Idaho State Police Forensic Laboratory Training Manual Cocaine
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tropinone Synthesis Via an Atypical Polyketide Synthase and P450-Mediated Cyclization
ARTICLE DOI: 10.1038/s41467-018-07671-3 OPEN Tropinone synthesis via an atypical polyketide synthase and P450-mediated cyclization Matthew A. Bedewitz 1, A. Daniel Jones 2,3, John C. D’Auria 4 & Cornelius S. Barry 1 Tropinone is the first intermediate in the biosynthesis of the pharmacologically important tropane alkaloids that possesses the 8-azabicyclo[3.2.1]octane core bicyclic structure that defines this alkaloid class. Chemical synthesis of tropinone was achieved in 1901 but the 1234567890():,; mechanism of tropinone biosynthesis has remained elusive. In this study, we identify a root- expressed type III polyketide synthase from Atropa belladonna (AbPYKS) that catalyzes the formation of 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This catalysis proceeds through a non-canonical mechanism that directly utilizes an unconjugated N-methyl-Δ1-pyrrolinium cation as the starter substrate for two rounds of malonyl-Coenzyme A mediated decarbox- ylative condensation. Subsequent formation of tropinone from 4-(1-methyl-2-pyrrolidinyl)-3- oxobutanoic acid is achieved through cytochrome P450-mediated catalysis by AbCYP82M3. Silencing of AbPYKS and AbCYP82M3 reduces tropane levels in A. belladonna. This study reveals the mechanism of tropinone biosynthesis, explains the in planta co-occurrence of pyrrolidines and tropanes, and demonstrates the feasibility of tropane engineering in a non- tropane producing plant. 1 Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA. 2 Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA. 3 Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA. 4 Department of Chemistry & Biochemistry, Texas Tech University, Lubbock, TX 79409, USA. -
Evolutionary History of Floral Key Innovations in Angiosperms Elisabeth Reyes
Evolutionary history of floral key innovations in angiosperms Elisabeth Reyes To cite this version: Elisabeth Reyes. Evolutionary history of floral key innovations in angiosperms. Botanics. Université Paris Saclay (COmUE), 2016. English. NNT : 2016SACLS489. tel-01443353 HAL Id: tel-01443353 https://tel.archives-ouvertes.fr/tel-01443353 Submitted on 23 Jan 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NNT : 2016SACLS489 THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Spécialité de Doctorat : Biologie Par Mme Elisabeth Reyes Evolutionary history of floral key innovations in angiosperms Thèse présentée et soutenue à Orsay, le 13 décembre 2016 : Composition du Jury : M. Ronse de Craene, Louis Directeur de recherche aux Jardins Rapporteur Botaniques Royaux d’Édimbourg M. Forest, Félix Directeur de recherche aux Jardins Rapporteur Botaniques Royaux de Kew Mme. Damerval, Catherine Directrice de recherche au Moulon Président du jury M. Lowry, Porter Curateur en chef aux Jardins Examinateur Botaniques du Missouri M. Haevermans, Thomas Maître de conférences au MNHN Examinateur Mme. Nadot, Sophie Professeur à l’Université Paris-Sud Directeur de thèse M. -
Erythroxylum Areolatum L. False Cocaine ERYTHROXYLACEAE
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CiteSeerX Erythroxylum areolatum L. false cocaine ERYTHROXYLACEAE Synonyms: none (genus also spelled Erythroxylon) Range.—False cocaine is native to the Bahamas, the Greater Antilles, the Cayman Islands, southern Mexico, and Central America (National Trust for the Cayman Islands 2002, Stevens and others 2001). It is not known to have been planted or naturalized elsewhere. Ecology.—False cocaine grows in areas of Puerto Rico that receive from about 750 to 900 mm of mean annual precipitation at elevations of a few meters above sea level to about 300 m. It grows in gallery forests in Nicaragua from 40 to 380 m elevation, frequently associated with limestone rocks (Stevens and others 2001). False cocaine is common in limited areas but uncommon in most of its range, growing in remnant and middle to late secondary forests. False cocaine grows on deep, medium-textured soil and sandy beach-strand soils (Vásquez and Kolterman 1998). The species is most frequent on limestone parent material, as skeletal rock or porous solid rocks but grows in areas with igneous and metamorphic (including ultramaphic) rocks. It has an intermediate tolerance to shade and will grow in openings or in the understory of medium to low basal area General Description.—False cocaine, also known forests. as redwood, swamp redwood, thin-leafed erythroxylon, indio, palo de hierro, arabo Reproduction.—False cocaine has been observed carbonero, limoncillo, huesito, cocaina falsa, and flowering from October to June in Puerto Rico poirier, is a deciduous shrub or small tree 2 to 7 m (Little and Wadsworth 1964). -
A FIRE TOLERANT SPECIES from CERRADO Alexandre
IAWA Journal, Vol. 29 (1), 2008: 69–77 STEM PROTECTIVE TISSUE IN ERYTHROXYLUM TORTUOSUM (ERYTHROXYLACEAE), A FIRE TOLERANT SPECIES FROM CERRADO Alexandre Antonio Alonso and Silvia Rodrigues Machado Departamento de Botânica, Universidade Estadual Paulista (UNESP), Botucatu SP, CP 510, CEP 18618-000, Brazil [E-mail: [email protected]] SUMMARY The origin and structure are described of the secondary protective tissue in the stem of Erythorxylum tortuosum Mart., a fire tolerant shrubby species common in Brazilian cerrado. The highly tortuous stems are covered with thick bark which is more developed at the base of the stem. After fire in the cerrado, rhytidome fragments of the burned stem flake off, revealing newly formed cork. The first periderm appears near of the terminal buds and is iniated by periclinal divisions in subepidermal cells giving rise to radial rows of cells. The first phellogen is discernible only after the differentiation of the several radial rows of cork cells. Other phellogens have their origin in successively deeper layers of the cortex. The sucessive periderms are discontinuous around the circumference. The collapsed cells with phenolic substances and the accumulated dead cells cause the formation of discontinuous blackish lines, which delimit the sucessive periderms in the rhytidome. The rhytidome contains large quantities of sclereids developed from cell wall thickening of cortex cells. The occurrence of periderm in the young parts of the stem and of rhytidome in the older parts represents pyrophytic characteristics and may explain, in part, the fire tolerance of this species. Key words: Bark, cerrado, Erythroxylum tortuosum, fire tolerant species, periderm, rhytidome, stem. -
Antibacterial Activity of the Five South African Erythroxylaceae Species
African Journal of Biotechnology Vol. 10(55), pp. 11511-11514, 21 September, 2011 Available online at http://www.academicjournals.org/AJB 5hL !W. ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Antibacterial activity of the five South African Erythroxylaceae species De Wet, H. Department of Botany, University of Zululand, Private Bag X1001, KwaDlangezwa, 3886, South Africa. E-mail: [email protected]. Tel: +27-35-9026108. Fax: +27-35-9026491. Accepted 21 July, 2011 Until recently, no medicinal uses were recorded for the South African Erythroxylaceae species, although, this family is used world wide in traditional medicine. This study reveals for the first time that Erythroxylum delagoense and Erythroxylum pictum roots were used to treat dysentery and diarrhoea and that Erythroxylum emarginatum leaves decoction was used to treat asthma, kidney problems, arthritis, child bearing problems and influenza in South Africa. To validate some of the medicinal uses, antibacterial testing was done for the first time on all five South African species. Leaf and bark extracts of four of the five South African Erythroxylaceae species (E. delagoense, E. emarginatum, E. pictum and Nectaropetalum capense) showed some good antibacterial activities with MIC <1 mg/ml. E. delagoense showed good results against Bacillus subtilis, Klebsiella pneumoniae and Staphylococcus aureus; E. emarginatum against Klebsiella pneumoniae; E. pictum against Bacillus subtilis and Klebsiella pneumonia; N. capense against Klebsiella pneumonia. Key words: Antimicrobial activity, Erythroxylaceae, medicinal uses, South Africa. INTRODUCTION The Erythroxylaceae family comprises four genera and ent-dolabr-4(18)-en-15S,16-diol, ent-5-dolabr-4(18)-en- 260 species. -
ERYTHROXYLACEAE 1. ERYTHROXYLUM P. Browne, Civ
ERYTHROXYLACEAE 古柯科 gu ke ke Liu Quanru (刘全儒)1; Bruce Bartholomew2 Shrubs or trees. Stipules intrapetiolar. Leaves alternate or rarely opposite, simple; leaf blade margin entire. Flowers usually bisexual, in axillary fascicles or cymes, regular, 5-merous, often heterostylous. Sepals 5, basally connate, with imbricate or valvate lobes, persistent. Petals 5, distinct, imbricate, usually with a scale on inner face at base. Stamens 5, 10, or 20, 1- or 2-verticillate; filament bases usually connate into a tube; anthers elliptic, 2-celled, with longitudinal slits. Ovary superior, connected with 3–5 carpels, 3–5-locular, with 1(or 2) axile; ovules pendulous, anatropous to hemitropous, placentation axile; styles 1–3 or 5, distinct or somewhat connate; stigmas oblique. Fruit a capsule or a 1-seeded drupe. Seeds with straight embryo and copious (rarely absent) endosperm. Ten genera and ca. 300 species: widely distributed in the tropical and subtropical zone, especially South America; two genera and three species (one introduced) in China. Huang Chengchiu, Huang Baoxian & Xu Langran. 1998. Erythroxylaceae. In: Xu Langran & Huang Chengchiu, eds., Fl. Reipubl. Popularis Sin. 43(1): 109–115. 1a. Flowers often heterostylous; ovary 3-locuar but only 1 locule fertile; styles 3, distinct or somewhat connate; fruit a drupe ................................................................................................................................................................. 1. Erythroxylum 1b. Flowers not heterostylous; ovary 5-locular; styles simple; fruit a capsule .................................................................... 2. Ixonanthes 1. ERYTHROXYLUM P. Browne, Civ. Nat. Hist. Jamaica, 278. 1756. 古柯属 gu ke shu Shrubs or small trees, usually glabrous. Stipules intrapetiolar, often imbricating on short branches. Leaves alternate, often subdistichous, simple. Flowers axillary, solitary or fascicled, small, often heterostylous. -
Tropane and Granatane Alkaloid Biosynthesis: a Systematic Analysis
Office of Biotechnology Publications Office of Biotechnology 11-11-2016 Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Neill Kim Texas Tech University Olga Estrada Texas Tech University Benjamin Chavez Texas Tech University Charles Stewart Jr. Iowa State University, [email protected] John C. D’Auria Texas Tech University Follow this and additional works at: https://lib.dr.iastate.edu/biotech_pubs Part of the Biochemical and Biomolecular Engineering Commons, and the Biotechnology Commons Recommended Citation Kim, Neill; Estrada, Olga; Chavez, Benjamin; Stewart, Charles Jr.; and D’Auria, John C., "Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis" (2016). Office of Biotechnology Publications. 11. https://lib.dr.iastate.edu/biotech_pubs/11 This Article is brought to you for free and open access by the Office of Biotechnology at Iowa State University Digital Repository. It has been accepted for inclusion in Office of Biotechnology Publicationsy b an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Tropane and Granatane Alkaloid Biosynthesis: A Systematic Analysis Abstract The tropane and granatane alkaloids belong to the larger pyrroline and piperidine classes of plant alkaloids, respectively. Their core structures share common moieties and their scattered distribution among angiosperms suggest that their biosynthesis may share common ancestry in some orders, while they may be independently derived in others. Tropane and granatane alkaloid diversity arises from the myriad modifications occurring ot their core ring structures. Throughout much of human history, humans have cultivated tropane- and granatane-producing plants for their medicinal properties. This manuscript will discuss the diversity of their biological and ecological roles as well as what is known about the structural genes and enzymes responsible for their biosynthesis. -
Cocaine: Pharmacology, Effects, and Treatment of Abuse
Cocaine: Pharmacology, Effects, and Treatment of Abuse U. S. DEPARTMENT OF HEALTH AND HUMAN SERVICES • Public Health Service • Alcohol, Drug Abuse, and Mental Health Administration Cocaine: Pharmacology, Effects, and Treatment of Abuse Editor: John Grabowski, Ph.D. Division of Clinical Research National Institute on Drug Abuse NIDA Research Monograph 50 1984 DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Alcohol, Drug Abuse, and Mental Health Administration National Institute on Drug Abuse 5600 Fishers Lane Rockville, Maryland 20857 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 NIDA Research Monographs are prepared by the research divisions of the National Institute on Drug Abuse and published by its Office of Science The primary objective of the series is to provide critical reviews of research problem areas and techniques, the content of state-of-the-art conferences, and integrative research reviews. Its dual publication emphasis is rapid and targeted dissemination to the scientific and professional community. Editorial Advisors MARTIN W. ADLER, Ph.D. SIDNEY, COHEN M.D. Temple University School of Medicine LosAngeles, California Philadelphia, Pennsylvania SYDNEY ARCHER, Ph.D. MARY L. JACOBSON Rensselaer Polytechnic Institute National Federation of Parents for Troy, New York Drug Free Youth RICHARD BELLEVILLE, Ph.D. Omaha, Nebraska NB Associates, Health Sciences Rockville, Maryland REESE T. JONES, M.D. KARST J. BESTMAN Langley Porter Neuropsychiatric Institute San Francisco, California Alcohol and Drug Problems Association of North America Washington, D.C. DENISE KANDEL, Ph.D. GILBERT J. BOVTIN, Ph.D. College of Physicians and Surgeons of Cornell University Medical College Columbia University New York, New York New York, New York JOSEPH V. -
PEREGRINO-THESIS-2017.Pdf (6.329Mb)
Biochemical studies in the elucidation of genes involved in tropane alkaloid production in Erythroxylum coca and Erythroxylum novogranatense by Olga P. Estrada, B. S. A Thesis In Chemical Biology Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCES Approved Dr. John C. D’Auria Chair of Committee Dr. David W. Nes Co-chair of Committee Mark Sheridan Dean of the Graduate School May, 2017 Copyright 2017, Olga P. Estrada Texas Tech University, Olga P. Estrada, May 2017 AKNOWLEDGMENTS I would like to thank my mentor and advisor Dr. John C. D’Auria, for providing me with the tools to become a scientist, and offering me his unconditional support. Thanks to the members of the D’Auria lab, especially Neill Kim and Benjamin Chavez for their aid during my experimental studies. And of course, thank you to my family for always giving me the strength to pursue my goals. ii Texas Tech University, Olga P. Estrada, May 2017 TABLE OF CONTENTS AKNOWLEDGMENTS ........................................................................................................... ii ABSTRACT ........................................................................................................................... v LIST OF TABLES ................................................................................................................. vi LIST OF FIGURES ............................................................................................................... vii CHAPTER I ......................................................................................................................... -
Coca and Cocaine
COCA AND COCAINE Effects on People and Policy in Latin America Deborah Pacini and Christine Franquemont Editors Proceedings of the Conference The Coca Leaf and Its Derivatives - Biology, Society and Policy Sponsored by the Latin American Studies Program (LASP), Cornell University April 25-26, 1985 Co-published by Cultural Survival, Inc. and LASP Cultural Survival Report No. 23. The Cultural Survival Report series is a continuation of the Occasional Paper series. ©June 1986 Cultural Survival Inc. Printed in the United States of America by Transcript Printing Company, Peterborough, New Hampshire. COCA CHEWING AND THE BOTANICAL ORIGINS OF COCA (ERYTHROXYLUM SPP.) IN SOUTH AMERICA Timothy Plowman The coca leaf has played an important role in the lives of South American Indians for thousands of years. Its use as a masticatory persists today in many parts of the Andes, from northern Colombia, south to Bolivia and Argentina, and in the western part of the Amazon Basin. Coca leaf is used as a mild stimulant and as sustenance for working under harsh environmen tal conditions by both Indians and mestizos alike. It also serves as a univer sal and effective household remedy for a wide range of medical complaints. Traditionally, coca also plays a crucial symbolic and religious role in An dean society. The unifying and stabilizing effects of coca chewing on An dean culture contrasts markedly with the disruptive and convoluted phenomenon of cocaine use in Western societies. Because all cocaine enter ing world markets is derived from coca leaves produced in South America, the staggering increase in demand for cocaine for recreational use has had a devastating impact on South American economies, politics and, most tragically, on indigenous cultures. -
List of Narcotic Drugs Under International Control
International Narcotics Control Board Yellow List Annex to Forms A, B and C 59th edition, July 2020 LIST OF NARCOTIC DRUGS UNDER INTERNATIONAL CONTROL Prepared by the INTERNATIONAL NARCOTICS CONTROL BOARD* Vienna International Centre P.O. Box 500 A-1400 Vienna, Austria Internet address: http://www.incb.org/ in accordance with the Single Convention on Narcotic Drugs, 1961** Protocol of 25 March 1972 amending the Single Convention on Narcotic Drugs, 1961 * On 2 March 1968, this organ took over the functions of the Permanent Central Narcotics Board and the Drug Supervisory Body, r etaining the same secretariat and offices. ** Subsequently referred to as “1961 Convention”. V.20-03697 (E) *2003697* Purpose The Yellow List contains the current list of narcotic drugs under international control and additional relevant information. It has been prepared by the International Narcotics Control Board to assist Governments in completing the annual statistical reports on narcotic drugs (Form C), the quarterly statistics of imports and exports of narcotic drugs (Form A) and the estimates of annual requirements for narcotic drugs (Form B) as well as related questionnaires. The Yellow List is divided into four parts: Part 1 provides a list of narcotic drugs under international control in the form of tables and is subdivided into three sections: (1) the first section includes the narcotic drugs listed in Schedule I of the 1961 Convention as well as intermediate opiate raw materials; (2) the second section includes the narcotic drugs listed in Schedule II of the 1961 Convention; and (3) the third section includes the narcotic drugs listed in Schedule IV of the 1961 Convention. -
Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials
Recommended methods for the Identification and Analysis of Cocaine in Seized Materials MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits: UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Cocaine in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS New York, 2012 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases, but any modification has to be validated before it is integrated into laboratory routines. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. ST/NAR/7/REV.1 Original language: English © United Nations, March 2012. All rights reserved. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. ii Contents Page 1. Introduction ................................................. 1 1.1 Background .............................................. 1 1.2 Purpose and use of the manual .............................. 1 2. Physical appearance and chemical characteristics of coca leaf and illicit materials containing cocaine ................................