The Morphological and Biochemical Effects of Feeding Hooker's Pitcher with Formica Fusca Or Calliphora Vicina Larvae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Correlates of the Evolution of Pitcher Traits in the Genus Nepenthes (Caryophyllales)
applyparastyle "body/p[1]" parastyle "Text_First" Biological Journal of the Linnean Society, 2018, 123, 321–337. With 5 figures. Keeping an eye on coloration: ecological correlates of the evolution of pitcher traits in the genus Nepenthes (Caryophyllales) KADEEM J. GILBERT1*, JOEL H. NITTA1†, GERARD TALAVERA1,2 and NAOMI E. PIERCE1 1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA 2Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37, E-08003, Barcelona, Spain †Current address: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan Received 20 August 2017; revised 10 November 2017; accepted for publication 10 November 2017 Nepenthes is a genus of carnivorous pitcher plants with high intra- and interspecific morphological diversity. Many species produce dimorphic pitchers, and the relative production rate of the two morphs varies interspecifically. Despite their probable ecological importance to the plants, little is known about the selective context under which various pitcher traits have evolved. This is especially true of colour-related traits, which have not been examined in a phylogenetic context. Using field observations of one polymorphic species (N. gracilis) and comparative phylogenetic analysis of 85 species across the genus, we investigate correlations between colour polymorphism and ecological factors including altitude, light environment and herbivory. In N. gracilis, colour does not correlate with amount of prey captured, but red pitchers experience less herbivory. Throughout the genus, colour polymorphism with redder lower pitchers appears to be evolutionarily favoured. We found a lack of phylogenetic signal for most traits, either suggesting that most traits are labile or reflecting the uncertainty regarding the underlying tree topology. -
Recircumscription of the Nepenthes Alata Group (Caryophyllales: Nepenthaceae), in the Philippines, with Four New Species
European Journal of Taxonomy 69: 1-23 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2013.69 www.europeanjournaloftaxonomy.eu 2013 · Martin Cheek & Matthew Jebb This work is licensed under a Creative Commons Attribution 3.0 License. Research article Recircumscription of the Nepenthes alata group (Caryophyllales: Nepenthaceae), in the Philippines, with four new species Martin CHEEK1 & Matthew JEBB2 1 Herbarium, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, U.K. Email: [email protected] (corresponding author) 2 National Botanic Garden, Glasnevin, Dublin 9, Ireland Email: [email protected] Abstract. An overview of Nepenthes in the Philippines is presented. Four new species, Nepenthes extincta sp. nov., N. kitanglad sp. nov., N. kurata sp. nov. and N. leyte sp. nov. are described and illustrated from the Philippines and placed in the Nepenthes alata group. An updated circumscription and key to the species of the group is provided. Delimitation and comparison with the Regiae group is given. All four of the newly described species are assessed as threatened using the International Union for the Conservation of Nature 2012 standard, and one, N. extincta sp. nov. is considered likely to be already extinct due to open-cast mining. Logging and conversion of forest habitat are thought to be the main threats to the other three species. Key words. Conservation, Nepenthes alata group, Mindanao, threatened, ultramafic. Cheek M. & Jebb M. 2013. Recircumscription of the Nepenthes alata group (Caryophyllales: Nepenthaceae), in the Philippines, with four new species. European Journal of Taxonomy 69: 1-23. http://dx.doi.org/10.5852/ ejt.2013.69 Introduction This paper forms part of studies towards a World Monograph of Nepenthes L. -
An Ethnobotanical Note on Nepenthes Mirabilis in Lao PDR
Note NAT. HIST. BULL. SIAM SOC. 62 (2): 195–198, 2018 An Ethnobotanical Note on Nepenthes mirabilis in Lao PDR Steven G. Platt 1*, Oudomxay Thongsavath 2,4, Pakham Outhanekone 2 and Thomas R. Rainwater 3 The family Nepenthaceae (Tropical Pitcher Plants or Monkey Cups), consists of a single genus (Nepenthes) with >140 species (CHEEK & JEBB, 2013) occurring in southern China, India (Assam), Sri Lanka, Indochina, Malaysia, Indonesia, Philippines, northern Australia (Queensland), and eastern Madagascar (JUNIPER ET AL., 1989; MCPHERSON, 2009). Nepenthaceae are characterized by liquid-containing pitchers suspended by tendrils growing from the leaf midrib (CLARKE, 2002). Pitcher plants obtain nutrients (especially nitrogen and phosphorous) by trapping and digesting invertebrate prey in the pitcher (ETKIN, 2008). Digestion of prey is accomplished by the combined action of enzymes and symbiotic insect larvae (flies, midges, and mosquitos) adapted to the low pH of the pitcher environment (JUNIPER ET AL., 1989; CLARKE, 2002; ETKIN, 2008). In contrast to many regions, the Nepenthaceae of Indochina (Laos, Thailand, Cambodia, and Vietnam) have received little scientific attention (MEY, 2010) and in particular, only a few reports on the ethnobotany of these plants are available from the region. According to VIDAL (1959) Nepenthes spp. is used to treat eruptive fever in Laos and in Cambodia, MEY (2010) stated that N. mirabilis is incorporated into medicines, the leaves and roots of N. holdenii are used in decoctions to treat fever and pain, and the roots of N. bokorensis are boiled and administered to pregnant women to alleviate pain. These reports notwithstanding, the general paucity of ethnobotanical information on Nepenthes in Indochina is somewhat surprising given the cultural, material, and medicinal significance of these plants elsewhere (ETKIN [2008] and references therein). -
Nepenthes Argentii Philippines, N. Aristo
BLUMEA 42 (1997) 1-106 A skeletal revision of Nepenthes (Nepenthaceae) Matthew Jebb & Martin Chee k Summary A skeletal world revision of the genus is presented to accompany a family account forFlora Malesi- ana. 82 species are recognised, of which 74 occur in the Malesiana region. Six species are described is raised from and five restored from as new, one species infraspecific status, species are synonymy. Many names are typified for the first time. Three widespread, or locally abundant hybrids are also included. Full descriptions are given for new (6) or recircumscribed (7) species, and emended descrip- Critical for all the Little tions of species are given where necessary (9). notes are given species. known and excluded species are discussed. An index to all published species names and an index of exsiccatae is given. Introduction Macfarlane A world revision of Nepenthes was last undertaken by (1908), and a re- Malesiana the gional revision forthe Flora area (excluding Philippines) was completed of this is to a skeletal revision, cover- by Danser (1928). The purpose paper provide issues which would be in the ing relating to Nepenthes taxonomy inappropriate text of Flora Malesiana.For the majority of species, only the original citation and that in Danser (1928) and laterpublications is given, since Danser's (1928) work provides a thorough and accurate reference to all earlier literature. 74 species are recognised in the region, and three naturally occurring hybrids are also covered for the Flora account. The hybrids N. x hookeriana Lindl. and N. x tri- chocarpa Miq. are found in Sumatra, Peninsular Malaysia and Borneo, although rare within populations, their widespread distribution necessitates their inclusion in the and other and with the of Flora. -
A Carnivorous Plant Fed by Its Ant Symbiont: a Unique Multi-Faceted Nutritional Mutualism Vincent Bazile, Jonathan A
A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism Vincent Bazile, Jonathan A. Moran, Gilles Le Moguedec, David J. Marshall, Laurence Gaume To cite this version: Vincent Bazile, Jonathan A. Moran, Gilles Le Moguedec, David J. Marshall, Laurence Gaume. A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism. PLoS ONE, Public Library of Science, 2012, 7 (3), pp.e36179. 10.1371/journal.pone.0036179. halsde- 00700037 HAL Id: halsde-00700037 https://hal.archives-ouvertes.fr/halsde-00700037 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism Vincent Bazile1*, Jonathan A. Moran4, Gilles Le Mogue´dec1,2, David J. Marshall5, Laurence Gaume1,3 1 Universite´ Montpellier II, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 2 INRA, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 3 CNRS, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 4 School of Environment and Sustainability, Royal Roads University, Victoria, British Columbia, Canada, 5 Biology Department, University of Brunei Darussalam, Gadong, Brunei Darussalam Abstract Scarcity of essential nutrients has led plants to evolve alternative nutritional strategies, such as myrmecotrophy (ant-waste- derived nutrition) and carnivory (invertebrate predation). -
The Mysterious World Inside a Pitcher Plant (N. Mirabilis)
1 The Mysterious World Inside a Pitcher Plant (N. mirabilis) SEARCHING FOR NATURE STORIES 2018 CHAN CHUNG NGAI (5A) CHENG YIK TUNG (5B) CHONG TSZ LING (5B) SZE CHUN YUI (5B) TANG SHUK PING (5B) CHEUNG CHUK SHAN COLLEGE [TEAM R03] CONTENT 1 ABSTRACT 3 2 INTRODUCTION 3 - 4 2.1 Introduction to the research topic 3 2.2 Objectives 4 2.3 Research questions 4 2.4 Background information of Nepenthes mirabilis 4 2 3 METHODOLOGY 5 - 11 3.1 Field study 5 3.2 Objective 1: To study the digestion of prey by Nepenthes mirabilis 6 3.3 Objective 2: To study the relationship between Nepenthes mirabilis and 9 mosquito 4 RESULTS 11 - 15 4.1 Objective 1:To study the digestion of prey by Nepenthes mirabilis 11 4.2 Objective 2:To study the relationship between Nepenthes mirabilis and 13 mosquito 5 DISCUSSION 15 -19 5.1 Objective 1:To study the digestion of prey by Nepenthes mirabilis 15 5.2 Objective 2:To study the relationship between Nepenthes mirabilis and 16 mosquito 5.3 Further investigation 19 6 CONCLUSION 19 7 BIBLIOGRAPHY 20 1. ABSTRACT Nepenthes mirabilis (Lour.) Druce is a species of pitcher plants which captures insects for additional nutrients, enhancing its survival at a place with low nutritional value. With a bright colour and alluring nectar, insects are attracted to and trapped inside pitchers with slippery walls. These preys are soon digested by the juice released by the pitcher gland. In contrast to the unique carnivorous behavior though, it is interesting that mosquito is a rare species that can live within the pitchers and lay eggs on the digestive juice without being digested. -
A Comparative UHPLC-Q/TOF–MS-Based Eco-Metabolomics
www.nature.com/scientificreports OPEN A comparative UHPLC‑Q/ TOF–MS‑based eco‑metabolomics approach reveals temperature adaptation of four Nepenthes species Changi Wong1, Yee Soon Ling2, Julia Lih Suan Wee3, Aazani Mujahid4 & Moritz Müller1* Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifcally in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the diferent Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco‑metabolomics approach to identify temperature stressed individual metabolic fngerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards diferent geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fngerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecifc responses and adaptation of N. rafesiana and N. northiana likely refected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafesiana, to produce metabolites needed to deal with increased temperatures, ofering hope for the plant genus and future adaption in times of changing climate. Nepenthes (N.), the sole genus under the family Nepenthaceae, is one of the largest families of carnivorous plants, with an extensive geographical distribution across the Malay Archipelago, specifcally in Borneo, Philippines, and Sumatra. -
Prey Capture Patterns in Nepenthes Species and Natural Hybrids – Are the Pitchers of Hybrids As Effective at Trapping Prey As Those of Their Parents?
Technical Refereed Contribution Prey capture patterns in Nepenthes species and natural hybrids – are the pitchers of hybrids as effective at trapping prey as those of their parents? Heon Sui Peng • Charles Clarke • School of Science • Monash University Malaysia • Jalan Lagoon Selatan • 46150 Bandar Sunway • Selangor • Malaysia • [email protected] Keywords: Nepenthes, natural hybrids, prey capture, arthropods, trap structure. Introduction The carnivorous pitcher plant genus Nepenthes (Nepenthaceae) is thought to comprise more than 120 species, with a geographical range that extends from Madagascar and the Seychelles in the west, through Southeast Asia to New Caledonia in the east (Cheek & Jebb 2001; Chin et al. 2014). There are three foci of diversity – Borneo, Sumatra, and the Philippines – which account for more than 75% of all known species (Moran et al. 2013). The pitchers of Nepenthes have three main components – the pitcher cup, the peristome (a collar-like band of lignified tissue that lines the pitcher mouth), and the lid (Fig. 1A-G). In most species, the lid is broad and flat and overhangs the mouth (Fig. 1B-D), but in some specialized species it is small and oriented away from the mouth (Fig. 1A,E). The inner walls of the pitcher cup may be divided into two discrete zones – a lower “digestive” zone in which the pitcher walls lack a waxy cuticle and are lined with digestive glands; and an upper “conductive” zone, which lacks digestive glands but is covered by a complex array of wax crystals (Juniper et al. 1989; Bonhomme et al. 2011). Insects that make their way onto the conductive surface often lose their footing and fall into the digestive zone, which contains a viscoelastic fluid that facilitates the retention and drowning of prey. -
Of the Pitcher Plants Nepenthes Mirabilis, Cephalotus Follicularis and Darlingtonia Californica
Oecologia (1997) 112:464±471 Ó Springer-Verlag 1997 W. Schulze á E.D. Schulze á J.S. Pate á A.N. Gillison The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica Received: 14 April 1997 / Accepted: 18 August 1997 Abstract This study investigated the nitrogen (N) ac- were assessed across a developmental sequence from quisition from soil and insect capture during the growth young plants lacking pitchers to large adults with up to of three species of pitcher plants, Nepenthes mirabilis, 38 pitchers. The data indicated dependence on soil Cephalotus follicularis and Darlingtonia californica. N until 4 pitchers had opened. Beyond that stage, 15N/14N natural abundance ratios (d15N) of plants and plant size increased with the number of catching pitchers pitchers of dierent age, non-carnivorous reference but the fraction of soil N remained high. Large plants, and insect prey were used to estimate propor- Cephalotus plants were estimated to derive 26 5.9% tional contributions of insects to the N content of leaves (mean SD of the three largest plants; range: 19±30%) and whole plants. Young Nepenthes leaves (phyllodes) of the N from insects. In Cephalotus we observed an carrying closed pitchers comprised major sinks for N increased d15N value in sink versus source pitchers of and developed mainly from insect N captured elsewhere about 1.2& on average. Source and sink pitchers of on the plant. Their d15N values of up to 7.2& were Darlingtonia had a similar d15N value, but plant N in higher than the average d15N value of captured insects this species showed d15N signals closer to that of insect (mean d15N value = 5.3&). -
Flora Malesiana Nepenthaceae
Flora Malesiana Series I - Seed Plants Volume 15 - 2001 Nepenthaceae Martin Cheek & Matthew Jebb ISBN 90-71236-49-8 All rights reserved © 2001 FoundationFlora Malesiana No the this be in part of material protected by copyright notice may reproduced or utilized any electronic form or by any means, or mechanical, including photocopying, recording, or by any and retrieval without written the information storage system, permission from copyright owner. Abstract Flora Malesiana. Series I, Volume 15 (2001) iv + 1—157, published by the Nationaal Herbarium Nederland, Universiteit Leiden branch, The Netherlands, under the aus- pices of FoundationFlora Malesiana. ISBN 90-71236-49-8 for i.e. the Contains the taxonomicrevision ofone family, Nepenthaceae, Malesia, area covering the countries Indonesia, Malaysia, Brunei Darussalam, Singapore, the Philip- pines, and Papua New Guinea. Martin Cheek & Matthew Jebb, Nepenthaceae, pp. 1—157*. A palaeotropical family of lianas, shrubs and herbs, with a single genus, Nepenthes. three There are 83 species of the family in the Malesian area, including nothospecies and one little known species. Most of the species are cultivated and traded across the value. in world as ornamental plants with curiosity Locally Malesia, some species are used for cooking specialist rice dishes, for medicinal uses or for making rope. habitat and ecol- The introductory part consists of chapters on distribution, fossils, ogy, reproductive biology, morphology and anatomy, pitcher function, cytotaxonomy, and characters. conservation, taxonomy, uses, collecting notes, spot Regional keys to the species are given. These are based largely on vegetative charac- ters. distribution, notes Foreach species full references, synonymy, descriptions, ecology, on diagnostic characters and relationships withother species are presented. -
Nepenthes Pitcher Plants Capture Prey with the Peristome, a Fully Wettable Water-Lubricated Anisotropic Surface
Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface Holger F. Bohn and Walter Federle* Zoologie II, Biozentrum, Am Hubland, 97074 Wu¨rzburg, Germany Communicated by Bert Ho¨lldobler, University of Wu¨rzburg, Wu¨rzburg, Germany, August 11, 2004 (received for review July 23, 2004) Pitcher plants of the genus Nepenthes have highly specialized insects are trapped when they step on the waxy zone while leaves adapted to attract, capture, retain, and digest arthropod visiting the nectaries on the inner side of the pitcher rim prey. Several mechanisms have been proposed for the capture of (peristome) (e.g., refs. 2, 5, 7). The waxy zone of Nepenthes insects, ranging from slippery epicuticular wax crystals to down- pitchers is characterized by platelet-shaped aldehyde crystals ward-pointing lunate cells and alkaloid secretions that anesthetize protruding perpendicularly from the surface (9). These platelets insects. Here we report that perhaps the most important capture not only detach and contaminate the surface of insect adhesive mechanism has thus far remained overlooked. It is based on special pads but also appear to interact with the insect’s adhesive surface properties of the pitcher rim (peristome) and insect ‘‘aqua- secretion to form an amorphous substance that impedes attach- planing.’’ The peristome is characterized by a regular microstruc- ment (10). ture with radial ridges of smooth overlapping epidermal cells, However, the consensus about the waxy zone as the principal which form a series of steps toward the pitcher inside. This surface trapping mechanism in Nepenthes pitchers is impaired by the fact is completely wettable by nectar secreted at the inner margin of that in several Nepenthes species (e.g., Nepenthes ampullaria, the peristome and by rain water, so that homogenous liquid films Nepenthes bicalcarata, and Nepenthes ventricosa), the waxy zone cover the surface under humid weather conditions. -
The Plant-Ant Camponotus Schmitzi Helps Its Carnivorous Host-Plant Nepenthes Bicalcarata to Catch Its Prey
Journal of Tropical Ecology (2011) 27:15–24. Copyright © Cambridge University Press 2010 doi:10.1017/S0266467410000532 The plant-ant Camponotus schmitzi helps its carnivorous host-plant Nepenthes bicalcarata to catch its prey Vincent Bonhomme∗, Isabelle Gounand∗, Christine Alaux∗, Emmanuelle Jousselin†, Daniel Barthel´ emy´ ∗ and Laurence Gaume∗ ∗ Universite´ Montpellier II, CNRS, INRA, UMR AMAP: Botanique et Bioinformatique de l’Architecture des Plantes, CIRAD – TA A51/PS2 Boulevard de la Lironde, F-34398 Montpellier Cedex 5, France † INRA, UMR CBGP, Campus International de Baillarguet, CS 30016, 34988 Montferrier-sur-Lez, France (Accepted 24 August 2010) Abstract: The Bornean climber, Nepenthes bicalcarata, is unique among plants because it is both carnivorous and myrmecophytic, bearing pitcher-shaped leaves and the ant Camponotus schmitzi within tendrils. We explored, in the peat swamp forests of Brunei, the hypothesis that these ants contribute to plant nutrition by catching and digesting its prey.Wefirsttestedwhetherantsincreasedplant’scapturerate.Wefoundthatunlikemostplant-ants,C.schmitzidonot exhibit dissuasive leaf-patrolling behaviour (zero patrol on 67 pitchers of 10 plants) but lie concealed under pitcher rim (13 ± 6 ants per pitcher) allowing numerous insect visits. However, 47 out of 50 individuals of the largest visitor dropped into the pitchers of five plants were attacked by ants and the capture rate of the same pitchers deprived of their ambush hunting ants decreased three-fold. We then tested whether ants participated in plant’s digestion. We showed in a 15-d long experiment that ants fed on prey and returned it in pieces in seven out of eight pitchers. The 40 prey deposited in ant-deprived pitchers remained intact indicating a weak digestive power of the fluid confirmed to be only weakly acidic (pH ∼5, n = 67).