A New Species of Suckermouth Catfish (Mochokidae: Chiloglanis) from the Rio Mongo in Equatorial Guinea

Total Page:16

File Type:pdf, Size:1020Kb

A New Species of Suckermouth Catfish (Mochokidae: Chiloglanis) from the Rio Mongo in Equatorial Guinea Zootaxa 4652 (3): 507–519 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4652.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:386BA62C-B1EB-4AD3-8E9A-44951376185E A new species of suckermouth catfish (Mochokidae: Chiloglanis) from the Rio Mongo in Equatorial Guinea RAY C. SCHMIDT1,2 & CHRISTIAN BARRIENTOS3 1Biology Department, Randolph-Macon College, Ashland, VA 23005, USA 2Smithsonian Research Associate, National Museum of Natural History, Division of Fishes, Washington, DC 20560, USA 3Wildlife Conservation Society, Equatorial Guinea. Edificio Candy Vista Mar Of. 208 Bata Litoral, Equatorial Guinea Abstract A recent expedition surveyed freshwater fishes throughout the continental portion of Equatorial Guinea (Rio Muni). This portion of the Lower Guinean ichthyoprovince is relatively unknown with very few collections occurring since the 1960s. Sampling in the Rio Mongo, a tributary to the Rio Wele, yielded two Chiloglanis species; one putatively ascribed to the widespread species C. cameronensis, and the other species having similarities with C. harbinger described from the Lokoundje River in Cameroon. Morphometric analyses between the specimens from Rio Mongo and paratypes of C. harbinger confirm that they are distinct species and should be described as such. Here we describe Chiloglanis mongoensis sp. nov., a narrow endemic species only known from one locality in the Rio Mongo. We provide measurements from paratypes of C. harbinger and emphasize the need for further expeditions in the area. Key words: Endemism, specimen collection, allometric correction, biodiversity Introduction The Lower Guinea ichthyofaunal province stretches from the mouth of the Niger River to the mouth of the Congo River. This diverse province contains over 575 species of fishes with many being endemic to the area (Stiassny et al. 2007). The inland waters of continental Equatorial Guinea remain some of the least explored in the region. Early collections, mostly in the coastal plain, resulted in the description of several species of note (e.g., Enteromius potamogalis Cope, 1867) and extended the ranges of fishes collected in Cameroon (Pappenheim 1911). More recent studies mainly focused on coastal rivers and streams, but also included areas within Monte Alen National Park and tributaries to the Ntem River in the northeastern corner of the country (Román 1971; Lasso et al, 1998). Despite these recent efforts specimens from these studies are largely unavailable to contemporary researchers. The noted diversity within the province, paucity of material available in natural history collections, and the necessity of topotypic material to resolve taxonomic uncertainty within the African barbs (Schmidt & Bart 2015; Hayes & Armbruster 2017) provided the bases to propose an expedition to the region. A National Geographic Society funded expedition to the region in June and July of 2017 sampled fishes across the country to provide an updated baseline of the diversity of freshwater fishes in the country and highlight areas where further expeditions are needed. Putative Chiloglanis cameronensis Boulenger, 1904 were collected at several localities within the Rio Wele (formerly Rio Benito before independence) drainage. In the Rio Mongo, a tributary to the Rio Wele, another Chiloglanis species was collected in addition to C. cameronensis. This species was similar to Chiloglanis harbinger Roberts, 1989 described from the Lokoundje River in Cameroon, but appeared to differ in some morphological and meristic aspects. Given the high degree of endemism observed in Chiloglanis species from western, eastern, and southern Africa (Friel & Vigliotta 2011; Schmidt et al 2014; Schmidt et al 2015; Morris et al. 2016; Schmidt et al. 2016; Schmidt et al. 2017b) a thorough comparison of these newly collected specimens with type material of C. harbinger was warranted. After conducting morphological analyses it is clear that specimens collected in the Rio Mongo in Equatorial Guinea are distinct from C. harbinger and this new species is formally described. This discov- ery empathizes the need for further ichthyological exploration and highlights the possible discovery of more narrow endemic species in the region. Accepted by J. Armbruster: 11 Jul. 2019; published: 9 Aug. 2019 507 Licensed under a Creative Commons Attribution License http://creativecommons.org/licenses/by/3.0 Material and methods A National Geographic Society funded expedition (# WW-055R-17) collected fishes from across continental Equa- torial Guinea for several weeks in June and July of 2017 (Fig. 1). Specimens were collected by seine, dipnet, and electrofisher. At each locality representative voucher specimens were photographed and fin and muscle tissues were collected and stored in 95% ethanol for later genetic analyses. Voucher specimens and other specimens were fixed in 10% formalin for several days, washed, and ultimately stored in 75% ethanol. Specimens are deposited in the Smithsonian Institution National Museum of Natural History Division of Fishes (USMN). Institutional abbrevia- tions follow Sabaj (2016). Measurements and counts follow Schmidt et al. (2015; 2017b) and were taken with digital calipers or with a ste- reoscope equipped with an ocular reticle. A principal component analysis using the covariance matrix of log-trans- formed measurements, Mann-Whitney U tests on relative measurements, and descriptive statistics were completed in MYSTAT (SYSTAT Software Inc.). Shape variation within principal components strongly correlated to size (e.g., PC1) were assessed through reduced-major axis (RMA) regression lines in the SMATR package in R (Warton et al. 2006). Meristic variables correlated to size were also assessed through RMA. This analysis reveals if the allometric trajectories (i.e., the slope) are similar for each group and if there are significant intergroup differences (i.e., eleva- tion) that are a result of other variables beyond size after allometric correction (Sidlauskas et al. 2011; Schmidt et al. 2019). A more detailed description of this analysis and its utility in morphological studies can be found in Sid- lauskas et al. (2011). Between group differences in PC2 were analyzed with one-way ANOVA in MYSTAT. The mi- tochondrial marker, Cytochrome c oxidase subunit I (CO1), was sequenced from the two representatives of the new species with published primers and protocols (Sullivan et al. 2008). These sequences and associated metadata (e.g., photographs and trace files) were uploaded to the Barcode of Life Database (BOLDsystems.org) and are publicly available. These sequences are part of an ongoing effort to barcode the freshwater fishes of Equatorial Guinea. Results The morphological analyses revealed clear separation between paratypes of Chiloglanis harbinger and the three specimens of the putative new species from the Rio Mongo in Equatorial Guinea. One specimen from Equatorial Guinea was missing the dorsal fin and was removed from the analyses. The principal component analysis clearly separates C. harbinger and the new species along PC1 and PC2 (Fig. 2). PC1 was strongly correlated to standard length while PC2 was weakly correlated to standard length (Pearson’s correlation = 0.99 and 0.046 respectively). The RMA of PC1 to the log-transformed standard length (not shown) showed that the slopes were equal (P-value = 0.1865), but the differences between the y-intercepts (i.e., elevation) were not significant (P-value = 0.1004). If you include the fourth specimen and remove all variables associated with the dorsal fin from the analysis the dif- ference between the y-intercepts approaches statistical significance (P-value 0.0675). The morphological characters unequally contribute to the variation observed within PC1 suggesting that the variation is not purely isometric and that shape variation is also a factor (Table 1). The difference in PC2 values between C. harbinger and the new species in Equatorial Guinea is significant (P- value 0.02) with adipose-fin height, eye diameter, body depth at anus, premaxillary tooth-patch length, maxillary barbel length, and adipose fin to caudal peduncle length contributing to variation along the component (Table 1). The meristics were largely similar between C. harbinger and the new species from Equatorial Guinea, but there is a clear difference in the number of total premaxillary teeth. Plotting the number of total premaxillary teeth to mor- phometric PC2 readily separates C. harbinger from the new species (Fig. 3A). While correlated to standard length (Pearson’s correlation = 0.83), the RMA of the log-transformed number of premaxillary teeth to log SL shows that C. harbinger and the new species have equal slopes (P-value = 0.5029) and significantly different elevations (P-value 0.0446); suggesting that the differences in number of premaxillary teeth between the groups is not based solely on the size of the specimens (Fig. 3B). The Mann-Whitney U tests showed that the relative measurements (percentage of standard length) of many morphological characters were significantly different between C. harbinger and the new species from Equatorial Guinea (Table 1). Eye diameter, dorsal-spine length, adipose-fin base length, and adipose-fin height are some characters that are significantly different between paratypes of C. harbinger and the new species in Equatorial Guinea and assist in diagnosing the new species (Table 1). 508 · Zootaxa 4652
Recommended publications
  • Evidence of Hidden Diversity and Taxonomic Conflicts in Five Stream Fishes from the Eastern Zimbabwe Highlands Freshwater Ecoregion
    A peer-reviewed open-access journal ZooKeys 768: 69–95Evidence (2018) of hidden diversity and taxonomic conflicts in five stream fishes... 69 doi: 10.3897/zookeys.768.21944 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion Albert Chakona1,2, Wilbert T. Kadye2, Taurai Bere3, Daniel N. Mazungula1,2, Emmanuel Vreven4,5 1 South African Institute for Aquatic Biodiversity, Private Bag 1015, Grahamstown, South Africa, 6140 2 Department of Ichthyology and Fisheries Science, Rhodes University, P.O. Box 94, Grahamstown, South Africa, 6140 3 School of Wildlife, Ecology and Conservation, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe 4 Royal Museum for Central Africa, Section of Vertebrates, Ichthyology, Leuvensesteenweg 13, 3080, Tervuren, Belgium 5 KU Leuven, Department of Biology, Laboratory of Biodiversity and Evolutio- nary Genomics, Deberiotstraat 32, 3000 Leuven, Belgium Corresponding author: Albert Chakona ([email protected]) Academic editor: N. Bogutskaya | Received 30 October 2018 | Accepted 25 April 2018 | Published 19 June 2018 http://zoobank.org/9621930C-8C43-40D0-8554-684035E99FAA Citation: Chakona A, Kadye WT, Bere T, Mazungula DN, Vreven E (2018) Evidence of hidden diversity and taxonomic conflicts in five stream fishes from the Eastern Zimbabwe Highlands freshwater ecoregion. ZooKeys 768: 69–95. https://doi.org/10.3897/zookeys.768.21944 Abstract
    [Show full text]
  • AN ECOLOGICAL and SYSTEMATIC SURVEY of FISHES in the RAPIDS of the LOWER ZA.Fre OR CONGO RIVER
    AN ECOLOGICAL AND SYSTEMATIC SURVEY OF FISHES IN THE RAPIDS OF THE LOWER ZA.fRE OR CONGO RIVER TYSON R. ROBERTS1 and DONALD J. STEWART2 CONTENTS the rapids habitats, and the adaptations and mode of reproduction of the fishes discussed. Abstract ______________ ----------------------------------------------- 239 Nineteen new species are described from the Acknowledgments ----------------------------------- 240 Lower Zaire rapids, belonging to the genera Introduction _______________________________________________ 240 Mormyrus, Alestes, Labeo, Bagrus, Chrysichthys, Limnology ---------------------------------------------------------- 242 Notoglanidium, Gymnallabes, Chiloglanis, Lampro­ Collecting Methods and Localities __________________ 244 logus, Nanochromis, Steatocranus, Teleogramma, Tabulation of species ---------------------------------------- 249 and Mastacembelus, most of them with obvious Systematics -------------------------------------------------------- 249 modifications for life in the rapids. Caecomasta­ Campylomormyrus _______________ 255 cembelus is placed in the synonymy of Mastacem­ M ormyrus ____ --------------------------------- _______________ 268 belus, and morphologically intermediate hybrids Alestes __________________ _________________ 270 reported between blind, depigmented Mastacem­ Bryconaethiops -------------------------------------------- 271 belus brichardi and normally eyed, darkly pig­ Labeo ---------------------------------------------------- _______ 274 mented M astacembelus brachyrhinus. The genera Bagrus
    [Show full text]
  • Global Catfish Biodiversity 17
    American Fisheries Society Symposium 77:15–37, 2011 © 2011 by the American Fisheries Society Global Catfi sh Biodiversity JONATHAN W. ARMBRUSTER* Department of Biological Sciences, Auburn University 331 Funchess, Auburn University, Alabama 36849, USA Abstract.—Catfi shes are a broadly distributed order of freshwater fi shes with 3,407 cur- rently valid species. In this paper, I review the different clades of catfi shes, all catfi sh fami- lies, and provide information on some of the more interesting aspects of catfi sh biology that express the great diversity that is present in the order. I also discuss the results of the widely successful All Catfi sh Species Inventory Project. Introduction proximately 10.8% of all fi shes and 5.5% of all ver- tebrates are catfi shes. Renowned herpetologist and ecologist Archie Carr’s But would every one be able to identify the 1941 parody of dichotomous keys, A Subjective Key loricariid catfi sh Pseudancistrus pectegenitor as a to the Fishes of Alachua County, Florida, begins catfi sh (Figure 2A)? It does not have scales, but it with “Any damn fool knows a catfi sh.” Carr is right does have bony plates. It is very fl at, and its mouth but only in part. Catfi shes (the Siluriformes) occur has long jaws but could not be called large. There is on every continent (even fossils are known from a barbel, but you might not recognize it as one as it Antarctica; Figure 1); and the order is extremely is just a small extension of the lip. There are spines well supported by numerous complex synapomor- at the front of the dorsal and pectoral fi ns, but they phies (shared, derived characteristics; Fink and are not sharp like in the typical catfi sh.
    [Show full text]
  • Out of Lake Tanganyika: Endemic Lake Fishes Inhabit Rapids of the Lukuga River
    355 Ichthyol. Explor. Freshwaters, Vol. 22, No. 4, pp. 355-376, 5 figs., 3 tabs., December 2011 © 2011 by Verlag Dr. Friedrich Pfeil, München, Germany – ISSN 0936-9902 Out of Lake Tanganyika: endemic lake fishes inhabit rapids of the Lukuga River Sven O. Kullander* and Tyson R. Roberts** The Lukuga River is a large permanent river intermittently serving as the only effluent of Lake Tanganyika. For at least the first one hundred km its water is almost pure lake water. Seventy-seven species of fish were collected from six localities along the Lukuga River. Species of cichlids, cyprinids, and clupeids otherwise known only from Lake Tanganyika were identified from rapids in the Lukuga River at Niemba, 100 km from the lake, whereas downstream localities represent a Congo River fish fauna. Cichlid species from Niemba include special- ized algal browsers that also occur in the lake (Simochromis babaulti, S. diagramma) and one invertebrate picker representing a new species of a genus (Tanganicodus) otherwise only known from the lake. Other fish species from Niemba include an abundant species of clupeid, Stolothrissa tanganicae, otherwise only known from Lake Tangan- yika that has a pelagic mode of life in the lake. These species demonstrate that their adaptations are not neces- sarily dependent upon the lake habitat. Other endemic taxa occurring at Niemba are known to frequent vegetat- ed shore habitats or river mouths similar to the conditions at the entrance of the Lukuga, viz. Chelaethiops minutus (Cyprinidae), Lates mariae (Latidae), Mastacembelus cunningtoni (Mastacembelidae), Astatotilapia burtoni, Ctenochromis horei, Telmatochromis dhonti, and Tylochromis polylepis (Cichlidae). The Lukuga frequently did not serve as an ef- fluent due to weed masses and sand bars building up at the exit, and low water levels of Lake Tanganyika.
    [Show full text]
  • Final Copy 2020 05 12 Watso
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Watson, Henry B Title: Unrecognised endemic biodiversity within East African Chiloglanis catfish populations General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Unrecognised endemic biodiversity within East African Chiloglanis catfish populations. Henry Watson A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Masters by Research in the Faculty of Life Sciences.
    [Show full text]
  • Occasional Papers of the Museum of Zoology University of Michigan
    February, 2006 OCCASIONAL PAPERS OF THE MUSEUM OF ZOOLOGY UNIVERSITY OF MICHIGAN CHILOGLANIS PRODUCTUS, A NEW SPECIES OF SUCKERMOUTH CATFISH (SILURIFORMES:MOCHOKIDAE) FROM ZAMBIA By Heok Hee Ngl and Reeve M. Bailey1 ABSTRACT.- Chiloglaizis productus, new species, is described from the Lunzua River, which drains into the southern tip of Lake Tanganyika in Zambia. It is easily distinguished from congeners in having a color pattern consisting of a pale midlateral stripe on a purplish gray body and without any other distinct pale patches or bands, and by the nature of its sexual dimorphism in caudal fin shape: males have a produced caudal fin (vs. diamond shaped, forked or trilobate in males of otlicr sexually dimorphic congeners). Kcy words: Chiloglaninae, Lunzua River, Lake Tanganyika INTRODUCTION Suckermouth catfishes of the genus Chiloglanis Peters, 1868 are endemic to Africa and are easily recognized by a sucker or oral disc formed by the enlarged upper and lower lips and a naked body. A total of 45 nominal species of Chiloglanis have been recognized (Seegers, 1996). During an ichthyological survey in Zambia, the second author obtained material from the Lunzua River, tributary to the southern tip of Lake Tanganyika that is clearly different from described species. The description of this material as Chiloglanis productus, new species, forms the basis of this study. METHODS AND MATERIALS Measurements were made point-to-point using a dial caliper to the nearest 0.1 mm following the methods of Ng (2004) with the following addition: oral disc width is the widest transverse distance between the extremities of the oral disc.
    [Show full text]
  • A New Species of Suckermouth Catfish (Mochokidae: Chiloglanis) from the Rio Mongo in Equatorial Guinea
    Zootaxa 4652 (3): 507–519 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2019 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4652.3.7 http://zoobank.org/urn:lsid:zoobank.org:pub:386BA62C-B1EB-4AD3-8E9A-44951376185E A new species of suckermouth catfish (Mochokidae: Chiloglanis) from the Rio Mongo in Equatorial Guinea RAY C. SCHMIDT1,2 & CHRISTIAN BARRIENTOS3 1Biology Department, Randolph-Macon College, Ashland, VA 23005, USA 2Smithsonian Research Associate, National Museum of Natural History, Division of Fishes, Washington, DC 20560, USA 3Wildlife Conservation Society, Equatorial Guinea. Edificio Candy Vista Mar Of. 208 Bata Litoral, Equatorial Guinea Abstract A recent expedition surveyed freshwater fishes throughout the continental portion of Equatorial Guinea (Rio Muni). This portion of the Lower Guinean ichthyoprovince is relatively unknown with very few collections occurring since the 1960s. Sampling in the Rio Mongo, a tributary to the Rio Wele, yielded two Chiloglanis species; one putatively ascribed to the widespread species C. cameronensis, and the other species having similarities with C. harbinger described from the Lokoundje River in Cameroon. Morphometric analyses between the specimens from Rio Mongo and paratypes of C. harbinger confirm that they are distinct species and should be described as such. Here we describe Chiloglanis mongoensis sp. nov., a narrow endemic species only known from one locality in the Rio Mongo. We provide measurements from paratypes of C. harbinger and emphasize the need for further expeditions in the area. Key words: Endemism, specimen collection, allometric correction, biodiversity Introduction The Lower Guinea ichthyofaunal province stretches from the mouth of the Niger River to the mouth of the Congo River.
    [Show full text]
  • Ecostatus of the Crocodile River Catchment, Inkomati River System
    33FRECOSTATUS OF THE CROCODILE RIVER CATCHMENT, INKOMATI RIVER SYSTEM Submitted to: INKOMATI CATCHMENT MANAGEMENT AGENCY Compiled by: MPUMALANGA TOURISM AND PARKS AGENCY Scientific Services: Aquatic & Herpetology Contributors: CJ Kleynhans (DWA); C Thirion (DWA); F Roux (MTPA); A Hoffmann (MTPA); H Marais (MTPA); G Diedericks (Environmental Biomonitoring); Editors: Francois Roux and Marcus Selepe Date: December 2013 Eco-status of the Crocodile River Catchments, Incomati River System Acknowledgements Technical contributions: • Dr Neels Kleynhans (RQS - DWA) • Christa Thirion (RQS - DWA) • Dr Andrew Deacon (SANParks) • Hendrik Sithole (SANParks) • Gerhard Diedericks (Environmental Biomonitoring) • Dr John Simaika (University of Stellenbosch) • MTPA Scientific Services Biomonitoring Team o Francois Roux o Andre Hoffmann o Hannes Marais o Ronell Niemand o Richard Similane o Heather Aspeling o Petrus Mapopha List of Abbreviations DWA - RQS = Department Water Affairs - Resource Quality Services FRAI = Fish Response Assessment Index GPS = Global Positioning System m a.s.l. = metres above sea level KNP = Kruger National Park MIRAI = Macro-invertebrate Response Assessment Index PES = Present Ecological State RHP = River Health Programme SASS5 = South African Scoring System, Version 5 SQ = Subquatenary SQR = Subquatenary River September 2013 2 Eco-status of the Crocodile River Catchments, Incomati River System 1. INTRODUCTION The ICMA appointed the MTPA as service provider to conduct biomonitoring within the Crocodile River catchment on the 2012/2013 budget to determine the Present Ecostatus of this river system. Biomonitoring in the Crocodile River was conducted during 2012/2013, with the last formal biomonitoring on the Crocodile River last being conducted during 1998 (Hill et.al. (WRC report no.850/2/01)). During the 2012/13 survey fifty-seven sites were sampled in the Crocodile River and its tributaries, including the Elands River, Houtbosloop, Lunsklip, Alex’s se loop, Noord Kaap, Suid Kaap and Queens Rivers (Figure 1).
    [Show full text]
  • Chiloglanis) with Emphasis on the Limpopo River System and Implications for Water Management Practices
    SYSTEMATICS AND PHYLOGEOGRAPHY OF SUCKERMOUTH SPECIES (CHILOGLANIS) WITH EMPHASIS ON THE LIMPOPO RIVER SYSTEM AND IMPLICATIONS FOR WATER MANAGEMENT PRACTICES. Report to the Water Research Commission by MJ Matlala, IR Bills, CJ Kleynhans & P Bloomer Department of Genetics University of Pretoria WRC Report No. KV 235/10 AUGUST 2010 Obtainable from Water Research Commission Publications Private Bag X03 Gezina, Pretoria 0031 SOUTH AFRICA [email protected] This report emanates from a project titled: Systematics and phylogeography of suckermouth species (Chiloglanis) with emphasis on the Limpopo River System and implications of water management practices (WRC Project No K8/788) DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use ISBN 978-1-77005-940-5 Printed in the Republic of South Africa ii EXECUTIVE SUMMARY The genus Chiloglanis includes 45 species of which eight are described from southern Africa. The genus is characterized by jaws and lips that are modified into a sucker or oral disc used for attachment to a variety of substrates and feeding in lotic systems. The suckermouths are typically found in fast flowing waters but over varied substrates and water depths. This project focuses on three species, namely Chiloglanis pretoriae van der Horst 1931, C. swierstrai van der Horst 1931 and C. paratus Crass 1960, all of which occur in the Limpopo River System. The suckermouth catfishes have been extensively used in aquatic surveys as indicators of impacts from anthropogenic activities and the health of the river systems.
    [Show full text]
  • Bio 220 Course Title:-Fisheries and Wildlife
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE:-BIO 220 COURSE TITLE:-FISHERIES AND WILDLIFE BIO 220 COURSE GUIDE COURSE GUIDE BIO 220 FISHERIES AND WILDLIFE Course Writers/Developers Dr. A.A. Alarape and Sololu A.O. Dept. of Wildlife and Fisheries University of Ibadan Ibadan, Nigeria Programme Leader Professor A. Adebanjo National Open University of Nigeria Course Coordinator Dr. N.E. Mundi National Open University of Nigeria NATIONAL OPEN UNIVERSITY OF NIGERIA ii BIO 220 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja Nigeria e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2009 ISBN: 978-058-055-7 All Rights Reserved iii BIO 220 COURSE GUIDE CONTENTS PAGE Introduction…………………………………….……….……. 1 The Course…………………………………………………….. 1 Course Aims…………………………………………………… 1 Course Objectives……………………………………………… 2 Working through this Course…………………...……………… 3 Course Materials……………………………….……………….. 3 Study Units………………………………….………………….. 4 Textbooks and References……………………..………………. 5 Assessment…………...………………………………………… 5 Tutor-Marked Assignment …………………………………….. 5 Final Examination and Grading…………….………………….. 6 Course Overview………………………….……………………. 6 How to Get the Most of this Course ……………………………. 7 Facilitators/Tutors and Tutorials………………………………… 9 Summary ………………………………………………………… 9 iv Introduction Aquaculture has been identified as the panacea to the increasing demand for food fish all over the world. The case about Nigeria is not different in terms of the aquaculture industry leading to proliferation of fish farms across the country which is mostly self-subsistence with few having hatchery facilities. The wildlife aspect gives short descriptions of some of our most important wild animal species which include mammals, birds, and reptiles.
    [Show full text]
  • Copyrighted Material
    Trim Size: 6.125in x 9.25ink Nelson bindex.tex V2 - 03/02/2016 12:09 A.M. Page 651 Index k Aaptosyax, 183 Acanthocleithron, 227 acanthopterygian, 280 k Abactochromis, 344 Acanthoclininae, 336 Acanthopterygii, 264, 265, Abadzekhia, 415 Acanthoclinus, 336, 337 279, 280, 284, 286, Abalistes, 523 Acanthocobitis, 192 302, 303, 353 abas, 160 Acanthocybium, 417 Acanthorhina,51 Abisaadia, 139 Acanthodes, 97, 100, 101 Acanthoscyllium,62 Abisaadichthys, 132 acanthodians, 43, 44, 96 Acanthosphex, 473 Ablabys, 471 ACANTHODIDAE, 101 Acanthostega, 111 Ablennes, 368 ACANTHODIFORMES, 97, Acanthostracion, 522 Aboma, 332 100 ACANTHOTHORACI- Aborichthys, 192 Acanthodii, 36, 40, 95, FORMES, 37 Abramis, 184 96, 98 Acanthuridae, 499, 500, 501 Abramites, 200 Acanthodopsis, 101 ACANTHURIFORMES, 420, Abudefduf, 339 Acanthodoras, 234 430, 452, 495, 497 Abyssoberyx, 310 Acanthodraco, 466 Acanthurinae, 502 Abyssobrotula, 318 Acanthogobius, 330 Acanthurini, 502 Abyssocottinae, 485, 492 Acantholabrus, 428 Acanthuroidei, 453, 462, Abyssocottus, 492 Acantholingua, 247 COPYRIGHTED MATERIAL496, 497, 498, 499 Acanthanectes, 347 Acantholiparis, 495 Acanthaphritis, 425 Acantholumpenus, 480 Acanthurus, 502 Acantharchus, 444, Acanthomorpha, 276, 278, Acantopsis, 190 445, 446 279, 280, 307 Acarobythites, 319 Acanthemblemaria, 351 acanthomorphs, 278 Acaronia, 344 Acanthistius, 446, 447 Acanthonus, 318 Acentrogobius, 332 Acanthobrama, 184 Acanthopagrus, 506 Acentronichthys, 236 Acanthobunocephalus, 233 Acanthophthalmus, 190 Acentronura, 408 Acanthocepola, 461 Acanthoplesiops,
    [Show full text]
  • Terrestrial Kbas in the Great Lakes Region (Arranged Alphabetically)
    Appendix 1. Terrestrial KBAs in the Great Lakes Region (arranged alphabetically) Terrestrial KBAs Country Map No.1 Area (ha) Protect AZE3 Pressure Biological Other Action CEPF ion2 Priority4 funding5 Priority6 EAM7 Ajai Wildlife Reserve Uganda 1 15,800 **** medium 4 1 3 Akagera National Park Rwanda 2 100,000 *** medium 3 3 3 Akanyaru wetlands Rwanda 3 30,000 * high 4 0 2 Bandingilo South Sudan 4 1,650,000 **** unknown 4 3 3 Bangweulu swamps (Mweru ) Zambia 5 1,284,000 *** high 4 3 2 Belete-Gera Forest Ethiopia 6 152,109 **** unknown 3 3 3 Y Bonga forest Ethiopia 7 161,423 **** medium 2 3 3 Y Budongo Forest Reserve Uganda 8 79,300 **** medium 2 3 3 Y Bugoma Central Forest Uganda 9 40,100 low 2 3 3 **** Y Reserve Bugungu Wildlife Reserve Uganda 10 47,300 **** medium 4 3 3 Y Bulongwa Forest Reserve Tanzania 11 203 **** unknown 4 0 3 Y Burigi - Biharamulo Game Tanzania 12 350,000 unknown 4 0 3 **** Reserves Bururi Forest Nature Reserve Burundi 13 1,500 **** medium 3 1 3 Y Busia grasslands Kenya 14 250 * very high 4 1 2 Bwindi Impenetrable National Uganda 15 32,700 low 1 3 3 **** Y Park 1 See Basin level maps in Appendix 6. 2 Categorised * <10% protected; ** 10-49% protected; *** 50-90% protected: **** >90% protected. 3 Alliaqnce for Zero Extinction site (Y = yes). See section 2.2.2. 4 See Section 9.2. 5 0 – no funding data; 1 – some funding up to US$50k allocated; 2 – US$50-US$250k; 3 – >US$250k.
    [Show full text]