POLE2 Knockdown Reduce Tumorigenesis in Esophageal Squamous Cells Yongjun Zhu, Gang Chen, Yang Song, Zhiming Chen* and Xiaofeng Chen*

Total Page:16

File Type:pdf, Size:1020Kb

POLE2 Knockdown Reduce Tumorigenesis in Esophageal Squamous Cells Yongjun Zhu, Gang Chen, Yang Song, Zhiming Chen* and Xiaofeng Chen* Zhu et al. Cancer Cell Int (2020) 20:388 https://doi.org/10.1186/s12935-020-01477-4 Cancer Cell International PRIMARY RESEARCH Open Access POLE2 knockdown reduce tumorigenesis in esophageal squamous cells Yongjun Zhu, Gang Chen, Yang Song, Zhiming Chen* and Xiaofeng Chen* Abstract Background: Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors originated from digestive system around the world and the treatment was limited by the unclear mechanism. DNA polymerase epsilon 2, accessory subunit (POLE2) is involved in DNA replication, repair, and cell cycle control, whose association with ESCC is still not clear. Methods: In this study, the expression level of POLE2 in ESCC tissues was detected by IHC. The POLE2 knockdown cell line was constructed, identifed by qPCR and western blot and used for detecting cellular functions and con- structing xenotransplantation mice model. MTT Assay, colony formation assay, fow cytometry, wound-healing assay and Transwell assay were used to detected cell proliferation, apoptosis and migration. Results: We frstly identifed that the expression of POLE2 was overexpressed in ESCC. Moreover, the high expres- sion of POLE2 can predict the tumor deterioration and poor prognosis of ESCC patients. Additionally, downregulation of POLE2 was involved in ESCC progression by promoting proliferation, migration, and inhibiting apoptosis in vitro. In vivo studies proved that POLE2 was positively correlated with ESCC tumor formation, which was consistent with the results in vitro. We also illuminated that POLE2 knockdown upregulated pro-apoptotic proteins (Bax, Caspase3, CD40L, FasL, IGFBP-5 and P21) and downregulated anti-apoptotic proteins (CLAP-2, IGF-I and sTNF-R2). In addition, POLE2 was involved in ESCC via targeting PI3K/Akt, Cyclin D1 signaling pathway. Conclusions: Therefore, POLE2 was proved to be involved in the development of ESCC, which may be a potential therapeutic target and bring new breakthroughs in the treatment of ESCC. Keywords: ESCC, POLE2, Cell proliferation, Cell apoptosis, Cell migration Introduction Moreover, it was reported that agents inhibiting erb-b2 Esophageal cancer (EC) is one of the most aggressive receptor tyrosine kinase 2 (ERBB2 or HER2), and vas- gastrointestinal cancers in the world [1]. Esophageal cular endothelial growth factor (VEGF), such as Tras- squamous cell carcinoma (ESCC) is one of the main tuzumab, Ramucirumab and Lapatinib, could improve subtypes of EC. Although the incidence of ESCC has survival of ESCC patients [4]. Unfortunately, the treat- shown a downward trend in recent years, the morbidity ments of ESCC could only relieve symptoms, but the and mortality of the disease remain high worldwide [2]. prognosis is still poor, especially with a 5-year survival At present, the comprehensive treatment ESCC consists rate of less than 40% [5, 6]. Tus, in attempted to improve of surgery and defnitive chemoradiotherapy, supple- outcomes of ESCC, novel therapeutic or preventive strat- mented with cisplatin and 5-fuorouracil (5-FU) (CF) [3]. egies are urgently needed. Te eukaryotic DNA polymerase epsilon was frst iso- lated from Saccharomyces in 1970, and belongs to the *Correspondence: [email protected]; [email protected] Department of Cardiothoracic Surgery, Huashan Hospital, Fudan DNA polymerase B family, which contains four subu- University, No. 12, Mid, Wulumuqi Rd, Shanghai, China nits. Te largest subunit is POLE (subunit A), the second © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://crea- tivecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo- main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Zhu et al. Cancer Cell Int (2020) 20:388 Page 2 of 12 largest subunit is POLE2 (subunit B) with a molecular the wetted air, using DMEM supplemented with 10% FBS weight of 59 kDa, respectively [7]. POLE2 is involved in (Hyclone, USA, Cat. # SV30087) at 37 °C. Te medium cellular functions such as DNA replication, repair, and was changed every 72 h. cell cycle control [8], as well as in the array-based pro- liferative signatures [9]. On the other hand, POLE2 was previously reported to be abnormally expressed in Target gene RNA interferes with the preparation breast, colorectal, cervical and bladder cancer [10–13]. of lentiviral vector For example, Zhou et al. reported that genomic changes Te target sequence of RNA interference (5′-CGA TTG of the 55 kDa Subunit of DNA Polymerase ε in human TTC TTG GAA TGA TA-3′) was designed using POLE2 breast cancer [10]. Daniel et al. believed that POLE2 gene as template to build target gene RNA interference mutation will afect colorectal cancer and make contribu- lentivirus vector. Te 20 µL reaction system was pre- tion to the heritable risk of colorectal cancer [11]. Yet to pared according to the T4 DNA Ligase, and the double- date, the role of POLE2 played in ESCC is still not clear. stranded DNA oligo was connected to the linearized Tus, further study is needed to evaluate and identify the carrier (100 ng/L). After the ligation products were role of POLE2 in ESCC development and progression. transformed into TOP10 E. coli competent cells (100 µL, Te results of this study indicated that POLE2 was sig- TIANGEN, Beijing, China, Cat. # CB104-03), 500 µL LB nifcantly upregulated in ESCC. Knockdown of POLE2 liquid medium without antibiotics was added, and it was could suppress ESCC development through regulating conducted in a shaking culture at 37 °C for 1 h. 150 µL cell proliferation, apoptosis and migration. Terefore, bacterial solution was evenly applied to LB solid medium this study suggested that POLE2 was involved in the containing Amp and cultured overnight in 37 °C incuba- development of ESCC and may be a potential therapeutic tor. A 20 µL PCR reaction system was prepared, and a target, providing a new therapeutic strategy for prevent- single colony was picked up as a template. Te reaction ing or delaying the progression of ESCC. conditions were: 94 °C for 3 min; 94 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s, 22 cycles; 72 °C for 5 min. Te bac- Materials and methods teria with correct sequencing was selected. Subsequently, Immunohistochemical staining according to the kit instructions, plasmids was extracted Te 105 pairs of ESCC tissues and matched non-cancer (TIANGEN, Beijing, China, Cat. # DP117). Lentivirus normal tissues were purchased from Shanghai Outdo expressing shPOLE2 or shCtrl were constructed by Bio- Biotech Company, with detailed pathological data. Col- scienceres Co. Ltd (Shanghai, China). Te efciency of lection of samples with informed consent from patients the transfection of cells by lentivirus were evaluated by and the study were approved by the Institutional Animal the detection of fuorescence intensity in cells (green fu- Care and Use Committee of Fudan University. orescence protein tag on lentivirus). Te formalin fxed tissue samples were frst hydrated with xylene for 15 min and then with 100% ethanol for 10 min. After repairing and blocking of the citrate anti- qPCR gen, the sample and POLE2 antibody (1: 200, BIOSS, Firstly, total RNA was extracted according to Trizol USA, Cat. # BS-14356R) were incubated overnight in instructions (Invitrogen, Carlsbad, CA, USA). Nanodrop an incubator at 4 °C. After elution with PBS for 5 times, 2000/2000C spectrophotometric were used to analy- secondary antibody IgG (1: 400, Abcam, USA, Cat. # sis the quality of extracted RNA and relative levels of AB6721) was added, incubated at room temperature for the mRNAs. Reverse Transcription Kit (Vazyme, Nan- 30 min, and washed with PBS for 3 times. Tissue slices jing, China) was used to synthesize cDNAs. Te real- were frst stained with DAB, and then with hematoxylin. time reverse transcription PCR was performed by using Finally, images were collected with a photomicroscope AceQ qPCR SYBR Green Master Mix (Vazyme, Nanjing, and analyzed according to the German immune response China). GAPDH was used as a reference control. Te score [14]. Te expression level of POLE2 was defned by qPCR was analyzed by 2−∆∆CT method and collected the total score of IHC staining. Notably, the high or low data. expression level was distinguished by the median of total Target name Sequence (5′ 3′) score of IHC. → POLE2 primer-F TGA GAA GCA ACC CTT GTC ATC Cell culture POLE2 primer-R TCA TCA ACA GAC TGA CTG CATTC ESCC cell lines Eca-109 and TE-1 were obtained from the GAPDH primer-F CGG ATT TGG TCG TAT TGG G Cell Bank of the Chinese Academy of Sciences (Shanghai, GAPDH primer-R GAT TTT GGA GGG ATC TCG C China). Tey were grown in 6-well plates with 5% CO2 in Zhu et al. Cancer Cell Int (2020) 20:388 Page 3 of 12 Western blot analysis Cells were incubated for 14 days to form colonies and the Te Eca-109 and TE-1 cells were collected and lysed medium was changed every 3 days. Ten the cells were with RIPA lysis bufer (Cell Signal Technology, Danvers, washed with PBS, fxed with paraformaldehyde for 1 h, MA, USA) according to the instructions.
Recommended publications
  • Ailanthone Inhibits Non-Small Cell Lung Cancer Cell Growth Through Repressing DNA Replication Via Downregulating RPA1
    FULL PAPER British Journal of Cancer (2017) 117, 1621–1630 | doi: 10.1038/bjc.2017.319 Keywords: ailanthone; non-small cell lung cancer; DNA replication; RPA1; Chinese medicine Ailanthone inhibits non-small cell lung cancer cell growth through repressing DNA replication via downregulating RPA1 Zhongya Ni1, Chao Yao1, Xiaowen Zhu1, Chenyuan Gong1, Zihang Xu2, Lixin Wang3, Suyun Li4, Chunpu Zou2 and Shiguo Zhu*,1,3 1Laboratory of Integrative Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 2Department of Internal Classic of Medicine, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China; 3Department of Immunology and Pathogenic Biology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China and 4Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, 1200 Cai Lun Rd, Shanghai 201203, PR China Background: The identification of bioactive compounds from Chinese medicine plays a crucial role in the development of novel reagents against non-small cell lung cancer (NSCLC). Methods: High throughput screening assay and analyses of cell growth, cell cycle, apoptosis, cDNA microarray, BrdU incorporation and gene expression were performed. Results: Ailanthone (Aila) suppressed NSCLC cell growth and colony formation in vitro and inhibited NSCLC tumour growth in subcutaneously xenografted and orthotopic lung tumour models, leading to prolonged survival of tumour-bearing mice. Moreover, Aila induced cell cycle arrest in a dose-independent manner but did not induce apoptosis in all NSCLC cells.
    [Show full text]
  • Polymerase Δ Deficiency Causes Syndromic Immunodeficiency with Replicative Stress
    Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde, … , Mirjam van der Burg, Kaan Boztug J Clin Invest. 2019. https://doi.org/10.1172/JCI128903. Research Article Genetics Immunology Graphical abstract Find the latest version: https://jci.me/128903/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Polymerase δ deficiency causes syndromic immunodeficiency with replicative stress Cecilia Domínguez Conde,1,2 Özlem Yüce Petronczki,1,2,3 Safa Baris,4,5 Katharina L. Willmann,1,2 Enrico Girardi,2 Elisabeth Salzer,1,2,3,6 Stefan Weitzer,7 Rico Chandra Ardy,1,2,3 Ana Krolo,1,2,3 Hanna Ijspeert,8 Ayca Kiykim,4,5 Elif Karakoc-Aydiner,4,5 Elisabeth Förster-Waldl,9 Leo Kager,6 Winfried F. Pickl,10 Giulio Superti-Furga,2,11 Javier Martínez,7 Joanna I. Loizou,2 Ahmet Ozen,4,5 Mirjam van der Burg,8 and Kaan Boztug1,2,3,6 1Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 2CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, and 3St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria. 4Pediatric Allergy and Immunology, Marmara University, Faculty of Medicine, Istanbul, Turkey. 5Jeffrey Modell Diagnostic Center for Primary Immunodeficiency Diseases, Marmara University, Istanbul, Turkey. 6St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Vienna, Austria. 7Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria. 8Department of Pediatrics, Laboratory for Immunology, Leiden University Medical Centre, Leiden, Netherlands. 9Department of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, 10Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, and 11Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
    [Show full text]
  • Functional Loss of ATRX and TERC Activates Alternative Lengthening of Telomeres (ALT) in LAPC4 Prostate Cancer Cells
    Author Manuscript Published OnlineFirst on October 14, 2019; DOI: 10.1158/1541-7786.MCR-19-0654 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Functional loss of ATRX and TERC activates Alternative Lengthening of Telomeres (ALT) in LAPC4 prostate cancer cells Mindy K. Graham1, Jiyoung Kim1, Joseph Da1, Jacqueline A. Brosnan-Cashman1, Anthony Rizzo1, Javier A. Baena Del Valle1, Lionel Chia1, Michael Rubenstein4, Christine Davis1, Qizhi Zheng1, Leslie Cope2, Michael Considine2, Michael C. Haffner1, Angelo M. De Marzo1,2,3, Alan K. Meeker1,2,3, and Christopher M. Heaphy1,2* 1 Department of Pathology, 2 Department of Oncology, 3 Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA 4 Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21205, USA Running Title: Effects of ATRX and hTR loss in prostate cancer *To whom correspondence should be addressed: Christopher M. Heaphy: Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231; [email protected] Tel. (443) 287-4730; Fax. (410) 592-5158. Keywords: ATRX, TERC, Telomeres, Alternative lengthening of telomeres, Cancer, Prostate cancer, telomerase, gene knockout, CRISPR/Cas Conflicts of Interest: None 1 Downloaded from mcr.aacrjournals.org on September 30, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on October 14, 2019; DOI: 10.1158/1541-7786.MCR-19-0654 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Effects of ATRX and hTR loss in prostate cancer ABSTRACT A key hallmark of cancer, unlimited replication, requires cancer cells to evade both replicative senescence and potentially lethal chromosomal instability induced by telomere dysfunction.
    [Show full text]
  • Family a and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions
    biology Review Family A and B DNA Polymerases in Cancer: Opportunities for Therapeutic Interventions Vinit Shanbhag 1,2, Shrikesh Sachdev 2,3, Jacqueline A. Flores 2,3, Mukund J. Modak 4 and Kamalendra Singh 2,3,4,5,* 1 Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; [email protected] 2 The Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA; [email protected] (S.S.); [email protected] (J.A.F.) 3 Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, USA 4 Department of Microbiology, Biochemistry and Molecular Genetics 225 Warren Street, NJ 07103, USA; [email protected] 5 Department of Laboratory Medicine, Karolinska Institutet, Stockholm 141 86, Sweden * Correspondence: [email protected]; Tel.: +1-573-882-9024 Received: 13 November 2017; Accepted: 29 December 2017; Published: 2 January 2018 Abstract: DNA polymerases are essential for genome replication, DNA repair and translesion DNA synthesis (TLS). Broadly, these enzymes belong to two groups: replicative and non-replicative DNA polymerases. A considerable body of data suggests that both groups of DNA polymerases are associated with cancer. Many mutations in cancer cells are either the result of error-prone DNA synthesis by non-replicative polymerases, or the inability of replicative DNA polymerases to proofread mismatched nucleotides due to mutations in 30-50 exonuclease activity. Moreover, non-replicative, TLS-capable DNA polymerases can negatively impact cancer treatment by synthesizing DNA past lesions generated from treatments such as cisplatin, oxaliplatin, etoposide, bleomycin, and radiotherapy. Hence, the inhibition of DNA polymerases in tumor cells has the potential to enhance treatment outcomes.
    [Show full text]
  • Microrna Modulate Alveolar Epithelial Response to Cyclic Stretch
    University of Pennsylvania ScholarlyCommons Departmental Papers (BE) Department of Bioengineering 2012 MicroRNA Modulate Alveolar Epithelial Response to Cyclic Stretch Nadir Yehya University of Pennsylvania, [email protected] Adi Yerrapureddy University of Pennsylvania John Tobias University of Pennsylvania, [email protected] Susan S. Margulies University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/be_papers Part of the Biomedical Engineering and Bioengineering Commons Recommended Citation Yehya, N., Yerrapureddy, A., Tobias, J., & Margulies, S. S. (2012). MicroRNA Modulate Alveolar Epithelial Response to Cyclic Stretch. BMC Genomics, 13 (154), http://dx.doi.org/10.1186/1471-2164-13-154 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/be_papers/205 For more information, please contact [email protected]. MicroRNA Modulate Alveolar Epithelial Response to Cyclic Stretch Abstract Background MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression implicated in multiple cellular processes. Cyclic stretch of alveoli is characteristic of mechanical ventilation, and is postulated to be partly responsible for the lung injury and inflammation in entilatv or-induced lung injury. We propose that miRNAs may regulate some of the stretch response, and therefore hypothesized that miRNAs would be differentially expressed between cyclically stretched and unstretched rat alveolar epithelial cells (RAECs). Results RAECs were isolated and cultured to express type I epithelial characteristics. They were then equibiaxially stretched to 25% change in surface area at 15 cycles/minute for 1 hour or 6 hours, or served as unstretched controls, and miRNAs were extracted. Expression profiling of the miRNAs with at least 1.5-fold change over controls revealed 42 miRNAs were regulated (34 up and 8 down) with stretch.
    [Show full text]
  • Upregulation of Pole2 Promotes Clear Cell Renal Cell Carcinoma Progression Via AKT/Mtor Pathway and Predicts a Poor Prognosis
    Upregulation of Pole2 Promotes Clear Cell Renal Cell Carcinoma Progression via AKT/mTOR Pathway and Predicts a Poor Prognosis Yajuan Su Tumor Hospital of Harbin Medical University Changfu Li Tumor Hospital of Harbin Medical University Kun Liu Tumor Hospital of Harbin Medical University Liangjun Wei Tumor Hospital of Harbin Medical University Dechao Li Tumor Hospital of Harbin Medical University Wentao Wang Tumor Hospital of Harbin Medical University Yongpeng Xu Tumor Hospital of Harbin Medical University Hongxin Pan Tumor Hospital of Harbin Medical University Lichen Teng ( [email protected] ) Tumor Hospital of Harbin Medical University https://orcid.org/0000-0002-5840-0723 Primary research Keywords: renal cell carcinoma, pole2, survival, cell cycle, apoptosis Posted Date: June 22nd, 2020 DOI: https://doi.org/10.21203/rs.3.rs-35733/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/18 Abstract Background: Pole2 gene is a subunit of DNA polymerases localized in the nucleus, which commonly present in DNA repair. The effect of pole2 in renal cell carcinoma (RCC) still remain unclear. Here we investigate its clinical signicance, function in RCC cells and possible mechanism of effect. Methods: Using TCGA database, we identied that up-regulation of pole2 is associated with poor prognosis in ccRCC. We analyzed association between pole2 expression and T stage or Fuhrman grade. Thus, we investigate the effects of pole2 down-regulation on proliferation, cell cycles, apoptosis and possible mechanism in cells using lentivirus vector with shPole2. Results: Our study showed overexpression of pole2 in ccRCC samples, compared with normal kidney tissues, moreover, high expression of it related to high Fuhrman grade, also may predict poor prognosis in patients with ccRCC (p < 0.05).
    [Show full text]
  • CHK1 Inhibition Is Synthetically Lethal with Loss of B-Family DNA Polymerase Function in Human Lung and Colorectal Cancer Cells
    Author Manuscript Published OnlineFirst on March 11, 2020; DOI: 10.1158/0008-5472.CAN-19-1372 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Title: CHK1 inhibition is synthetically lethal with loss of B-family DNA polymerase function in human lung and colorectal cancer cells. Author List: Rebecca F. Rogers1, Mike I. Walton1, Daniel L. Cherry2, Ian Collins1, Paul A. Clarke1, Michelle D. Garrett2* and Paul Workman1* Affiliations: 1Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK 2 School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK Running title: Synthetic lethality of CHK1 and DNA polymerase inhibition *Corresponding authors: Michelle D Garrett and Paul Workman Corresponding Author Information Michelle D Garrett School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, UK. Email: [email protected] Phone: +44 (0)1227 816140 Paul Workman Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, SM2 5NG, UK. Email: [email protected] Phone: +44 (0)20 7153 5209 Conflict of interest statement: IC, MDG, MIW, RFR, PC and PW are current or past employees of The Institute of Cancer Research, which has a commercial interest in the discovery and development of CHK1 inhibitors, including SRA737, and operates a rewards-to- inventors scheme. IC, MDG and MIW have been involved in a commercial collaboration on CHK1 inhibitors with Sareum Ltd and intellectual property arising from the program, including SRA737, was licensed to Sierra Oncology. IC is a consultant for Sierra Oncology, Adorx Ltd, Epidarex LLP and Enterprise Therapeutics Ltd and holds equity in Monte Rosa Therapeutics AG.
    [Show full text]
  • Mutations/Polymorphisms in the 55 Kda Subunit of DNA Polymerase Ε in Human Colorectal Cancer
    CANCER GENOMICS & PROTEOMICS 6: 297-304 (2009) Mutations/Polymorphisms in the 55 kDa Subunit of DNA Polymerase ε in Human Colorectal Cancer QI ZHOU1, KATI TALVINEN1, JARI SUNDSTRÖM1, ADEM ELZAGHEID1,*, HELMUT POSPIECH2, JUHANI E. SYVÄOJA2,3 and YRJÖ COLLAN1 1Department of Pathology, University of Turku, FIN-20520 Turku; 2Biocenter Oulu and Department of Biochemistry, University of Oulu, FIN-90014 Oulu; 3Department of Biology, University of Joensuu, FIN-80101 Joensuu, Finland; Abstract. Background: Defects of some DNA polymerases associated features, such as Ki-67 score (3). Proliferation, on have shown associations with cancer, but data on DNA the other hand, is intimately linked with DNA polymerases. polymerase ε are limited. This study investigated mutations This is why we wished to compare the genomic status of the in the 55 kDa subunit gene of DNA polymerase ε in second largest (55 kDa) subunit of DNA polymerase ε colorectal cancer. Materials and Methods: DNA from 16 (POLE2) with several prognostic features to get an idea how human colorectal cancer and 9 control samples was studied genomic abnormalities in DNA polymerase ε might be with polymerase chain reaction–single-strand comformation related to clinical presentation or prognosis associated polymorphism analysis and DNA sequencing. Results: DNA features (4-6). polymerase ε gene alterations were identified in 5 out of the DNA polymerases have a central role in the maintenance 16 cases (31.2%). Two samples showed a T-C transition at of genome integrity, as they are the enzymes that actually exon 17 (potential tyrosine to histidine substitution), and an synthesise DNA (7). At least 14 such polymerases have been A-G transition at intron 7; one sample showed an A-G identified in the mammalian cell, but only three of these, α, transition at intron 8.
    [Show full text]
  • DNA Polymerases at the Eukaryotic Replication Fork Thirty Years After: Connection to Cancer
    cancers Review DNA Polymerases at the Eukaryotic Replication Fork Thirty Years after: Connection to Cancer Youri I. Pavlov 1,2,* , Anna S. Zhuk 3 and Elena I. Stepchenkova 2,4 1 Eppley Institute for Research in Cancer and Allied Diseases and Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA 2 Department of Genetics and Biotechnology, Saint-Petersburg State University, 199034 Saint Petersburg, Russia; [email protected] 3 International Laboratory of Computer Technologies, ITMO University, 197101 Saint Petersburg, Russia; [email protected] 4 Laboratory of Mutagenesis and Genetic Toxicology, Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, 199034 Saint Petersburg, Russia * Correspondence: [email protected] Received: 30 September 2020; Accepted: 13 November 2020; Published: 24 November 2020 Simple Summary: The etiology of cancer is linked to the occurrence of mutations during the reduplication of genetic material. Mutations leading to low replication fidelity are the culprits of many hereditary and sporadic cancers. The archetype of the current model of replication fork was proposed 30 years ago. In the sequel to our 2010 review with the words “years after” in the title inspired by A. Dumas’s novels, we go over new developments in the DNA replication field and analyze how they help elucidate the effects of the genetic variants of DNA polymerases on cancer. Abstract: Recent studies on tumor genomes revealed that mutations in genes of replicative DNA polymerases cause a predisposition for cancer by increasing genome instability. The past 10 years have uncovered exciting details about the structure and function of replicative DNA polymerases and the replication fork organization.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]
  • Gene Expression Changes in Cervical Squamous Cancers Following Neoadjuvant Interventional Chemoembolization
    Clinica Chimica Acta 493 (2019) 79–86 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca Gene expression changes in cervical squamous cancers following T neoadjuvant interventional chemoembolization Yonghua Chena,1, Yuanyuan Houa,1, Ying Yanga,1, Meixia Panb, Jing Wanga, Wenshuang Wanga, Ying Zuoa, Jianglin Conga, Xiaojie Wanga, Nan Mua, Chenglin Zhangc, Benjiao Gongc, ⁎ ⁎ Jianqing Houa, , Shaoguang Wanga, , Liping Xud a Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China b Yantai Yuhuangding Hospital LaiShan Division of Medical College, Qingdao University, China c Central Laboratory, the Affiliated Yantai Yuhuangding Hospital of Medical College, Qingdao University, Yantai 264000, Shandong, China d Medical College, Qingdao University, Qingdao 266021, Shandong, China ARTICLE INFO ABSTRACT Keywords: Background: The efficacy of therapy for cervical cancer is related to the alteration of multiple molecular events Cervical cancer and signaling networks during treatment. The aim of this study was to evaluate gene expression alterations in Chemoembolization advanced cervical cancers before- and after-trans-uterine arterial chemoembolization- (TUACE). Microarray Methods: Gene expression patterns in three squamous cell cervical cancers before- and after-TUACE were de- AKAP12 termined using microarray technique. Changes in AKAP12 and CA9 genes following TUACE were validated by CA9 quantitative real-time PCR. Results: Unsupervised cluster analysis revealed that the after-TUACE samples clustered together, which were separated from the before-TUACE samples. Using a 2-fold threshold, we identified 1131 differentially expressed genes that clearly discriminate after-TUACE tumors from before-TUACE tumors, including 209 up-regulated genes and 922 down-regulated genes.
    [Show full text]
  • 1 Rapid Genome Editing by CRISPR-Cas9-POLD3 Fusion Ganna Reint 1*, Zhuokun Li 1*, Kornel Labun 2, Salla Keskitalo 3, Inkeri
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.23.445089; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Rapid genome editing by CRISPR-Cas9-POLD3 fusion Ganna Reint 1*, Zhuokun Li 1*, Kornel Labun 2, Salla Keskitalo 3, Inkeri Soppa 1,4, Katariina Mamia 1, Eero Tölö 5, Monika Szymanska 1, Leonardo A. Meza-Zepeda 6, Susanne Lorenz 6, Artur Cieslar-Pobuda 1,7, Xian Hu 1, Diana L. Bordin 8, Judith Staerk 1,9, Eivind Valen 2, Bernhard Schmierer 10, Markku Varjosalo 3, Jussi Taipale 10,11,12, Emma Haapaniemi 1,4,13 1. Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway 2. Department of Informatics/Computational Biology Unit, University of Bergen, Norway 3. Center for Biotechnology, University of Helsinki, Finland 4. Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Finland 5. Faculty of Social Sciences, University of Helsinki, Finland 6. Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway 7. Department of Cancer Immunology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway 8. Department of Clinical Molecular Biology, Akershus University Hospital, Oslo, Norway 9. Department of Haematology, Oslo University Hospital, Oslo, Norway 10. Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden 11. Department of Biochemistry, University of
    [Show full text]