The Survey of Space Shuttle
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vulcan Centaur
VULCAN CENTAUR The Vulcan Centaur rocket design leverages the flight-proven success of the Delta IV and Atlas V launch vehicles while introducing new technologies and innovative features to ensure a reliable and aordable space launch service. Vulcan Centaur will service a diverse range of markets including 225 ft commercial, civil, science, cargo and national security space customers. 1 The spacecraft is encapsulated in a 5.4-m- (17.7-ft-) diameter payload fairing (PLF), a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates the spacecraft. The payload attach fitting (PAF) is a similar sandwich composite structure creating the mating interface from spacecraft to second stage. The PLF separates using a debris-free horizontal and vertical separation system with 2 200 ft spring packs and frangible joint assembly. The payload fairing is available in the 15.5-m (51-ft) standard and 21.3-m (70-ft) 1 long configurations. The Centaur upper stage is 5.4 m (17.7 ft) in diameter and 3 11.7 m (38.5 ft) long with a 120,000-lb propellant capacity. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle, with two RL10C 4 engines. The Vulcan Centaur Heavy vehicle, flies the upgraded 2 Centaur using RL10CX engines with nozzle extensions. The 5 175 ft cryogenic tanks are insulated with spray-on foam insulation (SOFI) to manage boil o of cryogens during flight. An aft equipment shelf provides the structural mountings for vehicle electronics. -
Space Reporter's Handbook Mission Supplement
CBS News Space Reporter's Handbook - Mission Supplement Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-125: Hubble Space Telescope Servicing Mission 4 Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News 5/10/09 Page 2 CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 08/03/08 Initial STS-125 release 04/11/09 Updating to reflect may 12 launch; revised flight plan 04/15/09 Adding EVA breakdown; walkthrough 04/23/09 Updating for 5/11 launch target date 04/30/09 Adding STS-400 details from FRR briefing 05/04/09 Adding trajectory data; abort boundaries; STS-400 launch windows Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place. -
Turbopump Design and Analysis Approach for Nuclear Thermal Rockets
Turbopump Design and Analysis Approach for Nuclear Thermal Rockets Shu-cheng S. Chen1, Joseph P. Veres2, and James E. Fittje3 1NASA Glenn Research Center, Cleveland, Ohio 44135 2Chief, Compressor Branch, NASA Glenn Research Center, Cleveland, Ohio 44135 3Analex Corporation, 1100 Apollo Drive, Brook Park, Ohio 44142 1(216) 433-3585, [email protected] Abstract. A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps and turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance characteristics of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. -
Rocket Nozzles: 75 Years of Research and Development
Sådhanå Ó (2021) 46:76 Indian Academy of Sciences https://doi.org/10.1007/s12046-021-01584-6Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) Rocket nozzles: 75 years of research and development SHIVANG KHARE1 and UJJWAL K SAHA2,* 1 Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway 2 Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail: [email protected]; [email protected] MS received 28 August 2020; revised 20 December 2020; accepted 28 January 2021 Abstract. The nozzle forms a large segment of the rocket engine structure, and as a whole, the performance of a rocket largely depends upon its aerodynamic design. The principal parameters in this context are the shape of the nozzle contour and the nozzle area expansion ratio. A careful shaping of the nozzle contour can lead to a high gain in its performance. As a consequence of intensive research, the design and the shape of rocket nozzles have undergone a series of development over the last several decades. The notable among them are conical, bell, plug, expansion-deflection and dual bell nozzles, besides the recently developed multi nozzle grid. However, to the best of authors’ knowledge, no article has reviewed the entire group of nozzles in a systematic and comprehensive manner. This paper aims to review and bring all such development in one single frame. The article mainly focuses on the aerodynamic aspects of all the rocket nozzles developed till date and summarizes the major findings covering their design, development, utilization, benefits and limitations. -
Development of Turbopump for LE-9 Engine
Development of Turbopump for LE-9 Engine MIZUNO Tsutomu : P. E. Jp, Manager, Research & Engineering Development, Aero Engine, Space & Defense Business Area OGUCHI Hideo : Manager, Space Development Department, Aero Engine, Space & Defense Business Area NIIYAMA Kazuki : Ph. D., Manager, Space Development Department, Aero Engine, Space & Defense Business Area SHIMIYA Noriyuki : Space Development Department, Aero Engine, Space & Defense Business Area LE-9 is a new cryogenic booster engine with high performance, high reliability, and low cost, which is designed for H3 Rocket. It will be the first booster engine in the world with an expander bleed cycle. In the designing process, the performance requirements of the turbopump and other components can be concurrently evaluated by the mathematical model of the total engine system including evaluation with the simulated performance characteristic model of turbopump. This paper reports the design requirements of the LE-9 turbopump and their latest development status. Liquid oxygen 1. Introduction turbopump Liquid hydrogen The H3 rocket, intended to reduce cost and improve turbopump reliability with respect to the H-II A/B rockets currently in operation, is under development toward the launch of the first H3 test rocket in FY 2020. In rocket development, engine is an important factor determining reliability, cost, and performance, and as a new engine for the H3 rocket first stage, an LE-9 engine(1) is under development. A rocket engine uses a turbopump to raise the pressure of low-pressure propellant supplied from a tank, injects the pressurized propellant through an injector into a combustion chamber to combust it under high-temperature and high- pressure conditions. -
Status of the Space Shuttle Solid Rocket Booster
The Space Congress® Proceedings 1980 (17th) A New Era In Technology Apr 1st, 8:00 AM Status of The Space Shuttle Solid Rocket Booster William P. Horton Solid Rocket Booster Engineering Office, George C. Marshall Space Flight Center, Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Horton, William P., "Status of The Space Shuttle Solid Rocket Booster" (1980). The Space Congress® Proceedings. 3. https://commons.erau.edu/space-congress-proceedings/proceedings-1980-17th/session-1/3 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATUS OF THE SPACE SHUTTLE SOLID ROCKET BOOSTER William P. Horton, Chief Engineer Solid Rocket Booster Engineering Office George C. Marshall Space Flight Center, AL 35812 ABSTRACT discuss retrieval and refurbishment plans for Booster reuse, and will address Booster status Two Solid Rocket Boosters provide the primary for multimission use. first stage thrust for the Space Shuttle. These Boosters, the largest and most powerful solid rocket vehicles to meet established man- BOOSTER CONFIGURATION rated design criteria, are unique in that they are also designed to be recovered, refurbished, It is appropriate to review the Booster config and reused. uration before describing the mission profile. The Booster is 150 feet long and is 148 inches The first SRB f s have been stacked on the in diameter (Figure 1), The inert weight Mobile Launch Platform at the Kennedy Space is 186,000 pounds and the propellant weight is Center and are ready to be mated with the approximately 1.1 million pounds for each External Tank and Orbiter in preparation for Booster. -
6. Chemical-Nuclear Propulsion MAE 342 2016
2/12/20 Chemical/Nuclear Propulsion Space System Design, MAE 342, Princeton University Robert Stengel • Thermal rockets • Performance parameters • Propellants and propellant storage Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE342.html 1 1 Chemical (Thermal) Rockets • Liquid/Gas Propellant –Monopropellant • Cold gas • Catalytic decomposition –Bipropellant • Separate oxidizer and fuel • Hypergolic (spontaneous) • Solid Propellant ignition –Mixed oxidizer and fuel • External ignition –External ignition • Storage –Burn to completion – Ambient temperature and pressure • Hybrid Propellant – Cryogenic –Liquid oxidizer, solid fuel – Pressurized tank –Throttlable –Throttlable –Start/stop cycling –Start/stop cycling 2 2 1 2/12/20 Cold Gas Thruster (used with inert gas) Moog Divert/Attitude Thruster and Valve 3 3 Monopropellant Hydrazine Thruster Aerojet Rocketdyne • Catalytic decomposition produces thrust • Reliable • Low performance • Toxic 4 4 2 2/12/20 Bi-Propellant Rocket Motor Thrust / Motor Weight ~ 70:1 5 5 Hypergolic, Storable Liquid- Propellant Thruster Titan 2 • Spontaneous combustion • Reliable • Corrosive, toxic 6 6 3 2/12/20 Pressure-Fed and Turbopump Engine Cycles Pressure-Fed Gas-Generator Rocket Rocket Cycle Cycle, with Nozzle Cooling 7 7 Staged Combustion Engine Cycles Staged Combustion Full-Flow Staged Rocket Cycle Combustion Rocket Cycle 8 8 4 2/12/20 German V-2 Rocket Motor, Fuel Injectors, and Turbopump 9 9 Combustion Chamber Injectors 10 10 5 2/12/20 -
Materials for Liquid Propulsion Systems
https://ntrs.nasa.gov/search.jsp?R=20160008869 2019-08-29T17:47:59+00:00Z CHAPTER 12 Materials for Liquid Propulsion Systems John A. Halchak Consultant, Los Angeles, California James L. Cannon NASA Marshall Space Flight Center, Huntsville, Alabama Corey Brown Aerojet-Rocketdyne, West Palm Beach, Florida 12.1 Introduction Earth to orbit launch vehicles are propelled by rocket engines and motors, both liquid and solid. This chapter will discuss liquid engines. The heart of a launch vehicle is its engine. The remainder of the vehicle (with the notable exceptions of the payload and guidance system) is an aero structure to support the propellant tanks which provide the fuel and oxidizer to feed the engine or engines. The basic principle behind a rocket engine is straightforward. The engine is a means to convert potential thermochemical energy of one or more propellants into exhaust jet kinetic energy. Fuel and oxidizer are burned in a combustion chamber where they create hot gases under high pressure. These hot gases are allowed to expand through a nozzle. The molecules of hot gas are first constricted by the throat of the nozzle (de-Laval nozzle) which forces them to accelerate; then as the nozzle flares outwards, they expand and further accelerate. It is the mass of the combustion gases times their velocity, reacting against the walls of the combustion chamber and nozzle, which produce thrust according to Newton’s third law: for every action there is an equal and opposite reaction. [1] Solid rocket motors are cheaper to manufacture and offer good values for their cost. -
Space Shuttle Program
Space Shuttle program The Space Shuttle Columbia seconds after engine ignition, 1981 (NASA). For the first two missions only, the external fuel tank spray-on foam insulation (SOFI) was painted white. Subsequent missions have featured an unpainted tank thus exposing the orange/rust colored foam insulation. This resulted in a weight saving of over 1,000 lb (450 kg), a savings that translated directly to added payload capacity to orbit. NASA's Space Shuttle, officially called Space Transportation System (STS), is the United States government's sole manned launch vehicle currently in service. The winged shuttle orbiter is launched vertically, carrying usually five to seven astronauts and up to about 22,700 kg (50,000 lbs) of payload into low earth orbit. When its mission is complete, it reenters the earth's atmosphere and makes an unpowered gliding horizontal landing, usually on a runway at Kennedy Space Center. The Space Shuttle orbiter was manufactured by North American Rockwell, now part of the Boeing Company. Martin Marietta (now part of Lockheed Martin) designed the external fuel tank and Morton Thiokol (now part of Alliant Techsystems (ATK)) designed the solid rocket boosters. The Shuttle is the first orbital spacecraft designed for partial reusability. It carries large payloads to various orbits, provides crew rotation for the International Space Station (ISS), and performs servicing missions. While the vehicle was designed with the capacity to recover satellites and other payloads from orbit and return them to Earth, this capacity has not been used often; it is, however, an important use of the Space Shuttle in the context of the ISS program, as only very small amounts of experimental material, hardware needing to be repaired, and trash can be returned by Soyuz. -
Atlas V Cutaway Poster
ATLAS V Since 2002, Atlas V rockets have delivered vital national security, science and exploration, and commercial missions for customers across the globe including the U.S. Air Force, the National Reconnaissance Oice and NASA. 225 ft The spacecraft is encapsulated in either a 5-m (17.8-ft) or a 4-m (13.8-ft) diameter payload fairing (PLF). The 4-m-diameter PLF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The Atlas V 400 series oers three payload fairing options: the large (LPF, shown at left), the extended (EPF) and the extra extended (XPF). The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur upper stage and the spacecraft, which separates using a debris-free pyrotechnic actuating 200 ft system. Payload clearance and vehicle structural stability are enhanced by the all-aluminum forward load reactor (FLR), which centers the PLF around the Centaur upper stage and shares payload shear loading. The Atlas V 500 series oers 1 three payload fairing options: the short (shown at left), medium 18 and long. 1 1 The Centaur upper stage is 3.1 m (10 ft) in diameter and 12.7 m (41.6 ft) long. Its propellant tanks are constructed of pressure-stabilized, corrosion-resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-fueled vehicle. It uses a single RL10 engine producing 99.2 kN (22,300 lbf) of thrust. -
Cryogenic Technology & Rocket Engines
ISSN (O): 2393-8609 International Journal of Aerospace and Mechanical Engineering Volume 2 – No.5, August 2015 Cryogenic Technology & Rocket Engines AKHIL GARG KARTIK JAKHU KISHAN SINGH ABHINAV B.Tech – Aerospace B.Tech – Aerospace B.Tech – Aerospace MAURYA Engg. Engg. Engg. B.Tech – Aerospace PUNJAB PUNJAB PUNJAB Engg. TECHNICAL TECHNICAL TECHNICAL PUNJAB UNIVERSITY, UNIVERSITY, UNIVERSITY, TECHNICAL JALANDHAR JALANDHAR JALANDHAR UNIVERSITY, akhilgarg.313@g kartik.lphawk@g kishansngh1996 JALANDHAR mail.com mail.com @gmail.com abhinavguru123 @gmail.com ABSTRACT 3.2 What is Cryogenic Rocket Engine? This paper is all about the rocket engine involving the use of A cryogenic rocket engine is a rocket engine that cryogenic technology at a cryogenic temperature (123K). This uses a cryogenic fuel or oxidizer, that is, its fuel or basically uses the liquid oxygen and liquid hydrogen as an oxidizer (or both) is gases liquefied and stored at oxidizer and fuel, which are very clean and non-pollutant very low temperatures. Notably, these engines were fuels compared to other hydrocarbon fuels like petrol, diesel, one of the main factors of the ultimate success in gasoline, LPG, CNG, etc., sometimes, liquid nitrogen is also reaching the Moon by the Saturn V rocket. used as an fuel. During World War II, when powerful rocket engines were first considered by the German, American and Keywords Soviet engineers independently, all discovered that Rocket engine, Cryogenic technology, Cryogenic temperature, rocket engines need high mass flow rate of both Liquid hydrogen and Oxygen. oxidizer and fuel to generate a sufficient thrust. At that time oxygen and low molecular weight 1. -
HOUSTON BRINGS HOME a SHUTTLE for EVERYONE to SHARE by Alicia M
HOUSTON BRINGS HOME A SHUTTLE FOR EVERYONE TO SHARE By Alicia M. Nichols All photos courtesy of Alan Montgomery and Woodallen Photography, Houston, Texas. 22 HOUSTON HISTORY Vol.12 • No.2 HOUSTON BRINGS HOME A SHUTTLE FOR EVERYONE TO SHARE By Alicia M. Nichols The new Space Center Houston exhibit will feature the mock-up shuttle Independence sitting atop the Boeing 747, in the “ ferry position.” Both exhibit director Paul Spana and educational director Dr. Melanie Johnson agree that the Houston exhibit offers a unique opportunity. Visitors here will have a far more tangible, hands-on educational experience than those who visit sites housing the formerly active shuttles. They can explore the insides of the 747 and the shuttle itself and see what it would be like to pilot the shuttle, crammed into the pilot’s deck. Interactivity and the higher level of engagement make it far more likely that young visitors will take away something from the experience, perhaps inspiring a future astronaut who will set foot on Mars.1 HOUSTON HISTORY Vol. 12 • No.2 23 hirty-one years after NASA launched the first space envisioned as a practical tool to transport people, goods, Tshuttle into Earth’s orbit, a shuttle carrier aircraft car- science experiments, and equipment between Earth and rying the space shuttle Endeavour flew over Houston. In July what became the International Space Station—a place to of 2011, the shuttle Atlantis, STS-135, marked the 135th and conduct further research and study space. Throughout the final flight of the space shuttle program, known officially 1970s, NASA scientists and engineers continued to develop as the Space Transport System (STS).