Clinical Pharmacology in Diuretic Use

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Pharmacology in Diuretic Use NephropharmacologyCJASN ePress. Published on April 1, 2019 as doi: 10.2215/CJN.09630818 for the Clinician Clinical Pharmacology in Diuretic Use David H. Ellison Clin J Am Soc Nephrol 14: ccc–ccc, 2019. doi: https://doi.org/10.2215/CJN.09630818 Diuretics are among the most commonly prescribed Gastrointestinal Absorption of Diuretics drugs and, although effective, they are often used to The normal metabolism of loop diuretics is shown in treat patients at substantial risk for complications, Figure 2A. Furosemide, bumetanide, and torsemide are Departments of making it especially important to understand and absorbed relatively quickly after oral administration Medicine and appreciate their pharmacokinetics and pharmacody- (see Figure 2B), reaching peak concentrations within Physiology and – Pharmacology, namics (see recent review by Keller and Hann [1]). 0.5 2 hours (3,4); when administered intravenously, Oregon Health & Although the available diuretic drugs possess distinc- their effects are nearly instantaneous. The oral bioavail- Science University, tive pharmacokinetic and pharmacodynamic proper- ability of bumetanide and torsemide typically exceeds Portland, Oregon; and ties that affect both response and potential for adverse 80%, whereas that of furosemide is substantially lower, Renal Section, at approximately 50% (see Table 2) (5). Although the t Veterans Affairs effects, many clinicians use them in a stereotyped 1/2 Portland Health Care manner, reducing effectiveness and potentially in- of furosemide is short, its duration of action is longer System, Portland, creasing side effects (common diuretic side effects are when administered orally, as its gastrointestinal Oregon t listed in Table 1). Diuretics have many uses, but this absorption may be slower than its elimination 1/2. review will focus on diuretics to treat extracellular This is a phenomenon called “absorption-limited Correspondence: fluid (ECF) volume expansion and edema; the reader is kinetics” (3) and may explain the mnemonic that Dr. David H. Ellison, this drug “lasts 6 hours” (6). This is not the case for Oregon Clinical and referred elsewhere for discussion of diuretictreatment Translational Research of hypertension, kidney stones, and other conditions. bumetanide and torsemide, where oral absorption is Institute, SN4N, rapid (7). On the basis of oral bioavailability, when a Oregon Health & Classification and Mechanisms of Action patient is switched from intravenous to oral loop Science University, Diuretic drugs are typically classified first according to diuretic, the dose of bumetanide or torsemide should 3181 SW Sam Jackson Park Road, Portland, their predominant site of action along the nephron and be maintained, whereas the dose of furosemide should OR 97239. Email: second by the mechanism by which they inhibit be doubled (7); in practice, however, and as discussed [email protected] transport (Figure 1A). The loop diuretics furosemide, further below, other factors affect diuretic efficacy, and a bumetanide, and torsemide act from the lumen to inhibit fixed intravenous/oral conversion cannot be given (8). the Na-K-2Cl cotransporter (NKCC2, encoded by The loop diuretics have steep dose-response curves. SLC12A1) along the thick ascending limb and macula This property, although typically taught to students densa. As organic anions, they bind within the transloca- and residents, is often neglected in clinical practice but tion pocket on the transport protein by interacting with the is crucial to optimal use. Figure 2C shows a typical chloride-binding site (2) (Figure 1B, see below for clinical natriuretic response plotted versus the logarithm of relevance). Because they are larger than chloride, they are the plasma diuretic concentration. Inspection reveals not transported through the pocket, and thereby inhibit that there is little diuretic or natriuretic effect below the transporter. Distal convoluted tubule diuretics a given plasma concentration (identified as the (thiazides and thiazide-likedrugs)arealsoorganic “threshold”), above which the response increases anions that act in much the same manner, but bind rapidly. Although such relations are typically plotted to the thiazide-sensitive NaCl cotransporter (NCC, as the logarithm of the diuretic concentration or dose, encoded by SLC12A3) along the distal convoluted clinicians do not typically “think” in logarithmic tubule (Figure 1A). This mechanism of action ac- terms. This underlies the reasoning behind the com- counts for a key aspect of loop and distal convoluted mon recommendation to “double the dose,” if no tubule diuretic action; these drugs both exert their response is obtained. At higher concentrations, a effect from the luminal side of the tubule. plateau or “ceiling” is reached, with progressively Potassium-sparing diuretics include drugs that block higher plasma concentrations failing to elicit more apical sodium channels (amiloride and triamterene) natriuresis. Although this fact has been used to invoke and those that antagonize mineralocorticoid receptors the concept of ceiling doses of loop diuretics, we will (spironolactone and eplerenone). A new nonsteroidal argue that increasing a diuretic dose above this ceiling mineralocorticoid blocker, finerenone, is currently in often elicits more natriuresis, owing to pharmacokinetic phase 3 clinical trials. The mineralocorticoid blockers considerations (see below). and perhaps ethacrynic acid, a more toxic loop As should be evident from Figure 2C, a diuretic diuretic, act within cells and do not require secretion dose must exceed the threshold to be effective; yet the into the tubule lumen. failure to give a dose that exceeds the threshold is one www.cjasn.org Vol 14 August, 2019 Copyright © 2019 by the American Society of Nephrology 1 2 Clinical Journal of the American Society of Nephrology individuals with a variety of edematous disorders. Yet, Table 1. Common side effects of diuretics adherence to algorithms may lead to diuretic failure. Instead, it is often best to approach a patient as an “n of Loop diuretics one trial,” that is, start with a dose consistent with the Hypersensitivity reactions Extracellular fluid volume depletion clinical guidelines (more aggressive for acute edema, more Hypokalemic alkalosis conservative for more chronic processes) and then adjust Hypomagnesemia the dose according to the response. Ototoxicity Although limited bioavailability is a concern with Distal convoluted tubule diuretics Hypersensitivity reactions furosemide, a larger problem may be its inconsistent bio- Hyponatremia availability. Furosemide absorption varies from day to day Hypokalemic alkalosis in an individual, and between individuals (9,10). Absorp- hyperglycemia/diabetes tion is also affected by food consumption, unlike that of Hyperuricemia/gout bumetanide or torsemide (11,12), although the clinical Hypomagnesemia fi Hypokalemia and prerenal azotemia, when signi cance of this effect has been doubted (3). The more combined with loop diuretics consistent bioavailability of torsemide, compared with t Potassium-sparing diuretics furosemide, and its relatively longer 1/2, have suggested Hypersensitivity that it may be a superior loop diuretic, as suggested by two Hyperkalemia – post hoc Metabolic acidosis small, clinical trials (13 16). A recent analysis of the Azotemia large Effect of Nesiritide in Patients with Acute Decompen- Gynecomastia, vaginal bleeding (spironolactone) sated Heart Failure study suggested that patients with heart failure discharged on torsemide might have lower mortality (17). Yet, none of these studies is sufficiently powered or rigorous enough to be considered definitive, and some other of the most common errors in diuretic usage. The problem studies do not suggest such a benefit(18). is that the threshold is not easily estimated in an individ- Gastrointestinal absorption can be slowed, especially ual, especially an individual with kidney or heart disease. during exacerbations of edematous disorders such as Although nearly all healthy individuals will respond to heart failure, although again, this may be true primarily 20 mg furosemide (or its equivalent), given orally, healthy of furosemide (19). Although total bioavailability is individuals are not typically treated. As discussed below, typically maintained in these situations, natriuresis conditions that predispose to ECF volume expansion and may be impaired when absorption is slowed, especially edema alter both the pharmacokinetics and pharmacody- given a concomitant increase in natriuretic threshold, as namics of diuretics. It is little wonder that an empirically shown in Figure 2B. As an example, the areas under the selected dose may be ineffective. Below, we will provide curves for arbitrary intravenous and doubled oral furo- broad generalizations about dose adjustments for semide doses may be similar, but the time above the ABDISTAL TUBULE Lumen Basolateral Afferent Pocket for ions arteriole Macula + loop Diuretics densa Na ATP Bowman’s DCTD capsule 3Na+ 2Cl− 2K Cortical PROXIMAL TUBULE collecting duct Lumen Basolateral CONNECTING TUBULE COLLECTING DUCT Na+ H+ Medullary Lumen Basolateral HCO− ATP collecting 3 duct MR + 3Na 2K + H CO Na 2 3 ATP CAI Aml Aldo CO H O 3Na+ 2K 2 2 K+ F372 Thin Thin descending ascending limb limb NKCC2 THICK ASCENDING LIMB LD Lumen Basolateral Na+ ATP 2Cl− K+ 3Na+ 2K K+ Figure 1. | Sites of sodium reabsorption and diuretic action along the nephron. (A) Nephron figure showing percentages of sodium reabsorption by associated segment. (B) Homology structural
Recommended publications
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Effect of Exogenous Glucocorticoid on Osmotically Stimulated Antidiuretic
    European Journal of Endocrinology (2006) 155 845–848 ISSN 0804-4643 CLINICAL STUDY Effect of exogenous glucocorticoid on osmotically stimulated antidiuretic hormone secretion and on water reabsorption in man Volker Ba¨hr1, Norma Franzen1, Wolfgang Oelkers2, Andreas F H Pfeiffer1 and Sven Diederich1,2 1Department of Endocrinology, Diabetes and Nutrition, Charite-Universitatsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany and 2Endokrinologikum Berlin, Centre for Endocrine and Metabolic Diseases, Berlin, Germany (Correspondence should be addressed to V Ba¨hr; Email: [email protected]) Abstract Objective: Glucocorticoids exert tonic suppression of antidiuretic hormone (ADH) secretion. Hypocortisolism in secondary adrenocortical insufficiency can result in a clinical picture similar to the syndrome of inappropriate ADH secretion. On the other hand, in vitro and in vivo results provide evidence for ADH suppression in states of hypercortisolism. To test the hypothesis that ADH suppression is of relevance during glucocorticoid therapy, we investigated the influence of prednisolone on the osmotic stimulation of ADH. Design and methods: Seven healthy men were subjected to water deprivation tests with the measurement of plasma ADH (pADH) and osmolality (posmol) before and after glucocorticoid treatment (5 days 30 mg prednisolone per day). Results: Before glucocorticoid treatment, the volunteers showed a normal test with an adequate increase of pADH (basal 0.54G0.2 to 1.9G0.72 pg/ml (meanGS.D.)) in relation to posmol(basal 283.3G8.5 to 293.7G6 mosmol/kg). After prednisolone intake, pADH was attenuated (!0.4 pg/ml) in spite of an increase of posmol from 289.3G3.6 to 297.0G5.5 mosmol/kg.
    [Show full text]
  • Nephropharmacology for the Clinician
    Nephropharmacology for the Clinician Clinical Pharmacology in Diuretic Use David H. Ellison CJASN 14: 1248–1257, 2019. doi: https://doi.org/10.2215/CJN.09630818 Diuretics are among the most commonly prescribed Gastrointestinal Absorption of Diuretics drugs and, although effective, they are often used to The normal metabolism of loop diuretics is shown in treat patients at substantial risk for complications, Figure 2A. Furosemide, bumetanide, and torsemide are Departments of making it especially important to understand and absorbed relatively quickly after oral administration Medicine and appreciate their pharmacokinetics and pharmacody- (see Figure 2B), reaching peak concentrations within Physiology and – Pharmacology, namics (see recent review by Keller and Hann [1]). 0.5 2 hours (3,4); when administered intravenously, Oregon Health & Although the available diuretic drugs possess distinc- their effects are nearly instantaneous. The oral bioavail- Science University, tive pharmacokinetic and pharmacodynamic proper- ability of bumetanide and torsemide typically exceeds Portland, Oregon; and ties that affect both response and potential for adverse 80%, whereas that of furosemide is substantially lower, Renal Section, at approximately 50% (see Table 2) (5). Although the t Veterans Affairs effects, many clinicians use them in a stereotyped 1/2 Portland Health Care manner, reducing effectiveness and potentially in- of furosemide is short, its duration of action is longer System, Portland, creasing side effects (common diuretic side effects are when administered orally, as its gastrointestinal Oregon t listed in Table 1). Diuretics have many uses, but this absorption may be slower than its elimination 1/2. review will focus on diuretics to treat extracellular This is a phenomenon called “absorption-limited Correspondence: fluid (ECF) volume expansion and edema; the reader is kinetics” (3) and may explain the mnemonic that Dr.
    [Show full text]
  • Chlorothiazide Versus Metolazone in Hospitalized Patients with Heart
    Chlorothiazide Versus Metolazone in Hospitalized Patients with Heart Failure Receiving Loop Diruetics Barry Nicholson, PharmD; Halley Gibson, PharmD, BCPS Lahey Hospital & Medical Center, Burlington, MA Background Baseline Characteristics Secondary Outcomes Results • Heart failure (HF) is the primary diagnosis in > 1 million hospitalizations annually Characteristic Metolazone Chlorothiazide p-value • Loop diuretics are first-line treatment for edema for most patients with HF, and Secondary Outcome Metolazone Chlorothiazide p-value (n=62) (n=59) thiazide diuretics may be used as an adjuvant option for additional diuresis1 (n=62) (n=59) • Previous trials have shown that oral metolazone is non-inferior to intravenous chlorothiazide with regards to safety and efficacy2,3 Age (years) ± SD 75.6 ± 12.1 74.8 ± 12.1 0.55 Hypokalemia within 24 hours 13 (21) 14 (23.7) 0.89 • There is currently no institution-specific policy to guide thiazide diuretic post-thiazide, n (%) Male, n (%) 40 (64.5) 34 (56.7) 0.55 selection in patients with heart failure at Lahey Hospital & Medical Center Hypokalemia within 72 hours 10 (16.1) 5 (8.5) 0.32 post-thiazide, n (%) Objective Weight (kg) ± SD 92 ± 32.8 95.5 ± 31.1 0.54 To evaluate the safety and efficacy of chlorothiazide versus metolazone for Hypomagnesemia within 24 hours 5 (8.1) 7 (11.9) 0.69 Non-ICU, n (%) 48 (77.4) 39 (65) 0.24 augmented diuresis in hospitalized heart failure patients receiving loop diuretics post-thiazide, n (%) Endpoints Progressive Care Unit, n (%) 12 (19.4) 3 (5.1) 0.07 Hypomagnesemia within 72 hours 9 (14.5) 6 (10.2) 0.66 post-thiazide, n (%) Primary Endpoint Change in net urine output (UOP) pre and post-initiation Intensive Care Unit, n (%) 2 (3.2) 17 (28.8) <0.01* of either study thiazide diuretic at 24 and 72 hours Length of Stay, days ± SD 14.7 ± 6.6 17 ± 11.8 0.2 Serum creatinine, mg/dL ± SD 2.2 ± 1.2 2.2 ± 1.1 0.91 Secondary Endpoints - Incidence of the following at 24 and 72 hours: # patients needing additional 27 (43.5) 37 (62.7) 0.05 1.
    [Show full text]
  • Beta-Blockers for Hypertension: Time to Call a Halt
    Journal of Human Hypertension (1998) 12, 807–810 1998 Stockton Press. All rights reserved 0950-9240/98 $12.00 http://www.stockton-press.co.uk/jhh FOR DEBATE Beta-blockers for hypertension: time to call a halt DG Beevers University Department of Medicine, City Hospital, Birmingham B18 7QH, UK Beta-blockers are not very effective at lowering blood the endorsement of beta-blockers by the British Hyper- pressure in elderly hypertensive patients or in Afro- tension Society and other guidelines committees, Caribbeans and these two groups represent a large pro- except possibly for severe resistant hypertension, high portion of people with raised blood pressure. Further- risk post-infarct patients and those with angina pectoris. more they do not prevent more heart attacks than the The time has come to move across to newer, safer, more thiazide diuretics. Beta-blockers can also be dangerous tolerable and more effective antihypertensive agents in many hypertensive patients and even when these whilst continuing to use thiazide diuretics in low doses drugs are not contraindicated, they cause subtle and in the elderly as first choice, providing there are no depressing side effects which should preclude their contraindications. usefulness. The time has come therefore to reconsider Keywords: beta-blockers; hypertension Introduction Safety and tolerability Beta-adrenergic blockers were first introduced in the There is little doubt that the beta-blockers are the early 1960s for the treatment of angina pectoris. most unsafe of all antihypertensive drugs. They can Their antihypertensive properties were not fully precipitate or worsen heart failure in patients with recognised until the celebrated paper by Pritchard myocardial damage and they are contraindicated in and Gillam in 1964.1 They rapidly became popular patients with asthma.
    [Show full text]
  • MELT-HF Metolazone As Early Add on Therapy for Acute Decompensated
    MELT-HF MEtolazone as Early add on Therapy for acute decompensated Heart Failure. A single center pilot study. Muhammad A. Chaudhry, MD MELT-HF Protocol [Amendment 5.0; 17-Jan-2017] Page 1 of 10 INTRODUCTION Background Heart failure is a major source of morbidity, mortality and growing public health cost. In US, the number of congestive heart failure patients is more than 4 million with more than 550,000 new annually reported cases. The annual cost of heart failure management exceeds 35 billion dollars per year. The heart failure readmissions and average length of hospital stay cost approximately $11,000 per patient. Loop diuretics are used alone in the majority of cases to promote diuresis. An association of increased creatinine and increased risk of renal dysfunction, the cardiorenal syndrome, in the face of high dose loop diuretics has raised questions regarding the safety and toxicity of high dose loop diuretics. While the dose of diuretics is ubiquitous, little data exists to guide their use and many clinicians are uncertain as to when and how to initiate and limit therapy. In many cases, a “stepped approach” with oral loop diuretics advancing to intravenous and finally combination high dose diuretics is employed. PREVIOUS TRIALS DOSE( Diuretic strategies in patients with ADHF) Trial Prospective, randomized double blinded trial of 308 patients with ADHF. Showed that high dose diuretics (2.5 times the outpatient daily dose) were associated with improved urine output at 72 hours (3575± 2635 in low dose group vs. 4899±3479 in high dose group). There was no significant difference between the high and low dose groups in mean creatinine change (0.08±0.3 mg per deciliter in high-dose group as compared to 0.04±0.3 mg per deciliter in low-dose group, P=0.21.
    [Show full text]
  • Diuretic Renal Scintigraphy in Patients with Sulfonamide Allergies: Possible Alternative Use of Ethacrynic Acid
    J of Nuclear Medicine Technology, first published online October 15, 2015 as doi:10.2967/jnmt.115.161331 Diuretic Renal Scintigraphy in Patients with Sulfonamide Allergies: Possible Alternative Use of Ethacrynic Acid. Ba D. Nguyen, M.D. Michael C. Roarke, M.D. Jason Robert Young*, M.D. Ming Yang, M.D. Howard H. Osborn R.N. Department of Radiology, Mayo Clinic, Scottsdale, AZ (attributed to work) *Department of Radiology, Maricopa Integrated Health System, Phoenix, AZ Correspondence and first author: Ba D Nguyen, M.D., Department of Radiology, Mayo Clinic, 13400 E. Shea Blvd., Scottsdale, AZ 85259. Telephone: 480 3016865, Fax: 480 3014303, Email: [email protected] Word Count: 999 Financial Support: None Disclosures: Nothing to disclose Short running title: Ethacrynic Acid for Renal Scintigraphy Diuretic Renal Scintigraphy in Patients with Sulfonamide Allergies: Possible Alternative Use of Ethacrynic Acid. Abstract Furosemide may trigger life threatening sulfonamide cross-hypersensitivity reactions, posing an imaging decision dilemma for patients who need diuretic renal scintigraphy. Methods: The authors present the experience using ethacrynic acid as a non-sulfonamide alternative diuretic in five patients with discussion of diuretic molecular structure, potential side effects, protocol development and imaging results. Results: Diuretic renal scintigraphy using ethacrynic acid provided useful information about the obstructive syndrome status in all cases with no adverse clinical impact. Conclusion: Ethacrynic acid is a potential alternative to furosemide for patients with severe sulfonamide reactions. Key words: Ethacrynic Acid, Diuretic Renal Scintigraphy, Sulfonamide allergy. The objective of this essay is to raise awareness of ethacrynic acid as a possible alternative to furosemide for provocative diuretic renal scintigraphy.
    [Show full text]
  • Azosemide Is More Potent Than Bumetanide and Various Other Loop
    www.nature.com/scientificreports OPEN Azosemide is more potent than bumetanide and various other loop diuretics to inhibit the sodium- Received: 21 November 2017 Accepted: 14 June 2018 potassium-chloride-cotransporter Published: xx xx xxxx human variants hNKCC1A and hNKCC1B Philip Hampel 1,2, Kerstin Römermann1, Nanna MacAulay 3 & Wolfgang Löscher1,2 The Na+–K+–2Cl− cotransporter NKCC1 plays a role in neuronal Cl− homeostasis secretion and represents a target for brain pathologies with altered NKCC1 function. Two main variants of NKCC1 have been identifed: a full-length NKCC1 transcript (NKCC1A) and a shorter splice variant (NKCC1B) that is particularly enriched in the brain. The loop diuretic bumetanide is often used to inhibit NKCC1 in brain disorders, but only poorly crosses the blood-brain barrier. We determined the sensitivity of the two human NKCC1 splice variants to bumetanide and various other chemically diverse loop diuretics, using the Xenopus oocyte heterologous expression system. Azosemide was the most potent NKCC1 inhibitor (IC50s 0.246 µM for hNKCC1A and 0.197 µM for NKCC1B), being about 4-times more potent than bumetanide. Structurally, a carboxylic group as in bumetanide was not a prerequisite for potent NKCC1 inhibition, whereas loop diuretics without a sulfonamide group were less potent. None of the drugs tested were selective for hNKCC1B vs. hNKCC1A, indicating that loop diuretics are not a useful starting point to design NKCC1B-specifc compounds. Azosemide was found to exert an unexpectedly potent inhibitory efect and as a non-acidic compound, it is more likely to cross the blood-brain barrier than bumetanide. Te Na+–K+–2Cl− cotransporter NKCC1 (encoded by SLC12A2) plays an important role in Cl- uptake in neu- rons both in developing brain and in adult sensory neurons1,2.
    [Show full text]
  • Initiation Titration Assess Monitoring **
    Angiotensin Converting Enzyme Inhibitors (ACEI) / Angiotensin Receptor Blockers (ARBS)* Heart Failure Medication Initiation and Titration Bilateral renal artery stenosis NO Moderate/Severe aortic stenosis Considerations: • Baseline cough (ACEi) Hyperkalemia: K+ > 5.2 mmol/L See dosing Symptomatic HF • K+ supplements or LVEF < 40% Renal Dysfunction:Serum creatinine >220 µmol/L • K+ sparing diuretics Hypotension: SBP < 90 mmHg or symptoms YES Refer to • MRA See monitoring Initiation Allergy: angioedema, hives, rash Physician • NSAIDS/COX2 inhibitors section Intolerance: cough (ACEi) Titrate every 1-3 weeks, Volume Reduce/hold diuretic x 2-3 days No improvement, hold/reduce depending on tolerance deplete ACEI/ARB x 1-2 wks & reassess Reassess diuretic dose/other Hypotension Fluid non-essential BP lowering meds Goal: Target dose(see Euvolemic SBP<90mmHg Assessment Consider staggering doses dosing) or maximum with symptoms* Reduce/hold dose of other See Diuretic Reassess Titration * Watch for trends Volume tolerated dose vasodilators algorithm 1-2 wks overload +/- ACEI/ARB x 1-2 weeks Stop K+ supplements, reduce/ Serum K+ in 3-5 days, Considerations: • BP K+ 5.2-5.5 hold MRA (if applicable) Reassess ACEI/ARB dose • Dietary K+ • K+ supplements Stop K+ supplements, MRA. Serum K+ in 2-3 days, • K + Hyperkalemia • K+ sparing diuretics K+ 5.6-6.0 hold ACEI/ARB Reassess ACEI/ARB dose K+ > 5.2 mmol/L* • MRA Assess * Watch for trends • Renal dysfunction Treat hyperkalemia • Scr K+ > 6.0 Refer to MD/NP +/- send to ED Reduce/hold diuretic Scr in Considerations:
    [Show full text]
  • Energy Drinks 800.232.4424 (Voice/TTY) 860.793.9813 (Fax)
    Caffeine and Energy Boosting Drugs: Energy Drinks 800.232.4424 (Voice/TTY) 860.793.9813 (Fax) www.ctclearinghouse.org A Library and Resource Center on Alcohol, Tobacco, Other Drugs, Mental Health and Wellness What are energy drinks? you. You wouldn't use Mountain Dew as a sports Energy drinks are beverages like drink. And a drink like Red Bull and vodka is Red Bull, Venom, Adrenaline Rush, more like strong coffee and whisky than 180, ISO Sprint, and Whoopass, anything else. which contain large doses of caffeine and other legal stimulants What happens when energy drinks are like ephedrine, guarana, and ginseng. combined with alcohol? Energy drinks may contain as much as 80 mg. Energy drinks are also used as mixers with of caffeine, the equivalent of a cup of coffee. alcohol. This combination carries a number of Compared to the 37 mg. of caffeine in a dangers: Mountain Dew, or the 23 mg. in a Coca-Cola Classic, that's a big punch. These drinks are • Since energy drinks are stimulants and marketed to people under 30, especially to alcohol is a depressant, the combination of college students, and are widely available both effects may be dangerous. The stimulant on and off campus. effects can mask how intoxicated you are and prevent you from realizing how much Are there short-term dangers to drinking alcohol you have consumed. Fatigue is one energy drinks? of the ways the body normally tells Individual responses to caffeine vary, and someone that they've had enough to drink. these drinks should be treated carefully • The stimulant effect can give the person the because of how powerful they are.
    [Show full text]
  • Drug Classes Other Diuretics
    DRUG CLASSES OTHER DIURETICS Loop diuretics and potassium sparing diuretics have limited roles in the management of hypertension although accumulating evidence suggests that potassium-sparing diuretics may have an important place in apparently resistant hypertension. LOOP DIURETICS Examples Bumetamide Furosemide Torasemide Mechanism of action Loop diuretics act on the nephron mainly in the thick ascending links of the Loop of Henle. Although loop diuretics have diuretic efficacy greater than that of thiazide or thiazide-like agents, effects on blood pressure are relatively brief and reflex stimulation of the renin-angiotensin system tends to counter the fall in blood pressure. Pharmacokinetics Loop diuretics are well absorbed after oral administration. Elimination is largely by the renal route with a small contribution from liver metabolism. Like thiazide and thiazide- like diuretics, the renal effects depend on access to the luminal side of the renal tubule; unlike thiazide and thiazide-like diuretics, loop diuretics retain some efficacy in renal impairment. Adverse effects As with thiazide and thiazide-like diuretics, these are mainly metabolic Hypokalaemia is even less common than with low-dose thiazides or thiazide-like diuretics Hyperglycaemia is less marked than with thiazide or thiazide-like diuretics 1 Urate retention risk of acute gout Hypocalcaemia due to increased renal clearance of calcium small risk of ureteric calculi Practical issues Bumetamide and furosemide have a rapid onset and short duration of action. Twice daily dosing is more effective in lowering blood pressure. However, persistent diuresis may limit utility. Torasemide has a longer duration of action and can be given once daily but metabolic complications, particularly hypokalaemia, are more marked than with other loop- diuretics.
    [Show full text]
  • The Necessity and Effectiveness of Mineralocorticoid Receptor Antagonist in the Treatment of Diabetic Nephropathy
    Hypertension Research (2015) 38, 367–374 & 2015 The Japanese Society of Hypertension All rights reserved 0916-9636/15 www.nature.com/hr REVIEW The necessity and effectiveness of mineralocorticoid receptor antagonist in the treatment of diabetic nephropathy Atsuhisa Sato Diabetes mellitus is a major cause of chronic kidney disease (CKD), and diabetic nephropathy is the most common primary disease necessitating dialysis treatment in the world including Japan. Major guidelines for treatment of hypertension in Japan, the United States and Europe recommend the use of angiotensin-converting enzyme inhibitors and angiotensin-receptor blockers, which suppress the renin-angiotensin system (RAS), as the antihypertensive drugs of first choice in patients with coexisting diabetes. However, even with the administration of RAS inhibitors, failure to achieve adequate anti-albuminuric, renoprotective effects and a reduction in cardiovascular events has also been reported. Inadequate blockade of aldosterone may be one of the reasons why long-term administration of RAS inhibitors may not be sufficiently effective in patients with diabetic nephropathy. This review focuses on treatment in diabetic nephropathy and discusses the significance of aldosterone blockade. In pre-nephropathy without overt nephropathy, a mineralocorticoid receptor antagonist can be used to enhance the blood pressure-lowering effects of RAS inhibitors, improve insulin resistance and prevent clinical progression of nephropathy. In CKD categories A2 and A3, the addition of a mineralocorticoid receptor antagonist to an RAS inhibitor can help to maintain ‘long-term’ antiproteinuric and anti-albuminuric effects. However, in category G3a and higher, sufficient attention must be paid to hyperkalemia. Mineralocorticoid receptor antagonists are not currently recommended as standard treatment in diabetic nephropathy.
    [Show full text]