Synchronous and Asynchronous Learning by Responsive Learning

Total Page:16

File Type:pdf, Size:1020Kb

Synchronous and Asynchronous Learning by Responsive Learning Synchronous and Asynchronous Learning by Resp onsive Learning Automata Eric J Friedman Department of Economics Rutgers University New Brunswick NJ friedmanfaseconrutgersedu Scott Shenker Xerox PARC Coyote Hill Road Palo Alto CA shenkerparcxeroxcom Novemb er Abstract We consider the ability of economic agents to learn in a decentralized envi ronment in which agents do not know the sto chastic payo matrix and can not observe their opp onents actions they merely know at each stage of the game their own action and the resulting payo We discuss the requirements for learning in such an environment and show that a simple probabilistic learning algorithm satises two imp ortant optimizing prop erties i When placed in an unknown but eventually stationary random environment they converge in b ounded time in a sense we make precise to strategies that maximize average payo ii They satisfy a monotonicity prop erty related to the law of the eect in which increasing the payos for a given strategy increases the probability of that strategy b eing played in the future We then study how groups of such learners interact in a general game We show that synchronous groups of these learners converge to the serially undominated set In contrast asynchronous groups do not necessarily converge to the serially undominated set highlighting the imp ortance of timing in decentralized learning However these asynchronous learners do converge to the serially unoverwhelmed set which we dene Thus the serially unoverwhelmed set can b e viewed as an appropriate solution concept in decentralized settings Intro duction We consider learning in a rep eatedgame environment in which agents have extremely limited information At each stage of the rep eated game each agent takes an action and then observes her resulting payo Agents do not know the payo matrix which may b e sto chastic and changing over time nor can they directly observe the numb er of other agents or their actions Because the agents have no a priori information ab out the game structure they must learn the appropriate strategies by trial and error To gain insight into the general nature of learning in such environments we study the b ehavior of a simple probabilistic learning algorithm the responsive learning automaton This setting with its extreme lack of a priori and observable information is representative of many decentralized systems involving shared resources where there is typically little or no knowledge of the game structure and the actions of other agents are not observable Computer networks are one example of such a decentralized system and learning there inherently involves exp erimentation One can consider bandwidth usage from a gametheoretic p ersp ective see eg Shenker where the actions are trans mission rates and the resulting payos are network delays these delays dep end on the transmission rates of all other agents and on the details of the network infrastructure Network users typically do not know much if anything ab out the actions and preferences of other agents or ab out the nature of the underlying network infrastructure Thus the agents in a computer network are completely unaware of the payo structure and must 1 The degree of uncertainty ab out the environment is to o complex for any kind of Bayesian or hyp er rational learning to b e practical This idea is also contained in Roth and Erev and Sarin and Vahid who require that in their mo dels of learning players base their decisions only on what they observe and do not construct detailed descriptions of b eliefs We do not mo del such complexity issues formally There have b een many such prop osals in the literature see eg Rubinstein Friedman and Oren Knoblauch but no consensus on a reasonable measure of complexity 2 Our mo del is based on ordinary Learning Automata which were develop ed in biology Tsetlin and psychology as mo dels of learning Norman and have b een studied extensively in engineering Lakshmivarahan Narendra and Thatcher Recently they have also b een used by Arthur as a mo del of human learning in exp erimental economics Also Borgers and Sarin have recently compared their b ehavior with an evolutionary mo del of learning rely on exp erimentation to determine the appropriate transmission rate There is a large literature on such exp erimentation algorithms called congestion control algorithms see Jacobson or Lefelho cz et al for a description of the algorithms used in practice and Shenker for a more a more theoretical description Note that learning in this context diers signicantly from the standard game the oretic discussion of learning in rep eated games in which agents play b est resp onse to either the previous play Cournot some average of historical play Carter and Maddo ck or some complex Bayesian up dating over priors of either the opp o nents strategic b ehavior Fudenb erg and Kreps Kalai and Lehrer or the structure of the game Jordan Note that the rst three typ es learning require the observability of the opp onents actions and the knowledge of the payo matrix while the fourth will typically b e impractical in the situations in which we are interested Also none of these allow for the p ossibility that the payo matrix may change over time In our context where agents do not even know their own payo function trial and error learning is necessary even if the play of other agents is static Since such exp er imentation plays a central role our discussion naturally combines the incentive issues normally addressed by game theoretic discussions of learning with the sto chastic sam pling theory pivotal to the theory of decentralized control This combination of issues is of great practical imp ortance in the sharing of decentralized resources eg computer networks water and p ower systems yet is has received rather little attention in the gametheoretic learning literature To b etter understand learning in such contexts we address two basic questions what prop erties should a reasonable learning algorithm have in this context and how can one describ e the set of asymptotic plays when all agents use a reasonable learning 3 In theory the set of priors could b e enlarged to include the p ossible changes to the payo matrix however this would enlarge the already large set of priors substantially Such computations would clearly b e b eyond the ability of any real p erson or computer 4 Kalai and Lehrer study learning in a similar setting in the context of Bayesian learning algorithm We address these two questions in turn What prop erties should a reasonable learning algorithm have in this con text One natural requirement is that when playing in a stationary random environ ment ie the payo for a given action is in any p erio d is drawn from a xed probability distribution the algorithm eventually learns to play the strategy or strategies with the highest average payo This clearly is an absolutely minimal requirement and was studied by Hannan and more recently by Fudenb erg and Levine It is also fo cal in the decentralized control literature In fact we p osit a stronger condition which says that even in a nonstationary environment an action which is always optimal in the sense of exp ected payo should b e learned There is also a second natural requirement for learning algorithms Recall that in our context players do not directly observe the payo function so if the game has changed it can only b e detected through their exp erimentation Such changes in environment are quite common in many distributed control situations in computer networks every time a new user enters or the link top ology changes often due to crashes b oth common o ccurrences the underlying payo function changes The agents are not explicitly notied that the payo structure has changed and thus the learning algorithm should automatically adapt to changes in the environment While many standard mo dels of standard mo dels of learning such as the one intro duced by Kalai and Lehrer and almost all decentralized control algorithms can optimize against a stationary environment they are typically not suitable for changing environments For example most Bayesian learning pro cedures eg Kalai and Lehrer 5 Our approach has much in common with the exp erimental psychology literature and its recent application by Roth and Erev to mo del exp eriments on extensive form games 6 In the simple mo del we consider a stationary environment corresp onds to iid actions by other agents and nature Clearly in other cases stationarity can b e interpreted more generally For example in computer networks there is often cyclical variations such as day vs night in this case stationarity could b e dened with resp ect to the natural cycles Similarly simple Markovian eects could also b e incorp orated into the denition 7 Note that in the Bayesian optimality setting eg Kalai and Lehrer such convergence may not o ccur with high probability if the agents priors are suciently skewed and all absolutely exp edient Narendra and Thatcher learning algo rithms have the prop erty that after a nite time they may discard strategies forever at any time there is a nonzero probability that they will never play a particular strategy again Typically with high probability these discarded strategies are not currently the optimal strategy however if the environment changes and the payos for some of these discarded strategies increases the learner will not b e able to detect and react to this change Thus we conclude that such algorithms are illsuited to changing environments
Recommended publications
  • Session Types and Game Semantics a Synchronous Side and an Asynchronous Side
    Two Sides of the Same Coin: Session Types and Game Semantics A Synchronous Side and an Asynchronous Side SIMON CASTELLAN, Imperial College London, United Kingdom NOBUKO YOSHIDA, Imperial College London, United Kingdom Game semantics and session types are two formalisations of the same concept: message-passing open programs following certain protocols. Game semantics represents protocols as games, and programs as strategies; while session types specify protocols, and well-typed π-calculus processes model programs. Giving faithful models of the π-calculus and giving a precise description of strategies as a programming language are two difficult 27 problems. In this paper, we show how these two problems can be tackled at the same time by building an accurate game semantics model of the session π-calculus. Our main contribution is to fill a semantic gap between the synchrony of the (session) π-calculus and the asynchrony of game semantics, by developing an event-structure based game semantics for synchronous concurrent computation. This model supports the first truly concurrent fully abstract (for barbed congruence) interpretation of the synchronous (session) π-calculus. We further strengthen this correspondence, establishing finite definability of asynchronous strategies by the internal session π-calculus. As an application of these results, we propose a faithful encoding of synchronous strategies into asynchronous strategies by call-return protocols, which induces automatically an encoding at the level of processes. Our results bring session types and game semantics into the same picture, proposing the session calculus as a programming language for strategies, and strategies as a very accurate model of the session calculus.
    [Show full text]
  • Learning Under Limited Information∗
    Learning Under Limited Information¤ Yan Chen School of Information, University of Michigan 550 East University Avenue, Ann Arbor, MI 48109-1092 Yuri Khoroshilov Department of Finance, University of Michigan Business School 701 Tappan Street, Ann Arbor, MI 48109-1234 August 28, 2002 Running title: learning under limited information Address for manuscript correspondence: Yan Chen School of Information, University of Michigan 550 East University Avenue, Ann Arbor, MI 48109-1092 Email: [email protected] Phone: (734) 763-2285 Fax: (734) 764-2475 ¤We thank Julie Cullen, Ido Erev, Dan Friedman, Eric Friedman, Drew Fudenburg, Amy Greenwald, Teck-Hua Ho, Lutz Kilian, David Lucking-Reiley, Atanasios Mitropoulos, Tom Palfrey, Rajiv Sarin, Scott Shenker, Farshid Vahid and seminar participants at Michigan, Mississippi, Rutgers, Texas A&M, the 1998 Econometric Society meetings (Chicago), ESA 2000 (New York City) and the 2001 Econometric Society meetings (New Orleans) for discussions and comments. We are grateful to John Van Huyck for providing the data and for helping us with part of the estimation. Emre Sucu provided excellent research assistance. We are grateful to two anonymous referees for their constructive comments which significantly improved the paper. The research support provided by NSF grant SBR-9805586 and SES-0079001 to Chen and the Deutsche Forschungsgemeinschaft through SFB303 at Universit¨atBonn are gratefully acknowledged. Any remaining errors are our own. 1 Abstract We study how human subjects learn under extremely limited information. We use Chen’s (forthcoming) data on cost sharing games, and Van Huyck, Battalio and Rankin’s (1996) data on coordination games to compare three payoff-based learning models.
    [Show full text]
  • Evolutionary Game Theory: a Renaissance
    games Review Evolutionary Game Theory: A Renaissance Jonathan Newton ID Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan; [email protected] Received: 23 April 2018; Accepted: 15 May 2018; Published: 24 May 2018 Abstract: Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences. Keywords: evolution; game theory; dynamics; agency; assortativity; culture; distributed systems JEL Classification: C73 Table of contents 1 Introduction p. 2 Shadow of Nash Equilibrium Renaissance Structure of the Survey · · 2 Agency—Who Makes Decisions? p. 3 Methodology Implications Evolution of Collective Agency Links between Individual & · · · Collective Agency 3 Assortativity—With Whom Does Interaction Occur? p. 10 Assortativity & Preferences Evolution of Assortativity Generalized Matching Conditional · · · Dissociation Network Formation · 4 Evolution of Behavior p. 17 Traits Conventions—Culture in Society Culture in Individuals Culture in Individuals · · · & Society 5 Economic Applications p. 29 Macroeconomics, Market Selection & Finance Industrial Organization · 6 The Evolutionary Nash Program p. 30 Recontracting & Nash Demand Games TU Matching NTU Matching Bargaining Solutions & · · · Coordination Games 7 Behavioral Dynamics p. 36 Reinforcement Learning Imitation Best Experienced Payoff Dynamics Best & Better Response · · · Continuous Strategy Sets Completely Uncoupled · · 8 General Methodology p. 44 Perturbed Dynamics Further Stability Results Further Convergence Results Distributed · · · control Software and Simulations · 9 Empirics p.
    [Show full text]
  • A Distributed Auctioneer for Resource Allocation in Decentralized Systems
    A Distributed Auctioneer for Resource Allocation in Decentralized Systems Amin M. Khan Xavier Vila¸ca Universitat Polit`ecnicade Catalunya, Barcelona INESC-ID Lisboa [email protected] [email protected] Lu´ısRodrigues Felix Freitag [email protected] Universitat Polit`ecnicade Catalunya, Barcelona [email protected] September 29, 2021 Abstract In decentralized systems, nodes often need to coordinate to access shared resources in a fair manner. One approach to perform such arbitration is to rely on auction mechanisms. Although there is an extensive literature that studies auctions, most of these works assume the existence of a central, trusted auctioneer. Unfortunately, in fully decentralized systems, where the nodes that need to cooperate operate under separate spheres of control, such central trusted entity may not exist. Notable examples of such decentralized systems include community networks, clouds of clouds, cooperative nano data centres, among others. In this paper, we make theoretical and practical contributions to distribute the role of the auctioneer. From the theoretical perspective, we propose a framework of distributed simulations of the auctioneer that are Nash equilibria resilient to coalitions and asynchrony. From the practical perspective, our protocols leverage the distributed nature of the simulations to parallelise the execution. We have implemented a prototype that instantiates the framework for bandwidth allocation in community networks, and evaluated it in a real distributed setting. 1 Introduction Most distributed systems have limited resources that need to be shared by many nodes. For instance, in a network there is limited bandwidth that needs to be allocated to multiple nodes. In cloud applications, virtual machines (VMs) need to be allocated to different cloud users.
    [Show full text]
  • Advances and Open Problems in Federated Learning
    Advances and Open Problems in Federated Learning Peter Kairouz7* H. Brendan McMahan7∗ Brendan Avent21 Aurelien´ Bellet9 Mehdi Bennis19 Arjun Nitin Bhagoji13 Kallista Bonawitz7 Zachary Charles7 Graham Cormode23 Rachel Cummings6 Rafael G.L. D’Oliveira14 Hubert Eichner7 Salim El Rouayheb14 David Evans22 Josh Gardner24 Zachary Garrett7 Adria` Gascon´ 7 Badih Ghazi7 Phillip B. Gibbons2 Marco Gruteser7;14 Zaid Harchaoui24 Chaoyang He21 Lie He 4 Zhouyuan Huo 20 Ben Hutchinson7 Justin Hsu25 Martin Jaggi4 Tara Javidi17 Gauri Joshi2 Mikhail Khodak2 Jakub Konecnˇ y´7 Aleksandra Korolova21 Farinaz Koushanfar17 Sanmi Koyejo7;18 Tancrede` Lepoint7 Yang Liu12 Prateek Mittal13 Mehryar Mohri7 Richard Nock1 Ayfer Ozg¨ ur¨ 15 Rasmus Pagh7;10 Hang Qi7 Daniel Ramage7 Ramesh Raskar11 Mariana Raykova7 Dawn Song16 Weikang Song7 Sebastian U. Stich4 Ziteng Sun3 Ananda Theertha Suresh7 Florian Tramer` 15 Praneeth Vepakomma11 Jianyu Wang2 Li Xiong5 Zheng Xu7 Qiang Yang8 Felix X. Yu7 Han Yu12 Sen Zhao7 1Australian National University, 2Carnegie Mellon University, 3Cornell University, 4Ecole´ Polytechnique Fed´ erale´ de Lausanne, 5Emory University, 6Georgia Institute of Technology, 7Google Research, 8Hong Kong University of Science and Technology, 9INRIA, 10IT University of Copenhagen, 11Massachusetts Institute of Technology, 12Nanyang Technological University, 13Princeton University, 14Rutgers University, 15Stanford University, 16University of California Berkeley, 17 University of California San Diego, 18University of Illinois Urbana-Champaign, 19University of Oulu, 20University of Pittsburgh, 21University of Southern California, 22University of Virginia, 23University of Warwick, 24University of Washington, 25University of Wisconsin–Madison arXiv:1912.04977v3 [cs.LG] 9 Mar 2021 Abstract Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or whole organizations) collaboratively train a model under the orchestration of a central server (e.g.
    [Show full text]
  • Asynchronous Best-Reply Dynamics
    Asynchronous Best-Reply Dynamics Noam Nisan1, Michael Schapira2, and Aviv Zohar2 1 Google Tel-Aviv and The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. 2 The School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel. fnoam,mikesch,[email protected] Abstract. In many real-world settings (e.g., interdomain routing in the Internet) strategic agents are instructed to follow best-reply dynamics in asynchronous environments. In such settings players learn of each other's actions via update messages that can be delayed or even lost. In particular, several players might update their actions simultaneously, or make choices based on outdated information. In this paper we analyze the convergence of best- (and better-)reply dynamics in asynchronous environments. We provide su±cient conditions, and necessary conditions for convergence in such settings, and also study the convergence-rate of these natural dynamics. 1 Introduction Many real-life protocols can be regarded as executions of best-reply dynamics, i.e, players (computational nodes) are instructed to repeatedly best-reply to the actions of other players. In many cases, like Internet settings, this occurs in asynchronous environments: Think of the players as residing in a computer network, where their best-replies are transmitted to other players and serve as the basis for the other players' best-replies. These update messages that players send to each other may be delayed or even lost, and so players may update their actions simultaneously, and do so based on outdated information. Perhaps the most notable example for this is the Border Gateway Protocol (BGP) that handles interdomain routing in the Internet.
    [Show full text]
  • Conflict Resolution Through Strategic Vocal Negotiation and Cooperation in Nestling Barn Owls (Tytoalba)
    Unicentre CH-1015 Lausanne http://serval.unil.ch Year : 2019 CONFLICT RESOLUTION THROUGH STRATEGIC VOCAL NEGOTIATION AND COOPERATION IN NESTLING BARN OWLS (TYTOALBA) Ducouret Pauline Ducouret Pauline, 2019, CONFLICT RESOLUTION THROUGH STRATEGIC VOCAL NEGOTIATION AND COOPERATION IN NESTLING BARN OWLS (TYTOALBA) Originally published at : Thesis, University of Lausanne Posted at the University of Lausanne Open Archive http://serval.unil.ch Document URN : urn:nbn:ch:serval-BIB_1FCB6DC32ADB8 Droits d’auteur L'Université de Lausanne attire expressément l'attention des utilisateurs sur le fait que tous les documents publiés dans l'Archive SERVAL sont protégés par le droit d'auteur, conformément à la loi fédérale sur le droit d'auteur et les droits voisins (LDA). A ce titre, il est indispensable d'obtenir le consentement préalable de l'auteur et/ou de l’éditeur avant toute utilisation d'une oeuvre ou d'une partie d'une oeuvre ne relevant pas d'une utilisation à des fins personnelles au sens de la LDA (art. 19, al. 1 lettre a). A défaut, tout contrevenant s'expose aux sanctions prévues par cette loi. Nous déclinons toute responsabilité en la matière. Copyright The University of Lausanne expressly draws the attention of users to the fact that all documents published in the SERVAL Archive are protected by copyright in accordance with federal law on copyright and similar rights (LDA). Accordingly it is indispensable to obtain prior consent from the author and/or publisher before any use of a work or part of a work for purposes other than personal use within the meaning of LDA (art.
    [Show full text]
  • Distributed Computing with Adaptive Heuristics
    Distributed Computing with Adaptive Heuristics To be presented at Innovations in Computer Science 2011 Aaron D. Jaggard1;2∗ Michael Schapira3y Rebecca N. Wright1z 1Rutgers University, New Brunswick, NJ 08854, USA 2Colgate University, Hamilton, NY 13346, USA 3Princeton University, Princeton, NJ 08544,USA [email protected] [email protected] [email protected] Abstract: We use ideas from distributed computing to study dynamic environments in which com- putational nodes, or decision makers, follow adaptive heuristics [16], i.e., simple and unsophisticated rules of behavior, e.g., repeatedly “best replying” to others’ actions, and minimizing “regret”, that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the bor- derline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall—that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Feldhaus, Christoph; Rockenbach, Bettina; Zeppenfeld, Christopher Conference Paper Inequality in minimum-effort coordination Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics Provided in Cooperation with: Verein für Socialpolitik / German Economic Association Suggested Citation: Feldhaus, Christoph; Rockenbach, Bettina; Zeppenfeld, Christopher (2020) : Inequality in minimum-effort coordination, Beiträge zur Jahrestagung des Vereins für Socialpolitik 2020: Gender Economics, ZBW - Leibniz Information Centre for Economics, Kiel, Hamburg This Version is available at: http://hdl.handle.net/10419/224650 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Inequality in minimum-effort coordination∗ Christoph Feldhaus Bettina Rockenbach Christopher Zeppenfeld March 1, 2020 Abstract Successful coordination is key for economic and societal wealth.
    [Show full text]
  • 15 Dynamics at the Boundary of Game Theory and Distributed Computing
    Dynamics at the Boundary of Game Theory and Distributed Computing AARON D. JAGGARD, U.S. Naval Research Laboratory 15 NEIL LUTZ, Rutgers University MICHAEL SCHAPIRA, Hebrew University of Jerusalem REBECCA N. WRIGHT, Rutgers University We use ideas from distributed computing and game theory to study dynamic and decentralized environments in which computational nodes, or decision makers, interact strategically and with limited information. In such environments, which arise in many real-world settings, the participants act as both economic and computa- tional entities. We exhibit a general non-convergence result for a broad class of dynamics in asynchronous settings. We consider implications of our result across a wide variety of interesting and timely applications: game dynamics, circuit design, social networks, Internet routing, and congestion control. We also study the computational and communication complexity of testing the convergence of asynchronous dynamics. Our work opens a new avenue for research at the intersection of distributed computing and game theory. CCS Concepts: • Theory of computation → Distributed computing models; Convergence and learn- ing in games;•Networks → Routing protocols; Additional Key Words and Phrases: Adaptive heuristics, self stabilization, game dynamics ACM Reference format: Aaron D. Jaggard, Neil Lutz, Michael Schapira, and Rebecca N. Wright. 2017. Dynamics at the Boundary of Game Theory and Distributed Computing. ACM Trans. Econ. Comput. 5, 3, Article 15 (August 2017), 20 pages. https://doi.org/10.1145/3107182 A preliminary version of some of this work appeared in Proceedings of the Second Symposium on Innovations in Computer Science (ICS 2011) [25]. This work was partially supported by NSF grant CCF-1101690, ISF grant 420/12, the Israeli Center for Research Excellence in Algorithms (I-CORE), and the Office of Naval Research.
    [Show full text]
  • Transformational Outcomes of Civil Society Organizations
    tnmgnMda oita a rO nag i az t i no dna nemeganaM t nayeics v wheylaa sehtehT i anas l cwohsesy ivi cosl i sniagyte - o t l aA s ojnsegrla nctacaeler l inhcetsaecnave ac jdnassergorpl bo l sse DD TRANSFORMATIONAL nmopen arentluserhtworg saercednit tnemyolpmegni 812 rh hsene fiungivel-setar vae lfilufnugni ihwsdeendel erahc / s s e r eVf e s z óJ ybderevocnuerarodezitenomebotdrah 6102 OUTCOMES OF CIVIL oltkahuh A eogisahcrup rewopgni lA. tekramhguoht l go i c htrow sdnamed samehtredisnoctonseod sdnamed htrow esehtteemot elbasiyteicoslivic,gniusrup esehtteemot SOCIETY ugiamnzngo leshguorhT.sdeen f lufgninaemgnizinagro- ermnlaicstbeaeeti,krow , i coshtobsetarenegt i a tekramdnal ORGANIZATIONS egsceivla pea u av eul ipmesa, r i ac vel seggusecnedi t s . lanoitamrofsnart'seitinummoclacoL musorez-nonehtswollof scimanyd musorez-nonehtswollof fogniniagselbanehcihw,hcaorppa J feszó ssereV e nco yootanirewopme i tuagn fymono tnecmor r a l i dez hginteteuirtoda mtsys smet tnocdna, r ehtgnidnetxeotsetubi wllankotNeaeroelaicos i a agnikrowteN.esabecruoserl l swol oe anosocto aoalloc l taroba radnuobssorcotnoi fosei es ngnsoita a o citrap r t i uc l a ror nag i az t i enegdnasno r a t wense .noititepmocdnanoitarepoocfoscitcelaid ubsn bn ngo e'sreetnulovehT les' f inagro- z rbgni tuobasgni firrfoy nwr,lao taicossana anoi l gniworg, tfiorproftonyl yteicsgelok miaydteiro i omsimanyddetne lwonkf cosegde i e t -y snoitinfiedruoegnahcyllacitsardyamdna .evitcudorpgniebdnaboj afo .evitcudorpgniebdnaboj SNOITAZINAGRO YTEICOSLIVICFO SEMOCTUO LANOITAMROFSART SEMOCTUO YTEICOSLIVICFO SNOITAZINAGRO B I NBS 807-06-259-879 5-6 ( p r i n t de ) SSENISUB + B I NBS 8-5807-06-259-879 ( dp f ) E MONOC Y S I NSS - L 9971 - 4394 S I NSS 9971 - 4394 ( p r i n t de ) TRA + S I NSS 9971 - 2494 ( dp f ) NGISED + R C HCRA I T TCE ERU ytisrevinUotlaA nisufo oohcS ol uBf s i en s s ECNEICS + eeaadaoita a rO nag i az t i nemeganaMdnano t T E ONHC L GO Y www .
    [Show full text]
  • Conformists and Anti-Conformists in Opinion Formation and Diffusion
    DOCTORAL THESIS Conformists and Anti-conformists in Opinion Formation and Diffusion Author: Supervisors: Fen LI Prof. Michel Grabisch Prof. Herbert Dawid A thesis submitted in fulfillment of the requirements for the degree of Doctor of Applied Mathematics of CES - Centre d’économie de la Sorbonne, University of Paris 1 Panthéon Sorbonne; and Doctor of Economics of the Faculty of Business Administration and Economics, Bielefeld University. Date of defense: December 16, 2020 ii EXAMINATION COMMITTEE Berno Buechel University of Fribourg Referee Herbert Dawid University of Bielefeld Advisor Michel Grabisch University of Paris 1 Panthéon Sorbonne Advisor Tim Hellmann University of Southampton Examiner Katarzyna Sznajd-Weron Wroclaw University of Science and Technology Referee Curriculum Vitae Fen LI Gender: Female Date of birth: May 11, 1993 0033(0)769438066 Place of birth: Shandong, China 28 Rue Michelet Nationality: Chinese 54000, Nancy, France Email: [email protected] Current Position 2017- Early Stage Researcher & PhD candidate Innovative Training Network ’Expectations and Social Influence Dynamics in Economics’ (ExSIDE) 1. Université Paris 1 Panthéon-Sorbonne & Bielefeld University. Project: Conformists and Anticonformists in Opinion Formation and Diffusion; Supervisors: Michel Grabisch, Herbert Dawid . Research Interests Decision Making, Game Theory, Opinion Dynamics in Networks, Anti-conformism Education 2016-2017 MMMEF master 2, Université Paris 1 Panthéon-Sorbonne, Paris, France M2 in Mathematical Economics, Games and Decision. GPA: 4/4. Master 2 Thesis: A Pólya Urn Model of Opinion Formation. 2013-2016 Ocean University of China (OUC), Qingdao, Shandong, China M.S. in Probability Theory and Statistics, 2016 Outstanding Master of Ocean University of China. Master thesis: Global Sensitivity Analysis of Marine Ecosystem Dynamics Models based on the Morris Method and the Sobol Method 2009-2013 Ocean University of China (OUC), Qingdao, Shandong, China B.S.
    [Show full text]