Ecological Correlates of the Evolution of Pitcher Traits in the Genus Nepenthes (Caryophyllales)

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Correlates of the Evolution of Pitcher Traits in the Genus Nepenthes (Caryophyllales) applyparastyle "body/p[1]" parastyle "Text_First" Biological Journal of the Linnean Society, 2018, 123, 321–337. With 5 figures. Keeping an eye on coloration: ecological correlates of the evolution of pitcher traits in the genus Nepenthes (Caryophyllales) KADEEM J. GILBERT1*, JOEL H. NITTA1†, GERARD TALAVERA1,2 and NAOMI E. PIERCE1 1Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA 02138, USA 2Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37, E-08003, Barcelona, Spain †Current address: Department of Botany, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba, 305-0005, Japan Received 20 August 2017; revised 10 November 2017; accepted for publication 10 November 2017 Nepenthes is a genus of carnivorous pitcher plants with high intra- and interspecific morphological diversity. Many species produce dimorphic pitchers, and the relative production rate of the two morphs varies interspecifically. Despite their probable ecological importance to the plants, little is known about the selective context under which various pitcher traits have evolved. This is especially true of colour-related traits, which have not been examined in a phylogenetic context. Using field observations of one polymorphic species (N. gracilis) and comparative phylogenetic analysis of 85 species across the genus, we investigate correlations between colour polymorphism and ecological factors including altitude, light environment and herbivory. In N. gracilis, colour does not correlate with amount of prey captured, but red pitchers experience less herbivory. Throughout the genus, colour polymorphism with redder lower pitchers appears to be evolutionarily favoured. We found a lack of phylogenetic signal for most traits, either suggesting that most traits are labile or reflecting the uncertainty regarding the underlying tree topology. This study highlights ecological correlates of the vast phenotypic diversity of this group of tropical plants. We point to a need for future study examining herbivores of Nepenthes and experimental investigations on colour polymorphism. ADDITIONAL KEYWORDS: altitude – carnivorous plants – coloration – comparative methods – herbivory – intraspecific diversity – Nepenthes L. – pitcher plants – plant–animal interactions INTRODUCTION For instance, animal pollinators have a prominent role in shaping floral evolution (e.g. Muchhala & Potts, Competition for resources can lead to the divergence of 2007; Kay & Sargent, 2009; Alcantara & Lohmann, a clade into multiple niches and the evolution of novel 2011; van der Niet & Johnson, 2012; Anderson et al., morphological features. This can be seen in many plant 2014; Boberg et al., 2014; Muchhala, Johnsen & Smith, radiations such as the bromeliads, where species that 2014; Lagomarsino et al., 2016). Thus, plant morpho- came to occupy water- and nutrient-limited habitats logical evolution can have multiple, interacting biotic evolved tightly pressed leaf tanks capable of collecting and abiotic drivers. However, disentangling the effects water and nutrient-rich debris (Benzing & Renfrow, of these various drivers is difficult and has not been 1974; Givnish et al., 2011). In addition to resource achieved for many groups. limitation and/or competition, plants must also rou- Pitcher plants are one such group characterized by an tinely respond to a suite of interspecific interactions. adaptation that is subject to multiple interacting driv- ers. Their pitchers are modified leaves used to capture *Corresponding author. Email: [email protected] and digest animal prey – they are nitrogen-acquiring © 2018 The Linnean Society of London, Biological Journal of the Linnean Society, 2018, 123, 321–337 321 Downloaded from https://academic.oup.com/biolinnean/article-abstract/123/2/321/4788353 by Harvard Library user on 24 June 2018 322 K. J. GILBERT ET AL. organs analogous to bromeliad tanks, but are also differences in the symbiont communities of different like flowers in their potential to coevolve with ani- pitcher morphs (Clarke, 1997a), but little is known mal visitors. Pitcher plants are thus a useful system about the evolution or functional significance of to investigate the roles of abiotic and biotic effects on pitcher dimorphism. the diversification of an adaptive trait. Here we exam- In addition to shape, many species also have pitch- ine the carnivorous plant genus Nepenthes L., the most ers that vary from red to green, often with discrete diverse (> 140 species: Cheek & Jebb, 2014) and wide- colour differences between the lower and upper spread family of carnivorous pitcher plants. Its core morphs (Fig. 1 – we hereafter refer to the occur- distribution spans most of Southeast Asia, with a few rence of discrete colour differences between pitcher outlying species in Madagascar to the west and New morphs within a plant as ‘colour polymorphism’). Caledonia to the east, and ranges in altitude from 0 up Despite being a conspicuous feature of Nepenthes, to 3520 m a.s.l. (McPherson, Robinson & Fleischmann, pitcher coloration is poorly understood. A few stud- 2009). The pitchers of different species are used to cap- ies have examined the role of red pigmentation as ture insects, but additionally may be involved in inter- a visual signal in carnivorous plants (Schaefer & actions spanning from commensalism to parasitism Ruxton, 2008; Bennett & Ellison, 2009; Foot, Rice and mutualism (e.g. Beaver, 1979; Adlassnig, Peroutka & Millet, 2014; Jürgens et al., 2015; El-Sayed, Byers & Lendl, 2011; Bazile et al., 2012; Thornham et al., & Suckling, 2016), and several have hypothesized 2012; Scharmann et al., 2013). Pitchers are morpho- that the contrast of red against a green background logically complex, exhibiting an array of traits that are of foliage could be attractive, although many insects under selection by both biotic and abiotic factors that lack red perception (Briscoe and Chittka, 2001). are difficult to tease apart. Red was not found to be a prey attractant in studies Recent work has elucidated the functional signifi- with sundews (Foot et al., 2014; Jürgens et al., 2015; cance of pitcher traits, including the thickness of the El-Sayed et al., 2016), but results have been con- peristome, presence of a waxy layer, viscosity of the flicting in pitcher plants (Schaefer & Ruxton, 2008; fluid and digestive gland structure in relation to prey- Bennett & Ellison, 2009). trapping efficiency (Bonhomme et al., 2011; Renner & As red pigmentation in Nepenthes is due to antho- Specht, 2011; Bauer et al., 2012). Although it has not cyanins (Kováčik, Klejdus & Repčáková, 2012), which yet been well documented whether interspecific dif- are costly to produce (Gould, 2004), the existence of ferences can be explained by niche-partitioning (Chin, intraspecific colour polymorphism in pitcher plants is Chung & Clarke, 2014; but see Peng & Clarke, 2015; particularly puzzling. More generally, the role of plant Gaume et al., 2016), the few known specialist trappers anthocyanins as visual signals in flowers and fruits point to the importance of animal visitors to pheno- is well understood, but the function of anthocyanins typic evolution of pitchers; this includes traits such in leaves is less well resolved. Multiple competing, as the parabolic structure in N. hemsleyana Macfarl. although not necessarily mutually exclusive, hypoth- that functions as an echolocation guide for its mu- eses have been proposed for the role of anthocyanins tualist bat (Schӧner et al., 2015; Schӧner et al., 2017). in leaves (Gould, 2004), the majority of which can be Despite growing knowledge of the significance of dif- divided into two camps: those that argue that anthocy- ferent trapping features to the genus, less than 10% of anins primarily serve a physiological role, vs. those that all species have been the subject of ecological studies posit that they are visual signals and are primarily a detailing their specific prey capture strategies (Clarke result of coevolving with herbivores (Archetti & Brown, & Moran, 2011), and the functional significance of 2004; Archetti et al., 2009). Some potential physio- many pitcher traits has yet to be explored. logical functions of anthocyanins involve protecting One potentially important, yet understudied set leaves from excess light, including UV shielding and of traits in pitcher plants are those related to intra- free radical scavenging (Feild, Lee & Holbrook, 2001; specific polymorphism. Many species produce two Hoch, Zeldin & McCown, 2001; Neill & Gould, 2003), distinct pitcher morphologies (‘morphs’) throughout and facilitating nutrient resorption in the context of the lifespan of an individual plant: lower pitchers deciduous colour-changing leaves (Hoch, Singsaas, & (‘lowers’), which grow gravitropically from plants McCown, 2003). Additionally, abaxial anthocyanins in the rosette phase and possess winged fringes of in understorey plants have been proposed to improve tissue (‘wings’); and upper pitchers (‘uppers’), which photosynthetic efficiency in the ‘back-scatter hypoth- grow from plants in the climbing phase, twine onto esis’, although there is some experimental evidence surrounding vegetation via their tendrils and pos- against this (Hughes, Vogelman, & Smith, 2008). sess a more streamlined form lacking wings (Jebb Considering the coevolution hypothesis, anthocyanins and Cheek, 1997; Fig. 1). There is some evidence of may serve as either direct (Schaefer, Rentzsch & Breuer, prey-partitioning
Recommended publications
  • Status of Insectivorous Plants in Northeast India
    Technical Refereed Contribution Status of insectivorous plants in northeast India Praveen Kumar Verma • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box # 136 • Jorhat 785 001 (Assam) • India • [email protected] Jan Schlauer • Zwischenstr. 11 • 60594 Frankfurt/Main • Germany • [email protected] Krishna Kumar Rawat • CSIR-National Botanical Research Institute • Rana Pratap Marg • Lucknow -226 001 (U.P) • India Krishna Giri • Shifting Cultivation Division • Rain Forest Research Institute • Sotai Ali • Deovan • Post Box #136 • Jorhat 785 001 (Assam) • India Keywords: Biogeography, India, diversity, Red List data. Introduction There are approximately 700 identified species of carnivorous plants placed in 15 genera of nine families of dicotyledonous plants (Albert et al. 1992; Ellison & Gotellli 2001; Fleischmann 2012; Rice 2006) (Table 1). In India, a total of five genera of carnivorous plants are reported with 44 species; viz. Utricularia (38 species), Drosera (3), Nepenthes (1), Pinguicula (1), and Aldrovanda (1) (Santapau & Henry 1976; Anonymous 1988; Singh & Sanjappa 2011; Zaman et al. 2011; Kamble et al. 2012). Inter- estingly, northeastern India is the home of all five insectivorous genera, namely Nepenthes (com- monly known as tropical pitcher plant), Drosera (sundew), Utricularia (bladderwort), Aldrovanda (waterwheel plant), and Pinguicula (butterwort) with a total of 21 species. The area also hosts the “ancestral false carnivorous” plant Plumbago zelayanica, often known as murderous plant. Climate Lowland to mid-altitude areas are characterized by subtropical climate (Table 2) with maximum temperatures and maximum precipitation (monsoon) in summer, i.e., May to September (in some places the highest temperatures are reached already in April), and average temperatures usually not dropping below 0°C in winter.
    [Show full text]
  • Nepenthes Gracilis Pitcher Plants
    With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants Ulrike Bauer1,2*, Bruno Di Giusto3, Jeremy Skepper4, T. Ulmar Grafe2, Walter Federle5 1 Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom, 2 Department of Biology, University Brunei Darussalam, Gadong, Brunei Darussalam, 3 English Language Center, Ming Chuan University, Taipei, Taiwan, 4 Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom, 5 Department of Zoology, University of Cambridge, Cambridge, United Kingdom Abstract Carnivorous pitcher plants capture prey with modified leaves (pitchers), using diverse mechanisms such as ‘insect aquaplaning’ on the wet pitcher rim, slippery wax crystals on the inner pitcher wall, and viscoelastic retentive fluids. Here we describe a new trapping mechanism for Nepenthes gracilis which has evolved a unique, semi-slippery wax crystal surface on the underside of the pitcher lid and utilises the impact of rain drops to ‘flick’ insects into the trap. Depending on the experimental conditions (simulated ‘rain’, wet after ‘rain’, or dry), insects were captured mainly by the lid, the peristome, or the inner pitcher wall, respectively. The application of an anti-slip coating to the lower lid surface reduced prey capture in the field. Compared to sympatric N. rafflesiana, N. gracilis pitchers secreted more nectar under the lid and less on the peristome, thereby directing prey mainly towards the lid. The direct contribution to prey capture represents a novel function of the pitcher lid. Citation: Bauer U, Di Giusto B, Skepper J, Grafe TU, Federle W (2012) With a Flick of the Lid: A Novel Trapping Mechanism in Nepenthes gracilis Pitcher Plants.
    [Show full text]
  • Mitotic Chromosome Studies in Nepenthes Khasiana, an Endemic Insectivorous Plant of Northeast India
    © 2012 The Japan Mendel Society Cytologia 77(3): 381–384 Mitotic Chromosome Studies in Nepenthes khasiana, An Endemic Insectivorous Plant of Northeast India Soibam Purnima Devi1, Satyawada Rama Rao2*, Suman Kumaria1 and Pramod Tandon1 1 Department of Botany, North-Eastern Hill University, Shillong–793022, India 2 Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong–793022, India Received April 23, 2012; accepted August 5, 2012 Summary Chromosome counts were carried out in root tip cells of Nepenthes khasiana (Nepenthaceae), a threatened insectivorous plant of Northeast India. N. khasiana has become threat- ened in its natural habitat due to overexploitation for its medicinal uses as well as its ornamental im- portance. Plantlets of Nepenthes khasiana collected from Jarain, Meghalaya were cytologically ana- lyzed. All the root tip cells analyzed showed the chromosome number of 2n=80 without any variations. Karyomorphological studies were not plausible in this species due to the relatively small size of the chromosomes. Key words Nepenthes khasiana, Mitosis, Insectivorous, Polyploidy, Karyotype. The genus Nepenthes belonging to the family Nepenthaceae is one of the largest genus among the insectivorous plants. It comprises of about 134 species (McPherson 2009) of which only one species is found in India (Bordoloi 1977). Nepenthes khasiana Hook. f. is the only species found in India and occurs as an endemic species of Meghalaya. It is believed that the species represents an- cient endemic remnants of older flora which usually occur in land masses of geological antiquity (Paleoendemics), (Bramwell 1972). In India, it is usually found growing from the west Khasi Hills to the east Khasi Hills, in the Jaintia Hills, and in the east to west and south Garo Hills from 1000 to 1500 m altitude (Mao and Kharbuli 2002).
    [Show full text]
  • Medicinal Plant Conservation
    MEDICINAL Medicinal Plant PLANT SPECIALIST GROUP Conservation Silphion Volume 11 Newsletter of the Medicinal Plant Specialist Group of the IUCN Species Survival Commission Chaired by Danna J. Leaman Chair’s note . 2 Sustainable sourcing of Arnica montana in the International Standard for Sustainable Wild Col- Apuseni Mountains (Romania): A field project lection of Medicinal and Aromatic Plants – Wolfgang Kathe . 27 (ISSC-MAP) – Danna Leaman . 4 Rhodiola rosea L., from wild collection to field production – Bertalan Galambosi . 31 Regional File Conservation data sheet Ginseng – Dagmar Iracambi Medicinal Plants Project in Minas Gerais Lange . 35 (Brazil) and the International Standard for Sus- tainable Wild Collection of Medicinal and Aro- Conferences and Meetings matic Plants (ISSC-MAP) – Eleanor Coming up – Natalie Hofbauer. 38 Gallia & Karen Franz . 6 CITES News – Uwe Schippmann . 38 Conservation aspects of Aconitum species in the Himalayas with special reference to Uttaran- Recent Events chal (India) – Niranjan Chandra Shah . 9 Conservation Assessment and Management Prior- Promoting the cultivation of medicinal plants in itisation (CAMP) for wild medicinal plants of Uttaranchal, India – Ghayur Alam & Petra North-East India – D.K. Ved, G.A. Kinhal, K. van de Kop . 15 Ravikumar, R. Vijaya Sankar & K. Haridasan . 40 Taxon File Notices of Publication . 45 Trade in East African Aloes – Sara Oldfield . 19 Towards a standardization of biological sustain- List of Members. 48 ability: Wildcrafting Rhatany (Krameria lap- pacea) in Peru – Maximilian
    [Show full text]
  • Nepenthes Argentii Philippines, N. Aristo
    BLUMEA 42 (1997) 1-106 A skeletal revision of Nepenthes (Nepenthaceae) Matthew Jebb & Martin Chee k Summary A skeletal world revision of the genus is presented to accompany a family account forFlora Malesi- ana. 82 species are recognised, of which 74 occur in the Malesiana region. Six species are described is raised from and five restored from as new, one species infraspecific status, species are synonymy. Many names are typified for the first time. Three widespread, or locally abundant hybrids are also included. Full descriptions are given for new (6) or recircumscribed (7) species, and emended descrip- Critical for all the Little tions of species are given where necessary (9). notes are given species. known and excluded species are discussed. An index to all published species names and an index of exsiccatae is given. Introduction Macfarlane A world revision of Nepenthes was last undertaken by (1908), and a re- Malesiana the gional revision forthe Flora area (excluding Philippines) was completed of this is to a skeletal revision, cover- by Danser (1928). The purpose paper provide issues which would be in the ing relating to Nepenthes taxonomy inappropriate text of Flora Malesiana.For the majority of species, only the original citation and that in Danser (1928) and laterpublications is given, since Danser's (1928) work provides a thorough and accurate reference to all earlier literature. 74 species are recognised in the region, and three naturally occurring hybrids are also covered for the Flora account. The hybrids N. x hookeriana Lindl. and N. x tri- chocarpa Miq. are found in Sumatra, Peninsular Malaysia and Borneo, although rare within populations, their widespread distribution necessitates their inclusion in the and other and with the of Flora.
    [Show full text]
  • The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes Ventricosa
    Rollins College Rollins Scholarship Online Honors Program Theses Spring 2020 The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa Zephyr Anne Lenninger [email protected] Follow this and additional works at: https://scholarship.rollins.edu/honors Part of the Plant Biology Commons Recommended Citation Lenninger, Zephyr Anne, "The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa" (2020). Honors Program Theses. 120. https://scholarship.rollins.edu/honors/120 This Open Access is brought to you for free and open access by Rollins Scholarship Online. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of Rollins Scholarship Online. For more information, please contact [email protected]. The Coordinate Regulation of Digestive Enzymes in the Pitchers of Nepenthes ventricosa Zephyr Lenninger Rollins College 2020 Abstract Many species of plants have adopted carnivory as a way to obtain supplementary nutrients from otherwise nutrient deficient environments. One such species, Nepenthes ventricosa, is characterized by a pitcher shaped passive trap. This trap is filled with a digestive fluid that consists of many different digestive enzymes, the majority of which seem to have been recruited from pathogen resistance systems. The present study attempted to determine whether the introduction of a prey stimulus will coordinately upregulate the enzymatic expression of a chitinase and a protease while also identifying specific chitinases that are expressed by Nepenthes ventricosa. We were able to successfully clone NrCHIT1 from a mature Nepenthes ventricosa pitcher via a TOPO-vector system. In order to asses enzymatic expression, we utilized RT-qPCR on pitchers treated with chitin, BSA, or water.
    [Show full text]
  • A Carnivorous Plant Fed by Its Ant Symbiont: a Unique Multi-Faceted Nutritional Mutualism Vincent Bazile, Jonathan A
    A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism Vincent Bazile, Jonathan A. Moran, Gilles Le Moguedec, David J. Marshall, Laurence Gaume To cite this version: Vincent Bazile, Jonathan A. Moran, Gilles Le Moguedec, David J. Marshall, Laurence Gaume. A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism. PLoS ONE, Public Library of Science, 2012, 7 (3), pp.e36179. 10.1371/journal.pone.0036179. halsde- 00700037 HAL Id: halsde-00700037 https://hal.archives-ouvertes.fr/halsde-00700037 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Carnivorous Plant Fed by Its Ant Symbiont: A Unique Multi-Faceted Nutritional Mutualism Vincent Bazile1*, Jonathan A. Moran4, Gilles Le Mogue´dec1,2, David J. Marshall5, Laurence Gaume1,3 1 Universite´ Montpellier II, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 2 INRA, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 3 CNRS, UMR AMAP: Botanique et bioinformatique de l’architecture des plantes, Montpellier, France, 4 School of Environment and Sustainability, Royal Roads University, Victoria, British Columbia, Canada, 5 Biology Department, University of Brunei Darussalam, Gadong, Brunei Darussalam Abstract Scarcity of essential nutrients has led plants to evolve alternative nutritional strategies, such as myrmecotrophy (ant-waste- derived nutrition) and carnivory (invertebrate predation).
    [Show full text]
  • The Mysterious World Inside a Pitcher Plant (N. Mirabilis)
    1 The Mysterious World Inside a Pitcher Plant (N. mirabilis) SEARCHING FOR NATURE STORIES 2018 CHAN CHUNG NGAI (5A) CHENG YIK TUNG (5B) CHONG TSZ LING (5B) SZE CHUN YUI (5B) TANG SHUK PING (5B) CHEUNG CHUK SHAN COLLEGE [TEAM R03] CONTENT 1 ABSTRACT 3 2 INTRODUCTION 3 - 4 2.1 Introduction to the research topic 3 2.2 Objectives 4 2.3 Research questions 4 2.4 Background information of Nepenthes mirabilis 4 2 3 METHODOLOGY 5 - 11 3.1 Field study 5 3.2 Objective 1: To study the digestion of prey by Nepenthes mirabilis 6 3.3 Objective 2: To study the relationship between Nepenthes mirabilis and 9 mosquito 4 RESULTS 11 - 15 4.1 Objective 1:To study the digestion of prey by Nepenthes mirabilis 11 4.2 Objective 2:To study the relationship between Nepenthes mirabilis and 13 mosquito 5 DISCUSSION 15 -19 5.1 Objective 1:To study the digestion of prey by Nepenthes mirabilis 15 5.2 Objective 2:To study the relationship between Nepenthes mirabilis and 16 mosquito 5.3 Further investigation 19 6 CONCLUSION 19 7 BIBLIOGRAPHY 20 1. ABSTRACT Nepenthes mirabilis (Lour.) Druce is a species of pitcher plants which captures insects for additional nutrients, enhancing its survival at a place with low nutritional value. With a bright colour and alluring nectar, insects are attracted to and trapped inside pitchers with slippery walls. These preys are soon digested by the juice released by the pitcher gland. In contrast to the unique carnivorous behavior though, it is interesting that mosquito is a rare species that can live within the pitchers and lay eggs on the digestive juice without being digested.
    [Show full text]
  • Genome of the Pitcher Plant Cephalotus Reveals Genetic Changes Associated with Carnivory
    ARTICLES PUBLISHED: 6 FEBRUARY 2017 | VOLUME: 1 | ARTICLE NUMBER: 0059 Genome of the pitcher plant Cephalotus reveals genetic changes associated with carnivory Kenji Fukushima1, 2, 3* †, Xiaodong Fang4, 5 †, David Alvarez-Ponce6, Huimin Cai4, 5, Lorenzo Carretero-Paulet7, 8, Cui Chen4, Tien-Hao Chang8, Kimberly M. Farr8, Tomomichi Fujita9, Yuji Hiwatashi10, Yoshikazu Hoshi11, Takamasa Imai12, Masahiro Kasahara12, Pablo Librado13, 14, Likai Mao4, Hitoshi Mori15, Tomoaki Nishiyama16, Masafumi Nozawa1, 17, Gergő Pálfalvi1, 2, Stephen T. Pollard3, Julio Rozas13, Alejandro Sánchez-Gracia13, David Sankoff18, Tomoko F. Shibata1, 19, Shuji Shigenobu1, 2, Naomi Sumikawa1, Taketoshi Uzawa20, Meiying Xie4, Chunfang Zheng18, David D. Pollock3, Victor A. Albert8*, Shuaicheng Li4, 5* and Mitsuyasu Hasebe1, 2* Carnivorous plants exploit animals as a nutritional source and have inspired long-standing questions about the origin and evolution of carnivory-related traits. To investigate the molecular bases of carnivory, we sequenced the genome of the heterophyllous pitcher plant Cephalotus follicularis, in which we succeeded in regulating the developmental switch between carnivorous and non-carnivorous leaves. Transcriptome comparison of the two leaf types and gene repertoire analysis identi- fied genetic changes associated with prey attraction, capture, digestion and nutrient absorption. Analysis of digestive fluid pro- teins from C. follicularis and three other carnivorous plants with independent carnivorous origins revealed repeated co-options of stress-responsive protein lineages coupled with convergent amino acid substitutions to acquire digestive physiology. These results imply constraints on the available routes to evolve plant carnivory. arnivorous plants bear extensively modified leaves capable corresponding to 76% of the estimated genome size (Supplementary of attracting, trapping and digesting small animals, and Fig.
    [Show full text]
  • A Comparative UHPLC-Q/TOF–MS-Based Eco-Metabolomics
    www.nature.com/scientificreports OPEN A comparative UHPLC‑Q/ TOF–MS‑based eco‑metabolomics approach reveals temperature adaptation of four Nepenthes species Changi Wong1, Yee Soon Ling2, Julia Lih Suan Wee3, Aazani Mujahid4 & Moritz Müller1* Nepenthes, as the largest family of carnivorous plants, is found with an extensive geographical distribution throughout the Malay Archipelago, specifcally in Borneo, Philippines, and Sumatra. Highland species are able to tolerate cold stress and lowland species heat stress. Our current understanding on the adaptation or survival mechanisms acquired by the diferent Nepenthes species to their climatic conditions at the phytochemical level is, however, limited. In this study, we applied an eco‑metabolomics approach to identify temperature stressed individual metabolic fngerprints of four Nepenthes species: the lowlanders N. ampullaria, N. rafesiana and N. northiana, and the highlander N. minima. We hypothesized that distinct metabolite regulation patterns exist between the Nepenthes species due to their adaptation towards diferent geographical and altitudinal distribution. Our results revealed not only distinct temperature stress induced metabolite fngerprints for each Nepenthes species, but also shared metabolic response and adaptation strategies. The interspecifc responses and adaptation of N. rafesiana and N. northiana likely refected their natural habitat niches. Moreover, our study also indicates the potential of lowlanders, especially N. ampullaria and N. rafesiana, to produce metabolites needed to deal with increased temperatures, ofering hope for the plant genus and future adaption in times of changing climate. Nepenthes (N.), the sole genus under the family Nepenthaceae, is one of the largest families of carnivorous plants, with an extensive geographical distribution across the Malay Archipelago, specifcally in Borneo, Philippines, and Sumatra.
    [Show full text]
  • Prey Capture Patterns in Nepenthes Species and Natural Hybrids – Are the Pitchers of Hybrids As Effective at Trapping Prey As Those of Their Parents?
    Technical Refereed Contribution Prey capture patterns in Nepenthes species and natural hybrids – are the pitchers of hybrids as effective at trapping prey as those of their parents? Heon Sui Peng • Charles Clarke • School of Science • Monash University Malaysia • Jalan Lagoon Selatan • 46150 Bandar Sunway • Selangor • Malaysia • [email protected] Keywords: Nepenthes, natural hybrids, prey capture, arthropods, trap structure. Introduction The carnivorous pitcher plant genus Nepenthes (Nepenthaceae) is thought to comprise more than 120 species, with a geographical range that extends from Madagascar and the Seychelles in the west, through Southeast Asia to New Caledonia in the east (Cheek & Jebb 2001; Chin et al. 2014). There are three foci of diversity – Borneo, Sumatra, and the Philippines – which account for more than 75% of all known species (Moran et al. 2013). The pitchers of Nepenthes have three main components – the pitcher cup, the peristome (a collar-like band of lignified tissue that lines the pitcher mouth), and the lid (Fig. 1A-G). In most species, the lid is broad and flat and overhangs the mouth (Fig. 1B-D), but in some specialized species it is small and oriented away from the mouth (Fig. 1A,E). The inner walls of the pitcher cup may be divided into two discrete zones – a lower “digestive” zone in which the pitcher walls lack a waxy cuticle and are lined with digestive glands; and an upper “conductive” zone, which lacks digestive glands but is covered by a complex array of wax crystals (Juniper et al. 1989; Bonhomme et al. 2011). Insects that make their way onto the conductive surface often lose their footing and fall into the digestive zone, which contains a viscoelastic fluid that facilitates the retention and drowning of prey.
    [Show full text]
  • Conservation, Forestry, Agriculture, Mining and Settlement)
    P.KHIOMAT MAKLUMAT AKAOEMIK UNIMAS 1111111111111111111111111111 Abstracts 1000168248 INTERNATIONAL SYMPOSIUM AND WORKSHOP ON TROPICAL PEATLAND (KU CHING 2008) Peatland Development: Wise Use and Impact Management 19-22 August 2008 Kuching, Sarawak, Malaysia ABSTRACTS Organised by Un iversiti Malaysia Sarawak Malaysian Agricultural Research and Development Institute In collaboration with CARBOPEAT International Peat Society Under the auspices 01 Ministry of Planning and Resource Management, Sarawak Supported by Sarawak Convention Bureau SA ~K _M'-t ·... CONVENTION BU REAU International Symposium and Workshop on Tropical PeatJand (Kuching 2008), 19-22 August Editors: Fatimah Abang Ismail Jusoh Edmund Sim Ui Hang Andrew Wong Han Hoy Hairul Azman Roslan Faculty of Resource Science and Technology Universiti Malaysia Sarawak 94300 Kota Samarahan Sarawak, Malaysia Printed by Lee Miing Press Sdn Bhd Kuching, Sarawak ii Abstracts CONTENTS PLENARY PAPERS More than Thirty Years of Research on Tropical Peatland: Are We Now Wise Enough to Ensure Their Future? lack Rieley 1 Meeting the Challenges of Integrated Planning and Sustainahle Development in Tropical Lowland Peatlands Edward Maltby 2 Restoration Ecology of Tropical Peatlands: Opportunities and Challenges Susan Page and Laura Graham 2 Sustainable Development of Peatland for Oil Palm Gurmit Singh 3 ECOLOGY AND BIODIVERSITY Keynote Address: Flora And Fauna Of Tropical Peatland Andrew Alek Tuen, Fatimah Abang and Cheksum Supiah Tawan 4 Diversity of Methane-Related Microorganisms in Peatlands Abdul Hadi and Kuzuyuki Inubushi 5 An Enumeration Of One Hectare Of Peat Swamp Forest At Bukit Lima Nature Reserve, Sibu, Sarawak 6 Meekiong, K. *, I.B. Ipor, CS. Tawan, Hidir, M. & Sekudan, T. Flora Diversity, Changes and Succession from Agriculture Development on Peatland Salma, I., A Azuan and H.
    [Show full text]