Tilapia United States
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MANAGEMENT and VALUE CHAIN of NILE TILAPIA CULTURED in PONDS of SMALL-SCALE FARMERS in MOROGORO REGION, TANZANIA Sebastian W. Ch
MANAGEMENT AND VALUE CHAIN OF NILE TILAPIA CULTURED IN PONDS OF SMALL-SCALE FARMERS IN MOROGORO REGION, TANZANIA Sebastian W. Chenyambuga , Nazael A. Madalla and Berno V. Mnembuka Department of Animal Science, Sokoine University of Agriculture, P.O. Box 3004, Morogoro, Tanzania. Abstract A study was carried out to assess production performance and value chain of Nile tilapia grown in ponds of small-scale farmers in Morogoro region, Tanzania. Information was collected through individual interviews of 30 fish farmers. The main reasons for culturing fish were provision of animal protein food for home consumption (66.7%) and generation of income (23.3%). Fish farming contributed 10.6% of household annual income and was ranked second to crop production (50%). The majority of the farmers were fertilizing their ponds with chicken manure (30.0%) and cattle manure (23.3%). Most farmers (73.3%) cultured pure stand of Nile tilapia and only few (26.7%) practiced polyculture of Nile tilapia and African catfish. All farmers depended on natural food as a source of feed for their fish. Moreover, the farmers were feeding maize bran (96.7%), vegetables (66.7%), and kitchen leftovers (13.3%) as supplementary feeds. Men were responsible for purchasing and stocking fingerlings (60.0%), feeding (40.0%), pond maintenance (53.3%), harvesting (60.0%) and selling (43.3%). Women were mainly involved in fish processing (76.7%). The average period from stocking to harvesting was 5.75 ± 0.18 months for Nile tilapia and the mean yield was 6,946.2 kg/ha per year. About 22.2% of the harvested fish were consumed at home and the remaining (77.8%) were sold. -
Morphological Development of Embryos and Juveniles in the Mozambique Tilapia, Oreochromis Mossambicus As a Direct Developmental Fish Under Rearing Conditions
SUISANZOSHOKU 51(3), 295-306 (2003) Morphological Development of Embryos and Juveniles in the Mozambique Tilapia, Oreochromis mossambicus as a Direct Developmental Fish under Rearing Conditions Katsunori TACHIHARA*1,2 and Emi OBARA*1 (Accepted June 17, 2003) Abstract: The Mozambique tilapia, Oreochromis mossambicus is one of the species introduced to Okinawa Island. This species breeds widely in the rivers of the island. In order to understand the biological aspects of O. mossambicus under the natural conditions of the island, a detailed observa- tion of early morphological development was done under rearing conditions. The development of O . mossambicus was studied; it consisted of an embryonic phase of approximately 88 hours and 30 minutes, a free embryonic phase of about 12 days, followed by the juvenile period. The embryo became free-swimming on the sixth day of the free embryonic phase. The osteological develop- ment using enzyme-cleared specimens indicated that after reaching the juvenile stage, develop- ment of almost basic bones was complete 25 days after hatching. Key words: Oreochromis mossambicus; Direct development; Early life history; Okinawa Island The Mozambique tilapia, Oreochromis mos- sambicus is a freshwater fish, which has been Materials and Methods introduced to Okinawa Island1-3). The species is endemic to southern African rivers, lagoons Three mouthbreeding females (122.7 to and lakes, and ranges from the lower Zambezi 124.7 mm in standard length) harboring newly system in the north to the Bushmans River fertilized ova were collected from the Onaha in the south4). This species was introduced to River, Nishihara, Okinawa, Japan, on June 4, Okinawa Island in 1954 from Taiwan as a source 1997, using a cast net (mesh size: 1•~1 cm). -
Implications for Management AFRICAN GREAT LAKES
AFRICAN GREAT LAKES CONFERENCE 2nd – 5th MAY 2017, ENTEBBE, UGANDA Dynamics of Fish Stocks of Commercial Importance in Lake Victoria, East Africa: Implications for Management Robert Kayanda, Anton Taabu-Munyaho, Dismas Mbabazi, Hillary Mrosso, and Chrisphine Nyamweya INTRODUCTION • Lake Victoria with a surface area of 68,800 sqkm is the world’s second largest freshwater body • It supports one of the world’s most productive inland fisheries with the estimated total fish landings from the lake for the period of 2011 to 2014 have been about 1 million tons with a beach value increasing from about US$ 550 Million in 2011 to about US$ 840 million in 2014. • It supports about 220,000 fishers (Frame Survey 2016) • The fish stocks of Lake Victoria have changed dramatically since the introduction of Nile perch Lates niloticus during the late 1950s and early 1960s Fishery Haplochromines The Original Fish Fauna Brycinus sp Protopterus Rastrineobola Mormyrus spp Barbus spp Bagrus docmac Labeo Schilbe intermedius Oreochromis variabilis Clarias gariepinus Mormyrus spp Synodontis victoriae Oreochromis leucostictus INTRODUCTION Currently, the fisheries is dominated by four major commercial important species, these are; •Nile perch •Dagaa •Nile tilapia •Haplochromis Apart from Nile tilapia only estimated through trawl and catch surveys, the other 3 are estimated through trawl, acoustics, and catch INTRODUCTION This paper summarizes current knowledge of the status of the fish stocks and reviews the need for species specific management plans for the major commercial important fish species of Lake Victoria (Nile perch, Nile tilapia, dagaa and haplochromines). Methods • Fisheries dependent – Frame surveys – Catch assessment surveys • Fisheries independent – Acoustic – Bottom trawl Biomass and relative abundance • Total biomass from the surveys 3500 remained fairly stable over time. -
Application of the RAPD Technique in Tilapia Fish: Species and Subspecies Identification
Heredity 73(1994) 117—123 Received 25 November 1993 Genetical Society of Great Britain Application of the RAPD technique in tilapia fish: species and subspecies identification F. BARDAKCI* & D. 0. F. SKIBINSKI Molecular Biology Research Group, School of Biological Sciences, University of Wales, Singleton Park, Swansea SA2 8PP, U.K. RandomAmplified Polymorphic DNA (RAPD) analysis was applied to three species of the tilapia genus Oreochromis and four subspecies of 0. niloticus. Thirteen random lO-mer primers were used to assay polymorphisms within and between populations. Different RAPD fragment patterns were observed for different species, although not always for different subspecies. Evidence is presented that RAPD markers might be useful for systematic investigation at the level of species and subspecies. Keywords:DNA,Oreochromis, polymorphism, RAPD, systematics, tilapia. fully to identify the subspecies of 0. niloticus (Capili, Introduction 1990; Seyoum & Kornfield, 1992) but little effort has Tilapiaare cultured extensively throughout the world, yet been devoted to the analysis of nuclear DNA for especially in Africa and the Far East. Most of the this purpose. important tilapiine species used in aquaculture are The development of random amplified polymorphic members of the Oreochromis genus, as many members DNA (RAPD) markers, generated by the polymerase of this taxon grow well under diverse culture condi- chain reaction (PCR), allows the examination of tions (Fryer & lIes, 1972; Pullin & Capili, 1989). genomic variation without prior knowledge of DNA Despite its commercial importance, resources have sequences (Williams et a!., 1990, 1993; Welsh & only recently been devoted to the development of McClelland, 1990; Hadrys, 1992). The number and improved strains of tilapia. -
Mozambique Tilapia)
UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour Oreochromis mossambicus (Mozambique Tilapia) Family: Cichlidae (Cichlids and Tilapias) Order: Perciformes (Perch and Cichlids) Class: Actinopterygii (Ray-finned Fish) Fig. 1. Mozambique tilapia, Oreochromis mossambicus. [http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A1%E3%82%A4%E3%83%AB:Oreochromis_mossambicus_ by_NPS.jpg, downloaded 5 October 2012] TRAITS. Oreochromis mossambicus is a medium sized, laterally compressed fish that has long dorsal fins with 10-13 rays and spines (Froese & Pauly 2007). Its scales are large along the snout and fore head and become smaller along the body (Luna 2012). The coloration is a dull greenish yellow with weak banding pattern along the body (Froese & Pauly 2007). The adults range in size from 25 cm in the female to approximately 35 cm in the male. The male has an average weight of 2.5 pounds and the female ranges from 1.8-2 pounds at its maximum weight (Froese & Pauly 2007). O. mossambicus exhibits sexual dimorphism, the best descriptors are the premaxilla width, anal fin height and snout length; traits vital for agonistic displays, nesting and fighting (Oliveira & Almeda 1995). The size and coloration vary in captivity and with its diet. Some O. mossambicus look almost black in colour; females, non-breeding males and fry/ juveniles have a silvery colour on the scales (Luna 2012). O. mossambicus can live in both brackish and salt water and can survive a wide range of temperatures (Froese & Pauly 2007), and can live up to 11 years (Luna 2012). UWI The Online Guide to the Animals of Trinidad and Tobago Behaviour ECOLOGY. -
Relation of Desert Pupfish Abundance to Selected Environmental Variables
Environmental Biology of Fishes (2005) 73: 97–107 Ó Springer 2005 Relation of desert pupfish abundance to selected environmental variables in natural and manmade habitats in the Salton Sea basin Barbara A. Martin & Michael K. Saiki U.S. Geological Survey, Biological Resources Division, Western Fisheries Research Center-Dixon Duty Station, 6924 Tremont Road, Dixon, CA 95620, U.S.A. (e-mail: [email protected]) Received 6 April 2004 Accepted 12 October 2004 Key words: species assemblages, predation, water quality, habitat requirements, ecological interactions, endangered species Synopsis We assessed the relation between abundance of desert pupfish, Cyprinodon macularius, and selected biological and physicochemical variables in natural and manmade habitats within the Salton Sea Basin. Field sampling in a natural tributary, Salt Creek, and three agricultural drains captured eight species including pupfish (1.1% of the total catch), the only native species encountered. According to Bray– Curtis resemblance functions, fish species assemblages differed mostly between Salt Creek and the drains (i.e., the three drains had relatively similar species assemblages). Pupfish numbers and environmental variables varied among sites and sample periods. Canonical correlation showed that pupfish abundance was positively correlated with abundance of western mosquitofish, Gambusia affinis, and negatively correlated with abundance of porthole livebearers, Poeciliopsis gracilis, tilapias (Sarotherodon mossambica and Tilapia zillii), longjaw mudsuckers, Gillichthys mirabilis, and mollies (Poecilia latipinna and Poecilia mexicana). In addition, pupfish abundance was positively correlated with cover, pH, and salinity, and negatively correlated with sediment factor (a measure of sediment grain size) and dissolved oxygen. Pupfish abundance was generally highest in habitats where water quality extremes (especially high pH and salinity, and low dissolved oxygen) seemingly limited the occurrence of nonnative fishes. -
(Oreochromis Niloticus L) in Three Ethiopian
OPEN ACCESS Freely available online Fisheries and Aquaculture Journal Research Article Differences in Phenotypic Characters of Nile Tilapia (Oreochromis niloticus L) in Three Ethiopian Rift Valley lakes; Screening Strains for Aquaculture 1* 2 3 Megerssa Endebu , Abebe Getahun , Misikire Tessema 1Department of Aquaculture, Batu Fishery and Other Aquatic Life Research Center, East Shoa, Ethiopia; 2Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia; 3Department of Fisheries Biologist, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia ABSTRACT Nile tilapia (Oreochromis niloticus L.) is indigenous species to Ethiopia and constitutes major proportion in the country’s fish production. In an attempt to select better performing strains for aquaculture development, tilapia populations from different Ethiopian rift valley lakes showed different growth performances in pond culture. Investigation of desired culture characteristics of target tilapia populations is required to improve their productivity in aquaculture system. The current study was made to investigate phenotypic characters of the tilapia populations in three geographically isolated Ethiopian rift valley lakes (Chamo, Koka and Ziway). A total of 450 adult tilapias of commercial catches were sampled from the three lakes and their phenotypic characters were analyzed during May 2018 to March 2019. Twenty six morphometric character indices, eight meristic counts, total length, standard length, total weight, length-weight relationship and Fulton’s condition factor were considered in the analysis. The results revealed significant differences (p ≤ 0.05) in most of the morphometric character indices, meristic counts, mean length and weight and Fulton’s condition factor among the three tilapia populations. Chamo tilapia population were found to have highest mean values of total weight, total length and standard length while Koka population have highest mean value of Fulton’s condition factor and positive allometric growth as characters desired in aquaculture. -
Impact of the Invasion from Nile Tilapia on Natives Cichlidae Species in Tributary of Amazonas River.Cdr
ARTICLE DOI: http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n3p88-94 Impact of the invasion from Nile tilapia on natives Cichlidae species in tributary of Amazonas River, Brazil Luana Silva Bittencourt1, Uédio Robds Leite Silva2, Luis Maurício Abdon Silva3, Marcos Tavares-Dias4 1. Bióloga. Mestrado em Biodiversidade Tropical, Universidade Federal do Amapá, Brasil. E-mail: [email protected] 2. Geógrafo. Mestrado em Desenvolvimento Regional, Universidade Federal do Amapá. Coordenador do Programa de Gerenciamento Costeiro do Estado do Amapá, Instituto de Pesquisas Científicas e Tecnológicas do Amapá - IEPA, Brasil. E-mail: [email protected] 3. Biólogo. Doutorado em Biodiversidade Tropical, Universidade Federal do Amapá. Centro de Pesquisas Aquáticas, Instituto de Pesquisas Científicas e Tecnológicas do Amapá - IEPA, Brasil. E-mail: [email protected] 4. Biólogo. Doutorado em Aquicultura de Águas Continentais (CAUNESP-UNESP). Pesquisador da EMBRAPA-AP. Docente orientador do Programa de Pós-graduação em Biodiversidade Tropical (UNIFAP) e Programa de Pós-graduação em Biodiversidade e Biotecnologia (PPG BIONORTE), Brasil. E-mail: [email protected] ABSTRACT: This study investigated for the first time impact caused by the invasion of Oreochromis niloticus on populations of native Cichlidae species from Igarapé Fortaleza hydrographic basin, a tributary of the Amazonas River in Amapá State, Northern Brazil. As a consequence of escapes and/or intentional releases of O. niloticus from fish farms, there have been the invasion and successful establishment of this exotic fish species in this natural ecosystem, especially in areas of refuge, feeding and reproduction of the native cichlids species. The factors that contributed for this invasion and establishment are discussed here. -
The Effects of Introduced Tilapias on Native Biodiversity
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries. -
Development of a Revised Edna Assay for Tilapia (Oreochromis Mossambicus and Tilapia Mariae)
Development of a revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae) Report by Richard C. Edmunds and Damien Burrows © James Cook University, 2019 Development of revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae) is licensed by James Cook University for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see creativecommons.org/licenses/by/4.0 This report should be cited as: Edmunds, R.C. and Burrows, D. 2019. Development of revised eDNA assay for tilapia (Oreochromis mossambicus and Tilapia mariae). Report 19/07, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville. Cover photographs: Front cover: Mozambique tilapia (photo: Ammit Jack/Shutterstock.com) Back cover: Oreochromis mossambicus and Tilapia mariae in captivity (photo: Centre for Tropical Water and Aquatic Ecosystem Research). This report is available for download from the Northern Australia Environmental Resources (NAER) Hub website at nespnorthern.edu.au The Hub is supported through funding from the Australian Government’s National Environmental Science Program (NESP). The NESP NAER Hub is hosted by Charles Darwin University. ISBN 978-1-925800-31-9 June, 2019 Printed by Uniprint Contents Acronyms....................................................................................................................................iv Abbreviations ............................................................................................................................. -
Oilseed Meals As Dietary Protein Sources for Juvenile Nile Tilapia (Oreochromis Niloticus L.)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Stirling Online Research Repository Oilseed Meals as Dietary Protein Sources for Juvenile Nile Tilapia (Oreochromis niloticus L.) Thesis submitted for the degree of Doctor of Philosophy By Nelson Winston Agbo M.Sc. Water Bioresources and Aquaculture Institute of Aquaculture University of Stirling Scotland UK September 2008 Dedication Dedicated to My wife and son ii Declaration I hereby declare that this thesis has been achieved by myself and is the result of my own investigations. It has neither been accepted nor submitted for any other degree. All sources of information have been duly acknowledged. Nelson Winston Agbo iii Acknowledgements I wish to express my sincere appreciation to Dr Kim Jauncey for his advice, guidance and supervision of the research and for seeing this thesis through to its conclusion. My gratitude goes to Prof R. H. Richards and Dr. S. Amisah for their encouragement and support throughout my studies. I wish to thank Ghana Education Trust Fund for providing funding which made this study possible and also Kwame Nkrumah University of Science and Technology for granting me study leave. I am very grateful to my brother A. H. Agbo and D. Adjei-Boateng for acquiring and sending the feed ingredients used for this research from Ghana. I would also like to thank Mrs. Betty Stenhouse, Mr. Alan Porter, Mr. K. Ranson, Mr. W. Hamilton, Mrs D. Faichney, Mr. I. Elliot, Mr. C. Harrower and all other technical staff of the Institute of Aquaculture for their help throughout the experimental and laboratory work. -
Population Dynamics and Management of Two Cichlid Species in the Shatt Al-Arab River, Iraq
CORE Metadata, citation and similar papers at core.ac.uk Provided by Journal of Applied and Natural Science Journal of Applied and Natural Science 12(2): 261 - 269 (2020) Published online: June 12, 2020 ISSN : 0974-9411 (Print), 2231-5209 (Online) journals.ansfoundation.org Research Article Population dynamics and management of two cichlid species in the Shatt Al-Arab River, Iraq Abdul-Razak M. Mohamed* Department of Fisheries and Marine Resources, College of Agriculture, University of Bas- Article Info rah, Iraq https://doi.org/10.31018/ Abdullah N. Abood jans.v12i2.2293 Basrah Agriculture Directorate, Ministry of Agriculture, Iraq Received: May 14, 2020 Revised: June 6, 2020 *Corresponding author. E-mail: [email protected] Accepted: June 10, 2020 Abstract Cichlids are invasive fish to Iraqi waters and became well established and prevailing in How to Cite different waters. Despite that, there is no stock assessment study conducted for these Mohamed A.R.M. and fish. So, growth, mortality, recruitment and yield-per-recruit of two cichlid‟s species; Abood, A.N. (2020). Popu- Coptodon zillii and Oreochromis aureus from the Shatt Al-Arab River, Iraq were evaluated lation dynamics and man- from November 2015 to October 2016 using the FiSAT software. A total of 5821C. zillii agement of two cichlid spe- (2.9-24.0 cm TL) and 1353 O. aureus (4.5-25.0 cm TL) were examined. Length-weight cies in the Shatt Al-Arab relationships were derived, indicating allometric growth for both species. The growth pa- River, Iraq. Journal of Ap- plied and Natural Science, rameters (L∞, K, Rn, to and Ǿ) obtained for C.