1. EXCLUSIONS FOR CATIONIC AND POTENTIALLY CATIONIC POLYMERS ....................... 8 4.2.1.1. CATIONIC POLYMERS NOT EXCLUDED FROM EXEMPTION 8 4.2.2. EXCLUSIONS FOR ELEMENTAL CRITERIA........... 9 4.2.3. EXCLUSIONS FOR DEGRADABLE OR UNSTABLE POLYMERS .... 9 4.2.4. EXCLUSIONS BY REACTANTS................ 9 4.2.5. EXCLUSIONS FOR WATER-ABSORBING POLYMERS........ 10 4.3. CATEGORIES WHICH ARE NO LONGER EXCLUDED FROM EXEMPTION .... 10 4.4. MEETING EXEMPTION CRITERIA AT 40 CFR §723.250(e) ....... 10 4.4.1. THE (e)(1) EXEMPTION CRITERIA............. 10 4.4.1.1. LOW-CONCERN FUNCTIONAL GROUPS AND THE (e)(1) EXEMPTION................. -
Oxygen - Wikipedia
5/20/2020 Oxygen - Wikipedia Oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in Oxygen, 8O the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as well as with other compounds. After hydrogen and helium, oxygen is the third-most abundant element in the universe by mass. At standard temperature and pressure, two atoms of the element bind to form dioxygen, a colorless and odorless diatomic gas with the formula O2. Diatomic oxygen gas constitutes 20.95% of the Earth's atmosphere. As compounds including oxides, the element makes up almost half of the Earth's crust.[2] Liquid oxygen boiling Dioxygen provides the energy released in combustion[3] and Oxygen aerobic cellular respiration,[4] and many major classes of Allotropes O2, O3 (ozone) organic molecules in living organisms contain oxygen atoms, such as proteins, nucleic acids, carbohydrates, and fats, as do Appearance gas: colorless the major constituent inorganic compounds of animal shells, liquid and solid: pale teeth, and bone. Most of the mass of living organisms is blue oxygen as a component of water, the major constituent of Standard atomic [15.999 03, 15.999 77] lifeforms. Oxygen is continuously replenished in Earth's weight A (O) conventional: 15.999 atmosphere by photosynthesis, which uses the energy of r, std sunlight to produce oxygen from water and carbon dioxide. Oxygen in the periodic table Oxygen is too chemically reactive to remain a free element in H H – air without being continuously replenished by the LB BCNOFN ↑ SM ASPSCA photosynthetic action of living organisms. -
Studies on the Chemistry of Paclitaxel
STUDIES ON THE CHEMISTRY OF PACLITAXEL Haiqing Yuan Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in the partial fulfillment of the requirement for the degree of Doctor of Philosophy in Chemistry Dr. David G. I. Kingston, Chair Dr. Michael Calter Dr. Neal Castagnoli, Jr. Dr. Richard Gandour Dr. Larry Taylor August 11, 1998 Blacksburg, Virginia Keywords: Paclitaxel, Taxol®, synthesis, analog, SAR Copyright 1998, Haiqing Yuan STUDIES ON THE CHEMISTRY OF PACLITAXEL HAIQING YUAN (ABSTRACT) Paclitaxel is a natural occurring diterpene alkaloid originally isolated from the bark of Taxus brevifolia. It is now one of the most important chemotherapeutic agents for clinical treatment of ovarian and breast cancers. Recent clinical trials have also shown paclitaxel’s potential for the treatment of non-small-cell lung cancer, head and neck cancer, and other types of cancers. While tremendous chemical research efforts have been made in the past years, which established the fundamental structure-activity relationships of the paclitaxel molecule, and provided analogs for biochemical studies to elucidate the precise mechanism of action and for the development of second-generation agents, many areas remain to be explored. In continuation of our efforts in the structure-activity relationships study of A- norpaclitaxel, five new analogs modified at the C-1 substituent and analogs with expanded B-ring or contracted C-ring have now been prepared. Preliminary biological studies indicated that the volume rather than functionality at the C-1 position plays a role in determining the anticancer activity by controlling the relative position of the tetracyclic ring system, which in turn controls the positions of the most critical functionalities such as the C-2 benzoyl, the C-4 acetate, and the C-13 side chain. -
Inorganic Chemistry/Chemical Bonding/MO Diagram 1
Inorganic Chemistry/Chemical Bonding/MO Diagram 1 Inorganic Chemistry/Chemical Bonding/MO Diagram A molecular orbital diagram or MO diagram for short is a qualitative descriptive tool explaining chemical bonding in molecules in terms of molecular orbital theory in general and the Linear combination of atomic orbitals molecular orbital method (LCAO method) in particular [1] [2] [3] . This tool is very well suited for simple diatomic molecules such as dihydrogen, dioxygen and carbon monoxide but becomes more complex when discussing polynuclear molecules such as methane. It explains why some molecules exist and not others, how strong bonds are, and what electronic transitions take place. Dihydrogen MO diagram The smallest molecule, hydrogen gas exists as dihydrogen (H-H) with a single covalent bond between two hydrogen atoms. As each hydrogen atom has a single 1s atomic orbital for its electron, the bond forms by overlap of these two atomic orbitals. In figure 1 the two atomic orbitals are depicted on the left and on the right. The vertical axis always represents the orbital energies. The atomic orbital energy correlates with electronegativity as a more electronegative atom holds an electron more tightly thus lowering its energy. MO treatment is only valid when the atomic orbitals have comparable energy; when they differ greatly the mode of bonding becomes ionic. Each orbital is singly occupied with the up and down arrows representing an electron. The two AO's can overlap in two ways depending on their phase relationship. The phase of an orbital is a direct consequence of the oscillating, wave-like properties of electrons. -
Organic Chemistry Tests for Hydroxyl Group
Chemistry Organic Chemistry Tests for Hydroxyl Group General Aim Method Identication of aliphatic alcohols through the chemical Detection of the presence of hydroxyl groups in detection of hydroxyl groups. aliphatic alcohols using special chemical tests. Learning Objectives (ILOs) Dene and determine aliphatic alcohols theoretically through their chemical structure. Classify organic compounds containing hydroxyl groups into aliphatic and aromatic. Compare between alcohols and other functional groups in terms of chemical structures, properties and reactions. Identify aliphatic alcohols experimentally. Select the appropriate reagents to dierentiate between alcohols and other organic compounds. Theoretical Background/Context - Aliphatic alcohols are non-aromatic hydrocarbons possessing at least one hydroxyl group within their structure. They can be either cyclic or acyclic compounds. Alcohols are considered to be neutral compounds. Aliphatic Cyclic Alcohol Aliphatic Acyclic Alcohol - Alcohols are also classied to primary, secondary and tertiary alcohols according to the number of carbon atoms attached to the carbon atom linked to the hydroxyl group. First: Preparation of Aliphatic Alcohols - Alcohols can be prepared through some chemical routes such as reduction of the corresponding aldehydes and ketones using some reducing agents such as lithium aluminum hydride or sodium borohydride. They can be also obtained from hydration of the corresponding alkenes. Some primary alcohols can be synthesized through the nucleophilic substitution of corresponding alkyl halides using potassium or sodium hydroxides. - Alcohols can be also obtained through some biological routes such as ethanol and butanol through fermentation processes in presence of glucose. Glucose is obtained from starch hydrolysis in the presence of yeast. 1 www.praxilabs.com Theoretical Background/Context (Cont’) Second: General Properties of Aliphatic Alcohols - Aliphatic alcohols are polar compounds and can form hydrogen bonds easily. -
Ganic Compounds
6-1 SECTION 6 NOMENCLATURE AND STRUCTURE OF ORGANIC COMPOUNDS Many organic compounds have common names which have arisen historically, or have been given to them when the compound has been isolated from a natural product or first synthesised. As there are so many organic compounds chemists have developed rules for naming a compound systematically, so that it structure can be deduced from its name. This section introduces this systematic nomenclature, and the ways the structure of organic compounds can be depicted more simply than by full Lewis structures. The language is based on Latin, Greek and German in addition to English, so a classical education is beneficial for chemists! Greek and Latin prefixes play an important role in nomenclature: Greek Latin ½ hemi semi 1 mono uni 1½ sesqui 2 di bi 3 tri ter 4 tetra quadri 5 penta quinque 6 hexa sexi 7 hepta septi 8 octa octo 9 ennea nona 10 deca deci Organic compounds: Compounds containing the element carbon [e.g. methane, butanol]. (CO, CO2 and carbonates are classified as inorganic.) See page 1-4. Special characteristics of many organic compounds are chains or rings of carbon atoms bonded together, which provides the basis for naming, and the presence of many carbon- hydrogen bonds. The valency of carbon in organic compounds is 4. Hydrocarbons: Compounds containing only the elements C and H. Straight chain hydrocarbons are named according to the number of carbon atoms: CH4, methane; C2H6 or H3C-CH3, ethane; C3H8 or H3C-CH2-CH3, propane; C4H10 or H3C-CH2- CH2-CH3, butane; C5H12 or CH3CH2CH2CH2CH3, pentane; C6H14 or CH3(CH2)4CH3, hexane; C7H16, heptane; C8H18, octane; C9H20, nonane; C10H22, CH3(CH2)8CH3, decane. -
Preparation of Hydroxy Aromatic Carboxylic Acids and Ester Derivatives Thereof
Europiisches Patentamt European Patent Office © Publication number: 0 049 616 Office europeen des brevets A1 EUROPEAN PATENT APPLICATION © Application number: 81304567.1 © int. ci.3: C 07 C 69/88 C 07 C 67/36 © Date of filing: 02.10.81 © Priority: 06.10.80 US 194201 © Applicant: CELANESE CORPORATION 1211 Avenue Of The Americas New York New York 10036IUS) © Date of publication of application: 14.04.82 Bulletin 82/15 © Inventor: McGinnes, James L 236 Raritan Avenue © Designated Contracting States: Middlesex New Jersey(US) BE DE FR GB IT NL © Inventor: Conciatori, Anthony B. 27. Orchard Road Chatham New Jersey(US) @ Representative: De Minvielle-Devaux, Ian Benedict Peter et al, CARPMAELS & RANSFORD 43, Bloomsbury Square London WC1 A 2RA(GB) © Preparation of hydroxy aromatic carboxylic acids and ester derivatives thereof. A process for preparing hydroxy aromatic carboxylic acids, or the ester derivatives thereof, comprises carbonylat- ing a hydroxy aromatic halide in the presence of a reactive alcohol solvent and a catalytic amount of a Group VIII metal catalyst. The process has particular applicability to the preparation of 6-hydroxy-2-naphthoic acid from 6-bromo-2- naphthol, which can be easily prepared from β-naphthol, a readily available and inexpensive starting material. This invention relates to a novel process for pre- paring hydroxy aromatic carboxylic acids or the corresponding ester derivatives thereof. This invention relates particular- ly to a novel process for the preparation of esters of hydroxy aromatic carboxylic acids such as 6-hydroxy-2- naphthoic acid by the carbonylation of a hydroxy aromatic halide, followed if desired by conversion of the esters to the acids. -
Supramolecular Control of Singlet Oxygen Generation
molecules Review Supramolecular Control of Singlet Oxygen Generation Akshay Kashyap 1, Elamparuthi Ramasamy 2, Vijayakumar Ramalingam 3 and Mahesh Pattabiraman 1,* 1 Department of Chemistry, University of Nebraska Kearney, Kearney, NE 68849, USA; [email protected] 2 Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] 3 Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA; [email protected] * Correspondence: [email protected] 1 Abstract: Singlet oxygen ( O2) is the excited state electronic isomer and a reactive form of molecu- lar oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and syn- thetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective 1 PSs as efficient O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a refer- ence for future research in this direction. The aim of this review is to highlight the value in the Citation: Kashyap, A.; Ramasamy, E.; supramolecular photochemistry approach to tapping the unexploited technological potential within Ramalingam, V.; Pattabiraman, M. -
Cubic C8: an Observable Allotrope of Carbon?
1 This is the peer reviewed version of the following article: Sharapa, D., Hirsch, A., Meyer, B. and Clark, T. (2015), Cubic C8: An Observable Allotrope of Carbon?. ChemPhysChem. doi: 10.1002/cphc.201500230, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/cphc.201500230/abstract?userIsAuthentica ted=false&deniedAccessCustomisedMessage=. This article may be used for non- commercial purposes in accordance With Wiley-VCH Terms and Conditions for self- archiving Cubic C8: An observable allotrope of carbon? Dmitry Sharapa[a], Andreas Hirsch[b], Bernd Meyer[a],[c] and Timothy Clark*[a],[d] Abstract: Ab initio and density-functional theory calculations have been used to investigate the structure, electronic properties, spectra and reactivity of cubic C8, which is predicted to be aromatic by Hirsch’s rule. Although highly strained and with a small amount of diradical character, the carbon cube represents a surprisingly deep minimum and should therefore be observable as an isolated molecule. It is, however, very reactive, both with itself and triplet oxygen. Calculated infrared, Raman and UV/vis spectra are provided to aid identification of cubic C8 should it be synthesised. [a] Prof. T. Clark, Prof. B. Meyer, D. Sharapa Computer-Chemie-Centrum, Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25, 91052 Erlangen, Germany. E-mail: [email protected] [b] Prof. A. Hirsch Lehrstuhl für Organische Chemie II, Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen, Germany. [c] Prof. B. Meyer Interdisciplinary Center for Molecular Materials Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstraße 25, 91052 Erlangen, Germany. -
Electronic State of the Molecular Oxygen Released by Catalase†
12842 J. Phys. Chem. A 2008, 112, 12842–12848 Electronic State of the Molecular Oxygen Released by Catalase† Mercedes Alfonso-Prieto,‡,§ Pietro Vidossich,‡,§ Antonio Rodrı´guez-Fortea,| Xavi Carpena,⊥ Ignacio Fita,⊥ Peter C. Loewen,# and Carme Rovira*,‡,§,∇ Laboratori de Simulacio´ Computacional i Modelitzacio´ (CoSMoLab), Parc Cientı´fic de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain, Institut de Quı´mica Teo`rica i Computacional de la UniVersitat de Barcelona (IQTCUB), Departament de Quı´mica Fı´sica i Inorga`nica, UniVersitat RoVira i Virgili, Marcel.lı´ Domingo s/n, 43007 Tarragona, Spain, Institut de Biologia Molecular (IBMB-CSIC), Institut de Recerca Biome`dica (IRB), Parc Cientı´fic de Barcelona, Josep Samitier 1-5, 08028 Barcelona, Spain, Department of Microbiology, UniVersity of Manitoba, Winnipeg, MB R3T 2N2, Canada, and Institucio´ Catalana de Recerca i Estudis AVanc¸ats (ICREA), Passeig Lluı´s Companys, 23, 08018 Barcelona, Spain ReceiVed: February 20, 2008; ReVised Manuscript ReceiVed: July 17, 2008 In catalases, the high redox intermediate known as compound I (Cpd I) is reduced back to the resting •+ IV state by means of hydrogen peroxide in a 2-electron reaction [Cpd I (Por -Fe dO) + H2O2 f Enz III (Por-Fe ) + H2O + O2]. It has been proposed that this reaction takes place via proton transfer toward the distal His and hydride transfer toward the oxoferryl oxygen (H+/H- scheme) and some authors have related it to singlet oxygen generation. Here, we consider the possible reaction schemes and qualitatively analyze the electronic state of the species involved to show that the commonly used association of the H+/H- scheme with singlet oxygen production is not justified.