Conformists and Anti-Conformists in Opinion Formation and Diffusion

Total Page:16

File Type:pdf, Size:1020Kb

Conformists and Anti-Conformists in Opinion Formation and Diffusion DOCTORAL THESIS Conformists and Anti-conformists in Opinion Formation and Diffusion Author: Supervisors: Fen LI Prof. Michel Grabisch Prof. Herbert Dawid A thesis submitted in fulfillment of the requirements for the degree of Doctor of Applied Mathematics of CES - Centre d’économie de la Sorbonne, University of Paris 1 Panthéon Sorbonne; and Doctor of Economics of the Faculty of Business Administration and Economics, Bielefeld University. Date of defense: December 16, 2020 ii EXAMINATION COMMITTEE Berno Buechel University of Fribourg Referee Herbert Dawid University of Bielefeld Advisor Michel Grabisch University of Paris 1 Panthéon Sorbonne Advisor Tim Hellmann University of Southampton Examiner Katarzyna Sznajd-Weron Wroclaw University of Science and Technology Referee Curriculum Vitae Fen LI Gender: Female Date of birth: May 11, 1993 0033(0)769438066 Place of birth: Shandong, China 28 Rue Michelet Nationality: Chinese 54000, Nancy, France Email: [email protected] Current Position 2017- Early Stage Researcher & PhD candidate Innovative Training Network ’Expectations and Social Influence Dynamics in Economics’ (ExSIDE) 1. Université Paris 1 Panthéon-Sorbonne & Bielefeld University. Project: Conformists and Anticonformists in Opinion Formation and Diffusion; Supervisors: Michel Grabisch, Herbert Dawid . Research Interests Decision Making, Game Theory, Opinion Dynamics in Networks, Anti-conformism Education 2016-2017 MMMEF master 2, Université Paris 1 Panthéon-Sorbonne, Paris, France M2 in Mathematical Economics, Games and Decision. GPA: 4/4. Master 2 Thesis: A Pólya Urn Model of Opinion Formation. 2013-2016 Ocean University of China (OUC), Qingdao, Shandong, China M.S. in Probability Theory and Statistics, 2016 Outstanding Master of Ocean University of China. Master thesis: Global Sensitivity Analysis of Marine Ecosystem Dynamics Models based on the Morris Method and the Sobol Method 2009-2013 Ocean University of China (OUC), Qingdao, Shandong, China B.S. in Applied Mathematics, summa cum laude. Undergraduate thesis: Optimization on the Reduction of Major Pollutants of Laizhou Bay 1This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721846. See http://exside-itn.eu/ Fen LI 2 Conferences, Workshops, Summer Schools 11/2020 Statistical Physics in Complex Systems (SPiCy) seminar via zoom, organized by Wroclaw University of Science and Technology. Presentation entitled Continuous opinion dynamics with anti-conformity behavior. 09/2020 Network Group Seminar, Paris, France. Presentation entitled Continuous opinion dynamics with anti-conformity behavior. 07/2020 Intelligent Control Series Report via zoom, organized by Peking University. Presentation entitled Continuous opinion dynamics with anti-conformity behavior. 12/2019 International workshop on "Network approach to opinion formation and interaction", Paris, France. Presentation entitled The Transmission of Continuous Cultural Traits in Endogenous Social Networks. 11/2019 Ordered Structures in Games and Decisions 13th seminar day, Paris. 11/2019 Visit to the Department of Mathematical Sciences at Politecnico di Torino. Workshop "Net- work Dynamics in the Social, Economic, and Financial Sciences". Seminars at DISMA Work- shops. 07/2019 30th International Conference on Game Theory at Stony Brook, U.S. Presentation entitled Anti-conformism in the threshold model of collective behavior. 07/2019 Summer School "Equilibria in Financial Markets: General Equilibrium and Game Theoretic Perspective" at Bielefeld University, Bielefeld, Germany. 04/2019 Network Science in Economics Conference at Indiana University-Bloomington, U.S. Presen- tation entitled Anti-conformism in the threshold model of collective behavior. 10/2018 The Lisbon Meetings in Game Theory and Applications. Presentation entitled Opinion Dy- namics with Anti-conformist agents. 07/2018 The 14th European (formerly Spain-Italy-Netherlands) Meeting on Game Theory (SING14), Bayreuth, Germany. Presentation entitled Opinion Dynamics with Anti-conformist agents. 05/2018 Deliberation, Belief Aggregation, and Epistemic Democracy, Paris, France. 04/2018 23rd Coalition Theory Network Workshop, Maastricht, Netherlands. 11/2017 Ordered Structures in Games and Decision, Paris, France. 12/2017 Journées Internes Aussois, Aussois, France. Poster entitled A Pólya Urn Model of Opinion Formation. 07/2015 Summer school of the 3rd International Marine Frontier Research under funding support 09/2014 The 4th Australia - China Ocean Science & Technology Symposium (ACOST4). Presentation entitled Distribution of Phytoplankton Biodiversity in relations to environmental variables in South- five island of Miaodao Archipelago. 11/2013 The 2013 national doctoral student academic forum. Submitted the abstract of Laizhou bay regulate control and optimize of pollution Papers Published [1] Grabisch, M., Li, F. Anti-conformism in the Threshold Model of Collective Behavior. Dyn Games Appl 10, 444 - 477 (2020). https://doi.org/10.1007/s13235-019-00332-0. [2] Zheng W, Li F, Shi H, et al. Spatiotemporal heterogeneity of phytoplankton diversity and its re- lation to water environmental factors in the southern waters of Miaodao Archipelago, China. Acta Oceanologica Sinica, 2016, 35. [3] Shen C, Shi H, Zheng W, Li F, Peng S, Ding D. Study on the cumulative impact of reclamation activities on ecosystem health in coastal waters. Marine Pollution Bulletin, 2016, 103(1-2): 144-150. Fen LI 3 [4] Shen C, Shi H, Liu Y, Li F, Ding D. Discussion of skill improvement in marine ecosystem dynamic models based on parameter optimization and skill assessment. Chinese Journal of Oceanology and Limnology, 2015:1-14. [5] Shi H, Shen C, Wang X, Li F, Chi Y, Guo Z, Qiao M, Gao L, Ding D. Amodel to assess fundamental and realized carrying capacities of island ecosystem: a case study in the southern Miaodao Archipelago of China. Acta Oceanologica Sinica, 2016, 35(2): 56-67. [6] LI F, Shen C, Shi H, Chi Y, Guo Z, Ding D. Uncertainty analysis on ecosystem-based carrying capacity of island: A case study in the Southern Island Group of Miaodao Archipelago Marine Envi- ronmental Science, 2016, 35(4): 481-488. (in Chinese) [7] Shi H, Shen C, Li F, Wang Y. Jiaozhou Bay biology - Sensitivity analysis on physics coupling model parameter. Acta Ecologica Sinica, 2014, 34(1): 41-49. (in Chinese) Awards and honors Academic 2015 Zhang Zidao Island Outstanding Student Scholarship Awarded by Ocean University of China. This scholarship was rated based on academic and research activity 80%, academic performance 10%, innovative undertaking and social activities 10% 2015 2nd prize on academic forum of school of mathematical science of OUC. Awarded by Ocean University of China 2014 Academic Scholarship of OUC Awarded by Ocean University of China. (Ranking top 3 in academic performance and excellent in researching area.) 2014 Outstanding graduate student of OUC Awarded by Ocean University of China 2012 Social practice scholarship of OUC Awarded by Ocean University of China 2011 1st prize in National college student mathematical contest in modeling, Shandong area Awarded by Shandong Province, China Non-academic 2015 3rd prize on OUC graduate students mixed-double badminton competition Awarded by Ocean University of China 2014 Excellent student in the 5th graduate student studies of Chinese ancient civilization activity Awarded by Ocean University of China 2013 Excellent student in the 4th graduate student studies of Chinese ancient civilization activity Awarded by Ocean University of China 2013 2nd prize on School of Mathematical Science graduate female students badminton competition Awarded by School of Mathematical Science of Ocean University of China Occupational Skills Languages English Fluent Chinese Native French and German Beginner Abstract The works of this thesis fall into the broad, highly interdisciplinary field of research on opinion dynamics and social networks, which has been studied from different perspectives by sociologists, social psychologists, economists, politicians, cybernetists, mathematicians, computer scientists and even theoretical physicists, for many decades. So far, most models make the basic assumption that agents tend to follow the trend (they are conformist) and that nobody has a kind of opposite behavior (anti-conformism). Recently, a few studies consider such kind of opposite behavior, under the name of anti-conformists, hipsters, contrarians, anti-coordination, etc. Unlike the well-developed theory of opinion dynamics with conformists, the studies with anti-conformists are taking their first steps. This Ph.D thesis aims to answer the following questions: Given a society of agents in a (fixed or endogenous) network, given a mechanism of influence for each agent, how the behavior/opinion of the agents will evolve with time, and in particular can it be expected that it converges to some stable situation, and in this case, which one? The main objective is to obtain the conditions (both on the agent- and network-level) required to generate specific network level phenomena, e.g., reaching a consensus/polarization. The first work provides a detailed study of the threshold model, where both conformist and anti-conformist agents coexist. The study bears essentially on the convergence of the opinion dynamics in the society of agents, i.e., finding absorbing classes, cycles, etc. Also, we are interested in the existence of cascade effects, as this may constitute an undesirable phenomenon
Recommended publications
  • Session Types and Game Semantics a Synchronous Side and an Asynchronous Side
    Two Sides of the Same Coin: Session Types and Game Semantics A Synchronous Side and an Asynchronous Side SIMON CASTELLAN, Imperial College London, United Kingdom NOBUKO YOSHIDA, Imperial College London, United Kingdom Game semantics and session types are two formalisations of the same concept: message-passing open programs following certain protocols. Game semantics represents protocols as games, and programs as strategies; while session types specify protocols, and well-typed π-calculus processes model programs. Giving faithful models of the π-calculus and giving a precise description of strategies as a programming language are two difficult 27 problems. In this paper, we show how these two problems can be tackled at the same time by building an accurate game semantics model of the session π-calculus. Our main contribution is to fill a semantic gap between the synchrony of the (session) π-calculus and the asynchrony of game semantics, by developing an event-structure based game semantics for synchronous concurrent computation. This model supports the first truly concurrent fully abstract (for barbed congruence) interpretation of the synchronous (session) π-calculus. We further strengthen this correspondence, establishing finite definability of asynchronous strategies by the internal session π-calculus. As an application of these results, we propose a faithful encoding of synchronous strategies into asynchronous strategies by call-return protocols, which induces automatically an encoding at the level of processes. Our results bring session types and game semantics into the same picture, proposing the session calculus as a programming language for strategies, and strategies as a very accurate model of the session calculus.
    [Show full text]
  • Learning Under Limited Information∗
    Learning Under Limited Information¤ Yan Chen School of Information, University of Michigan 550 East University Avenue, Ann Arbor, MI 48109-1092 Yuri Khoroshilov Department of Finance, University of Michigan Business School 701 Tappan Street, Ann Arbor, MI 48109-1234 August 28, 2002 Running title: learning under limited information Address for manuscript correspondence: Yan Chen School of Information, University of Michigan 550 East University Avenue, Ann Arbor, MI 48109-1092 Email: [email protected] Phone: (734) 763-2285 Fax: (734) 764-2475 ¤We thank Julie Cullen, Ido Erev, Dan Friedman, Eric Friedman, Drew Fudenburg, Amy Greenwald, Teck-Hua Ho, Lutz Kilian, David Lucking-Reiley, Atanasios Mitropoulos, Tom Palfrey, Rajiv Sarin, Scott Shenker, Farshid Vahid and seminar participants at Michigan, Mississippi, Rutgers, Texas A&M, the 1998 Econometric Society meetings (Chicago), ESA 2000 (New York City) and the 2001 Econometric Society meetings (New Orleans) for discussions and comments. We are grateful to John Van Huyck for providing the data and for helping us with part of the estimation. Emre Sucu provided excellent research assistance. We are grateful to two anonymous referees for their constructive comments which significantly improved the paper. The research support provided by NSF grant SBR-9805586 and SES-0079001 to Chen and the Deutsche Forschungsgemeinschaft through SFB303 at Universit¨atBonn are gratefully acknowledged. Any remaining errors are our own. 1 Abstract We study how human subjects learn under extremely limited information. We use Chen’s (forthcoming) data on cost sharing games, and Van Huyck, Battalio and Rankin’s (1996) data on coordination games to compare three payoff-based learning models.
    [Show full text]
  • Evolutionary Game Theory: a Renaissance
    games Review Evolutionary Game Theory: A Renaissance Jonathan Newton ID Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan; [email protected] Received: 23 April 2018; Accepted: 15 May 2018; Published: 24 May 2018 Abstract: Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences. Keywords: evolution; game theory; dynamics; agency; assortativity; culture; distributed systems JEL Classification: C73 Table of contents 1 Introduction p. 2 Shadow of Nash Equilibrium Renaissance Structure of the Survey · · 2 Agency—Who Makes Decisions? p. 3 Methodology Implications Evolution of Collective Agency Links between Individual & · · · Collective Agency 3 Assortativity—With Whom Does Interaction Occur? p. 10 Assortativity & Preferences Evolution of Assortativity Generalized Matching Conditional · · · Dissociation Network Formation · 4 Evolution of Behavior p. 17 Traits Conventions—Culture in Society Culture in Individuals Culture in Individuals · · · & Society 5 Economic Applications p. 29 Macroeconomics, Market Selection & Finance Industrial Organization · 6 The Evolutionary Nash Program p. 30 Recontracting & Nash Demand Games TU Matching NTU Matching Bargaining Solutions & · · · Coordination Games 7 Behavioral Dynamics p. 36 Reinforcement Learning Imitation Best Experienced Payoff Dynamics Best & Better Response · · · Continuous Strategy Sets Completely Uncoupled · · 8 General Methodology p. 44 Perturbed Dynamics Further Stability Results Further Convergence Results Distributed · · · control Software and Simulations · 9 Empirics p.
    [Show full text]
  • A Distributed Auctioneer for Resource Allocation in Decentralized Systems
    A Distributed Auctioneer for Resource Allocation in Decentralized Systems Amin M. Khan Xavier Vila¸ca Universitat Polit`ecnicade Catalunya, Barcelona INESC-ID Lisboa [email protected] [email protected] Lu´ısRodrigues Felix Freitag [email protected] Universitat Polit`ecnicade Catalunya, Barcelona [email protected] September 29, 2021 Abstract In decentralized systems, nodes often need to coordinate to access shared resources in a fair manner. One approach to perform such arbitration is to rely on auction mechanisms. Although there is an extensive literature that studies auctions, most of these works assume the existence of a central, trusted auctioneer. Unfortunately, in fully decentralized systems, where the nodes that need to cooperate operate under separate spheres of control, such central trusted entity may not exist. Notable examples of such decentralized systems include community networks, clouds of clouds, cooperative nano data centres, among others. In this paper, we make theoretical and practical contributions to distribute the role of the auctioneer. From the theoretical perspective, we propose a framework of distributed simulations of the auctioneer that are Nash equilibria resilient to coalitions and asynchrony. From the practical perspective, our protocols leverage the distributed nature of the simulations to parallelise the execution. We have implemented a prototype that instantiates the framework for bandwidth allocation in community networks, and evaluated it in a real distributed setting. 1 Introduction Most distributed systems have limited resources that need to be shared by many nodes. For instance, in a network there is limited bandwidth that needs to be allocated to multiple nodes. In cloud applications, virtual machines (VMs) need to be allocated to different cloud users.
    [Show full text]
  • Advances and Open Problems in Federated Learning
    Advances and Open Problems in Federated Learning Peter Kairouz7* H. Brendan McMahan7∗ Brendan Avent21 Aurelien´ Bellet9 Mehdi Bennis19 Arjun Nitin Bhagoji13 Kallista Bonawitz7 Zachary Charles7 Graham Cormode23 Rachel Cummings6 Rafael G.L. D’Oliveira14 Hubert Eichner7 Salim El Rouayheb14 David Evans22 Josh Gardner24 Zachary Garrett7 Adria` Gascon´ 7 Badih Ghazi7 Phillip B. Gibbons2 Marco Gruteser7;14 Zaid Harchaoui24 Chaoyang He21 Lie He 4 Zhouyuan Huo 20 Ben Hutchinson7 Justin Hsu25 Martin Jaggi4 Tara Javidi17 Gauri Joshi2 Mikhail Khodak2 Jakub Konecnˇ y´7 Aleksandra Korolova21 Farinaz Koushanfar17 Sanmi Koyejo7;18 Tancrede` Lepoint7 Yang Liu12 Prateek Mittal13 Mehryar Mohri7 Richard Nock1 Ayfer Ozg¨ ur¨ 15 Rasmus Pagh7;10 Hang Qi7 Daniel Ramage7 Ramesh Raskar11 Mariana Raykova7 Dawn Song16 Weikang Song7 Sebastian U. Stich4 Ziteng Sun3 Ananda Theertha Suresh7 Florian Tramer` 15 Praneeth Vepakomma11 Jianyu Wang2 Li Xiong5 Zheng Xu7 Qiang Yang8 Felix X. Yu7 Han Yu12 Sen Zhao7 1Australian National University, 2Carnegie Mellon University, 3Cornell University, 4Ecole´ Polytechnique Fed´ erale´ de Lausanne, 5Emory University, 6Georgia Institute of Technology, 7Google Research, 8Hong Kong University of Science and Technology, 9INRIA, 10IT University of Copenhagen, 11Massachusetts Institute of Technology, 12Nanyang Technological University, 13Princeton University, 14Rutgers University, 15Stanford University, 16University of California Berkeley, 17 University of California San Diego, 18University of Illinois Urbana-Champaign, 19University of Oulu, 20University of Pittsburgh, 21University of Southern California, 22University of Virginia, 23University of Warwick, 24University of Washington, 25University of Wisconsin–Madison arXiv:1912.04977v3 [cs.LG] 9 Mar 2021 Abstract Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g.
    [Show full text]
  • Asynchronous Best-Reply Dynamics
    Asynchronous Best-Reply Dynamics Noam Nisan1, Michael Schapira2, and Aviv Zohar2 1 Google Tel-Aviv and The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. 2 The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. fnoam,mikesch,[email protected] Abstract. In many real-world settings (e.g., interdomain routing in the Internet) strategic agents are instructed to follow best-reply dynamics in asynchronous environments. In such settings players learn of each other's actions via update messages that can be delayed or even lost. In particular, several players might update their actions simultaneously, or make choices based on outdated information. In this paper we analyze the convergence of best- (and better-)reply dynamics in asynchronous environments. We provide su±cient conditions, and necessary conditions for convergence in such settings, and also study the convergence-rate of these natural dynamics. 1 Introduction Many real-life protocols can be regarded as executions of best-reply dynamics, i.e, players (computational nodes) are instructed to repeatedly best-reply to the actions of other players. In many cases, like Internet settings, this occurs in asynchronous environments: Think of the players as residing in a computer network, where their best-replies are transmitted to other players and serve as the basis for the other players' best-replies. These update messages that players send to each other may be delayed or even lost, and so players may update their actions simultaneously, and do so based on outdated information. Perhaps the most notable example for this is the Border Gateway Protocol (BGP) that handles interdomain routing in the Internet.
    [Show full text]
  • Synchronous and Asynchronous Learning by Responsive Learning
    Synchronous and Asynchronous Learning by Resp onsive Learning Automata Eric J Friedman Department of Economics Rutgers University New Brunswick NJ friedmanfaseconrutgersedu Scott Shenker Xerox PARC Coyote Hill Road Palo Alto CA shenkerparcxeroxcom Novemb er Abstract We consider the ability of economic agents to learn in a decentralized envi ronment in which agents do not know the sto chastic payo matrix and can not observe their opp onents actions they merely know at each stage of the game their own action and the resulting payo We discuss the requirements for learning in such an environment and show that a simple probabilistic learning algorithm satises two imp ortant optimizing prop erties i When placed in an unknown but eventually stationary random environment they converge in b ounded time in a sense we make precise to strategies that maximize average payo ii They satisfy a monotonicity prop erty related to the law of the eect in which increasing the payos for a given strategy increases the probability of that strategy b eing played in the future We then study how groups of such learners interact in a general game We show that synchronous groups of these learners converge to the serially undominated set In contrast asynchronous groups do not necessarily converge to the serially undominated set highlighting the imp ortance of timing in decentralized learning However these asynchronous learners do converge to the serially unoverwhelmed set which we dene Thus the serially unoverwhelmed set can b e viewed as an appropriate solution
    [Show full text]
  • Conflict Resolution Through Strategic Vocal Negotiation and Cooperation in Nestling Barn Owls (Tytoalba)
    Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2019 CONFLICT RESOLUTION THROUGH STRATEGIC VOCAL NEGOTIATION AND COOPERATION IN NESTLING BARN OWLS (TYTOALBA) Ducouret Pauline Ducouret Pauline, 2019, CONFLICT RESOLUTION THROUGH STRATEGIC VOCAL NEGOTIATION AND COOPERATION IN NESTLING BARN OWLS (TYTOALBA) Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive http://serval.unil.ch Document URN : urn:nbn:ch:serval-BIB_1FCB6DC32ADB8 Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art.
    [Show full text]
  • Distributed Computing with Adaptive Heuristics
    Distributed Computing with Adaptive Heuristics To be presented at Innovations in Computer Science 2011 Aaron D. Jaggard1;2∗ Michael Schapira3y Rebecca N. Wright1z 1Rutgers University, New Brunswick, NJ 08854, USA 2Colgate University, Hamilton, NY 13346, USA 3Princeton University, Princeton, NJ 08544,USA [email protected] [email protected] [email protected] Abstract: We use ideas from distributed computing to study dynamic environments in which com- putational nodes, or decision makers, follow adaptive heuristics [16], i.e., simple and unsophisticated rules of behavior, e.g., repeatedly “best replying” to others’ actions, and minimizing “regret”, that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the bor- derline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall—that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Feldhaus, Christoph; Rockenbach, Bettina; Zeppenfeld, Christopher Conference Paper Inequality in minimum-effort coordination Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics Provided in Cooperation with: Verein für Socialpolitik / German Economic Association Suggested Citation: Feldhaus, Christoph; Rockenbach, Bettina; Zeppenfeld, Christopher (2020) : Inequality in minimum-effort coordination, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics, ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg This Version is available at: http://hdl.handle.net/10419/224650 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Inequality in minimum-effort coordination∗ Christoph Feldhaus Bettina Rockenbach Christopher Zeppenfeld March 1, 2020 Abstract Successful coordination is key for economic and societal wealth.
    [Show full text]
  • 15 Dynamics at the Boundary of Game Theory and Distributed Computing
    Dynamics at the Boundary of Game Theory and Distributed Computing AARON D. JAGGARD, U.S. Naval Research Laboratory 15 NEIL LUTZ, Rutgers University MICHAEL SCHAPIRA, Hebrew University of Jerusalem REBECCA N. WRIGHT, Rutgers University We use ideas from distributed computing and game theory to study dynamic and decentralized environments in which computational nodes, or decision makers, interact strategically and with limited information. In such environments, which arise in many real-world settings, the participants act as both economic and computa- tional entities. We exhibit a general non-convergence result for a broad class of dynamics in asynchronous settings. We consider implications of our result across a wide variety of interesting and timely applications: game dynamics, circuit design, social networks, Internet routing, and congestion control. We also study the computational and communication complexity of testing the convergence of asynchronous dynamics. Our work opens a new avenue for research at the intersection of distributed computing and game theory. CCS Concepts: • Theory of computation → Distributed computing models; Convergence and learn- ing in games;•Networks → Routing protocols; Additional Key Words and Phrases: Adaptive heuristics, self stabilization, game dynamics ACM Reference format: Aaron D. Jaggard, Neil Lutz, Michael Schapira, and Rebecca N. Wright. 2017. Dynamics at the Boundary of Game Theory and Distributed Computing. ACM Trans. Econ. Comput. 5, 3, Article 15 (August 2017), 20 pages. https://doi.org/10.1145/3107182 A preliminary version of some of this work appeared in Proceedings of the Second Symposium on Innovations in Computer Science (ICS 2011) [25]. This work was partially supported by NSF grant CCF-1101690, ISF grant 420/12, the Israeli Center for Research Excellence in Algorithms (I-CORE), and the Office of Naval Research.
    [Show full text]
  • Transformational Outcomes of Civil Society Organizations
    tnmgnMda oita a rO nag i az t i no dna nemeganaM t nayeics v wheylaa sehtehT i anas l cwohsesy ivi cosl i sniagyte - o t l aA s ojnsegrla nctacaeler l inhcetsaecnave ac jdnassergorpl bo l sse DD TRANSFORMATIONAL nmopen arentluserhtworg saercednit tnemyolpmegni 812 rh hsene fiungivel-setar vae lfilufnugni ihwsdeendel erahc / s s e r eVf e s z óJ ybderevocnuerarodezitenomebotdrah 6102 OUTCOMES OF CIVIL oltkahuh A eogisahcrup rewopgni lA. tekramhguoht l go i c htrow sdnamed samehtredisnoctonseod sdnamed htrow esehtteemot elbasiyteicoslivic,gniusrup esehtteemot SOCIETY ugiamnzngo leshguorhT.sdeen f lufgninaemgnizinagro- ermnlaicstbeaeeti,krow , i coshtobsetarenegt i a tekramdnal ORGANIZATIONS egsceivla pea u av eul ipmesa, r i ac vel seggusecnedi t s . lanoitamrofsnart'seitinummoclacoL musorez-nonehtswollof scimanyd musorez-nonehtswollof fogniniagselbanehcihw,hcaorppa J feszó ssereV e nco yootanirewopme i tuagn fymono tnecmor r a l i dez hginteteuirtoda mtsys smet tnocdna, r ehtgnidnetxeotsetubi wllankotNeaeroelaicos i a agnikrowteN.esabecruoserl l swol oe anosocto aoalloc l taroba radnuobssorcotnoi fosei es ngnsoita a o citrap r t i uc l a ror nag i az t i enegdnasno r a t wense .noititepmocdnanoitarepoocfoscitcelaid ubsn bn ngo e'sreetnulovehT les' f inagro- z rbgni tuobasgni firrfoy nwr,lao taicossana anoi l gniworg, tfiorproftonyl yteicsgelok miaydteiro i omsimanyddetne lwonkf cosegde i e t -y snoitinfiedruoegnahcyllacitsardyamdna .evitcudorpgniebdnaboj afo .evitcudorpgniebdnaboj SNOITAZINAGRO YTEICOSLIVICFO SEMOCTUO LANOITAMROFSART SEMOCTUO YTEICOSLIVICFO SNOITAZINAGRO B I NBS 807-06-259-879 5-6 ( p r i n t de ) SSENISUB + B I NBS 8-5807-06-259-879 ( dp f ) E MONOC Y S I NSS - L 9971 - 4394 S I NSS 9971 - 4394 ( p r i n t de ) TRA + S I NSS 9971 - 2494 ( dp f ) NGISED + R C HCRA I T TCE ERU ytisrevinUotlaA nisufo oohcS ol uBf s i en s s ECNEICS + eeaadaoita a rO nag i az t i nemeganaMdnano t T E ONHC L GO Y www .
    [Show full text]