Identification of Beneficial and Detrimental Bacteria That Impact Sorghum Responses to Drought Using Multi-Scale and Multi-Syste
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Antarctica) Glacial, Basal, and Accretion Ice
CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa. -
A Noval Investigation of Microbiome from Vermicomposting Liquid Produced by Thai Earthworm, Perionyx Sp
International Journal of Agricultural Technology 2021Vol. 17(4):1363-1372 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) A novel investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1 Kraisittipanit, R.1,2, Tancho, A.2,3, Aumtong, S.3 and Charerntantanakul, W.1* 1Program of Biotechnology, Faculty of Science, Maejo University, Chiang Mai, Thailand; 2Natural Farming Research and Development Center, Maejo University, Chiang Mai, Thailand; 3Faculty of Agricultural Production, Maejo University, Thailand. Kraisittipanit, R., Tancho, A., Aumtong, S. and Charerntantanakul, W. (2021). A noval investigation of microbiome from vermicomposting liquid produced by Thai earthworm, Perionyx sp. 1. International Journal of Agricultural Technology 17(4):1363-1372. Abstract The whole microbiota structure in vermicomposting liquid derived from Thai earthworm, Perionyx sp. 1 was estimated. It showed high richness microbial species and belongs to 127 species, separated in 3 fungal phyla (Ascomycota, Basidiomycota, Mucoromycota), 1 Actinomycetes and 16 bacterial phyla (Acidobacteria, Armatimonadetes, Bacteroidetes, Balneolaeota, Candidatus, Chloroflexi, Deinococcus, Fibrobacteres, Firmicutes, Gemmatimonadates, Ignavibacteriae, Nitrospirae, Planctomycetes, Proteobacteria, Tenericutes and Verrucomicrobia). The OTUs data analysis revealed the highest taxonomic abundant ratio in bacteria and fungi belong to Proteobacteria (70.20 %) and Ascomycota (5.96 %). The result confirmed that Perionyx sp. 1 -
Seedling Rhizosphere Total Bacterial, Pseudomonas and Bacillus Spp
www.nature.com/scientificreports OPEN Vanillic acid changed cucumber (Cucumis sativus L.) seedling rhizosphere total bacterial, Received: 27 October 2017 Accepted: 12 March 2018 Pseudomonas and Bacillus spp. Published: xx xx xxxx communities Xingang Zhou1,2 & Fengzhi Wu1,2 Soil microorganisms are key drivers of plant productivity in terrestrial ecosystems, yet controls on their diversities and abundances are not fully elucidated. Phenolic acids, released through plant root exudation and residues decomposition, are usually referred as autotoxins of several crops, including cucumber. In this study, efects of vanillic acid (VA) on cucumber rhizosphere microbial communities were investigated by treating cucumber seedlings with VA every two days for fve times. Amplicon sequencing, PCR-denaturing gradient gel electrophoresis and quantitative PCR were used to analyzed the 16S rRNA genes of total bacterial, Pseudomonas and Bacillus spp. communities. Results showed that VA at 0.05 μmol g−1 soil changed total bacterial community diversity and composition. In particular, VA inhibited the relative abundances of genera with plant-benefcial potentials, such as Bacillus and Lysobacter spp. Moreover, VA changed Pseudomonas and Bacillus spp. community compositions by altering the number and/or relative abundances of their OTUs; and decreased Bacillus spp. community abundance at 0.02 to 0.2 μmol g−1 soil and Pseudomonas spp. community abundance at 0.2 μmol g−1 soil. Overall, VA changed cucumber seedling rhizosphere total bacterial, Pseudomonas and Bacillus spp. communities, which maybe be associated with the adverse efects of VA on cucumber growth under soil conditions. Allelopathy is the phytotoxicity of a compound or a group of compounds released from plant parts through leaching, root exudation, volatilization, or residue decomposition to susceptible plants1. -
Cave Silver’ Biofilms on Rocks in the Former Homestake Mine in South Dakota, USA Amanpreet K
International Journal of Speleology 48 (2) 145-154 Tampa, FL (USA) May 2019 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Culture-based analysis of ‘Cave Silver’ biofilms on Rocks in the former Homestake mine in South Dakota, USA Amanpreet K. Brar1 and David Bergmann2* 1Florida State University, 319 Stadium Dr., Tallahassee, FL 32306-4295, USA 2Black Hills State University, 1200 W. University St., Spearfish, SD 57789, USA Abstract: Tunnels in a warm, humid area of the 1478 m level of the Sanford Underground Research Facility (SURF), located in a former gold mine in South Dakota, USA, host irregular, thin whitish, iridescent biofilms, which appear superficially similar to ‘cave silver’ biofilms described from limestone and lava tube caves, despite the higher rock temperature (32°C) and differing rock surface (phyllite) present at SURF. In this study, we investigated the diversity of cultivable bacteria constituting the cave silver by using several media: CN agar, CN gellan gum and 0.1X R2A agar. The highest colony count (CFU/g of sample) was observed on 0.1X R2A medium. The bacterial strains were grouped into 39 distinct genotypes by randomly amplified polymorphic DNA (RAPD) analysis. In addition, the bacterial strains were further characterized based on their phenotypic and biochemical properties. 16S rRNA gene sequencing classified the cave silver isolates into three major bacterial phyla: Proteobacteria, Actinobacteria and Firmicutes. Isolates included some known genera; such as Taonella, Dongia, Mesorhizobium, Ralstonia, Pedomicrobium, Bauldia, Pseudolabrys, Reyrnella, Mizugakiibacter, Bradyrhizobium, Pseudomonas, Micrococcus, Sporichthya, Allokutzneria, Amycolatopsis, Pseudonocardia, and Paenibacillus. -
Microbial Community Response to Environmental Changes in A
Microbial community response to environmental changes in a technosol historically contaminated by the burning of chemical ammunitions Hugues Thouin, Fabienne Battaglia-Brunet, Marie-Paule Norini, Catherine Joulian, Jennifer Hellal, Lydie Le Forestier, Sébastien Dupraz, Pascale Gautret To cite this version: Hugues Thouin, Fabienne Battaglia-Brunet, Marie-Paule Norini, Catherine Joulian, Jennifer Hellal, et al.. Microbial community response to environmental changes in a technosol historically contaminated by the burning of chemical ammunitions. Science of the Total Environment, Elsevier, 2019, 697, 134108 (11 p.). 10.1016/j.scitotenv.2019.134108. insu-02279732 HAL Id: insu-02279732 https://hal-insu.archives-ouvertes.fr/insu-02279732 Submitted on 10 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Microbial community response to environmental changes in a technosol 2 historically contaminated by the burning of chemical ammunitions. 3 Hugues Thouin a,b Fabienne Battaglia-Brunet a,b, Marie-Paule Norini b, Catherine Joulian a, 4 Jennifer Hellal -
Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea
sustainability Article Successional Variation in the Soil Microbial Community in Odaesan National Park, Korea Hanbyul Lee 1, Seung-Yoon Oh 2 , Young Min Lee 1, Yeongseon Jang 3, Seokyoon Jang 1, Changmu Kim 4, Young Woon Lim 5,* and Jae-Jin Kim 1,* 1 Division of Environmental Science & Ecological Engineering, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Korea; [email protected] (H.L.); [email protected] (Y.M.L.); [email protected] (S.J.) 2 Department of Biology and Chemistry, Changwon National University, Changwon 51140, Korea; [email protected] 3 Division of Special Forest Production, National Institute of Forest Science, Seoul 02455, Korea; [email protected] 4 Microorganism Resources Division, National Institute of Biological Resources, Incheon 22689, Korea; [email protected] 5 School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea * Correspondence: [email protected] (Y.W.L.); [email protected] (J.-J.K.); Tel.: +82-2-880-6708 (Y.W.L.); +82-2-3290-3049 (J.-J.K.); Fax: +82-2-871-5191 (Y.W.L.); +82-2-3290-9753 (J.-J.K.) Received: 4 May 2020; Accepted: 10 June 2020; Published: 11 June 2020 Abstract: Succession is defined as variation in ecological communities caused by environmental changes. Environmental succession can be caused by rapid environmental changes, but in many cases, it is slowly caused by climate change or constant low-intensity disturbances. Odaesan National Park is a well-preserved forest located in the Taebaek mountain range in South Korea. The forest in this national park is progressing from a mixed-wood forest to a broad-leaved forest. -
The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize
agriculture Article The Effects of Microbial Inoculants on Bacterial Communities of the Rhizosphere Soil of Maize Minchong Shen 1,2, Jiangang Li 1,*, Yuanhua Dong 1, Zhengkun Zhang 3, Yu Zhao 3, Qiyun Li 3, Keke Dang 1,2, Junwei Peng 1,2 and Hong Liu 1,2 1 CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; [email protected] (M.S.); [email protected] (Y.D.); [email protected] (K.D.); [email protected] (J.P.); [email protected] (H.L.) 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Jilin Key Laboratory of Agricultural Microbiology, Key Laboratory of Integrated Pest Management on Crops in Northeast China, Ministry of Agriculture and Rural Affairs, Jilin Academy of Agricultural Sciences, Changchun 130033, China; [email protected] (Z.Z.); [email protected] (Y.Z.); [email protected] (Q.L.) * Correspondence: [email protected]; Tel.: +86-25-8688-1370 Abstract: The bacterial community of rhizosphere soil maintains soil properties, regulates the microbiome, improves productivity, and sustains agriculture. However, the structure and function of bacterial communities have been interrupted or destroyed by unreasonable agricultural practices, especially the excessive use of chemical fertilizers. Microbial inoculants, regarded as harmless, effective, and environmentally friendly amendments, are receiving more attention. Herein, the effects of three microbial inoculants, inoculant M and two commercial inoculants (A and S), on bacterial communities of maize rhizosphere soil under three nitrogen application rates were compared. Bacterial communities treated with the inoculants were different from those of the non-inoculant Citation: Shen, M.; Li, J.; Dong, Y.; control. -
Bacterial Adaptation Strategies and Interactions in Different Soil Habitats
Bacterial adaptation strategies and interactions in different soil habitats Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Selma Gomes Vieira aus Leiria / Portugal 1. Referent: Professor Dr. Jörg Overmann 2. Referent: Professor Dr. Dieter Jahn eingereicht am: 25.06.2018 mündliche Prüfung (Disputation) am: 22.10.2018 Druckjahr 2019 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Vieira, S., Luckner, M., Wanner, G., & Overmann, J. Luteitalea pratensis gen. nov., sp. nov. a new member of subdivision 6 Acidobacteria isolated from temperate grassland soil. Int J Syst Evol Microbiol 67: 1408-1414 (2017). Huang, S., Vieira, S., Bunk, B., Riedel, T., Spröer, C. & Overmann, J. First Complete Genome Sequence of a Subdivision 6 Acidobacterium Strain. Genome Announc. 4: e00469-16 (2016). Posterbeiträge Vieira, S., Sikorski, J. & Overmann, J., Cultivation of environmental and taxonomically important soil bacteria from the Biodiversity Exploratories (Poster) 12th Biodiversity Exploratories Assembly, Wernigerode (2015). Vieira, S., Sikorski, J. & Overmann, J., Drivers of bacterial communities in grassland plant rhizospheres (Poster) 13th Biodiversity Exploratories Assembly, Wernigerode (2016). Vieira, -
Microbiology of Bottled Water: a Molecular View
Microbiology of Bottled Water: A Molecular View Reece Gesumaria Molecular, Cellular, and Developmental Biology University of Colorado at Boulder Thesis Advisor: Norm Pace (MCDB) Thesis Committee Members: Norm Pace (MCD Biology) Diana Nemergut (Environmental Studies) Christy Fillman (MCD Biology) Oral Defense: Monday, April 4, 2011 Abstract Americans drink over 23 million gallons of bottled water every day, generating approximately 36 billion bottles annually. The false perception of the purity and cleanliness of expensive bottled water compared to cheap tap sources does not concur with scientific evidence. Many studies have demonstrated the presence of coliforms and heterotrophic bacteria in bottled water, and detected these organisms in counts greatly exceeding the contamination standards set for human consumption. While bacteria have been isolated from bottled water by classic microbiological culture-based methods, these techniques are capable of detecting only a subset of the true microbial constituents. This study analyzes the microbial assemblages and bacterial load of bottled water from two different sources (municipal and spring) using culture-independent molecular techniques. Data collected from 16S ribosomal RNA gene sequencing and DAPI-stained cell counts demonstrate a correlation between different water sources and the unique and reproducible bacterial quality and load among individual brands. The sequences generated from bottled water samples bear identity to bacteria found in freshwater aqueous environments and humans; some sequences correlate with known pathogens. 2 Introduction Americans consume over 23 million gallons of bottled water every day, yet there are no standards for the quality of this product1,2. The National Primary Drinking Water Regulations are the legally enforceable standards of the Environmental Protection Agency (EPA) that apply specifically to public water systems3. -
Microbial Arsenic Cycling in Italian Rice Paddies
Ph.D. SCHOOL IN FOOD SYSTEMS Department of Food, Environmental and Nutritional Sciences XXIX Cycle Microbial arsenic cycling in Italian rice paddies: An ecological perspective [AGR/16] SARAH ZECCHIN (R10480) Tutor: Prof. Lucia Cavalca Ph.D. Dean: Prof. Francesco Bonomi 2016/2017 Abstract Arsenic (As) contamination of rice is an issue of global concern. Italy, although representing the European leader of rice production, is one of the countries mostly affected by As contamination of rice grain. Rice is mainly cultivated under continuous flooding, with the rapid depletion of oxygen in the soil. At the consequent highly reduced redox potentials, As is released into the porewater by the dissolution of iron-arsenic (Fe-As) minerals, and by the reduction of arsenate [As(V)] to arsenite [As(III)], a soluble compound that is rapidly taken up by the plants. In the presence of sulfide, As(III) co-precipitate with the formation of AsnSn minerals. Microorganisms are known to actively oxidize and reduce As, as well as to convert inorganic to organic As via methylation. Furthermore, microorganisms that use Fe or sulfur for their metabolic activities indirectly influence As biogeochemistry in the environment. In this study, the role of two different practices, suggested to reduce As contamination in rice fields, in shaping rice rhizospheric microbial communities were investigated. Specifically, changes in the 2- water management and use of sulfate (SO4 ) as fertilizer were tested. To analyze the influence of the water regime in rice rhizosphere microbiota, a semi-field experiment was set up. Plants were grown in rice field soil from Pavia (containing 18 mg kg-1 of As) in box plots managed with three water regimes: continuous flooding, continuous flooding with 2 weeks of drainage before flowering, and watering after complete soil drying (“aerobic rice”). -
Systematic Evaluation of Bias in Microbial Community Profiles
bs_bs_banner Environmental Microbiology (2014) 16(3), 643–657 doi:10.1111/1462-2920.12365 Systematic evaluation of bias in microbial community profiles induced by whole genome amplification Susana O. L. Direito,1† Egija Zaura,2 Miranda Little,1 that pWGA is the most promising method for charac- Pascale Ehrenfreund3,4 and Wilfred F. M. Röling1* terization of microbial communities in low-biomass 1Molecular Cell Physiology, Faculty of Earth and Life environments and for currently planned astro- Sciences, VU University Amsterdam, Amsterdam, The biological missions to Mars. Netherlands. 2Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Introduction Amsterdam and VU University Amsterdam, Amsterdam, Advances in molecular techniques have revolutionized The Netherlands. microbial ecology since the 1980s (Pace et al., 1986). 3 Leiden Institute of Chemistry, Leiden, The Netherlands. Polymerase chain reaction (PCR)-based culture- 4 Space Policy Institute, Elliott School of International independent sequence analysis of 16S rRNA genes has Affairs, Washington, Washington, DC, USA. become the most widely used method to determine the phylogenetic composition of microbial communities, cir- Summary cumventing the problem that most microorganisms cannot be cultured (Hawkins et al., 2002). It contributed to Whole genome amplification methods facilitate the the description of microbial communities in low-biomass, detection and characterization of microbial communi- extreme environments with resemblance to Mars -
The Efficacy of Plants to Remediate Indoor Volatile Organic Compounds and the Role of the Plant Rhizosphere During Phytoremediation
THE EFFICACY OF PLANTS TO REMEDIATE INDOOR VOLATILE ORGANIC COMPOUNDS AND THE ROLE OF THE PLANT RHIZOSPHERE DURING PHYTOREMEDIATION Manoja Dilhani De Silva Delgoda Mudiyanselage Staffordshire University A thesis submitted in partial fulfilment of the requirement of Staffordshire University for the degree of Doctor of Philosophy January 2019 This work is dedicated to my son. You have made me stronger, better and more fulfilled than I could have ever imagined. I love you to the moon and back. “There's so much pollution in the air now that if it weren't for our lungs there'd be no place to put it all” - Robert Orben This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. Abstract A wide range of volatile organic compounds (VOC) are released from building materials, household products and human activities. These have the potential to reduce indoor air quality (IAQ), poor IAQ remains a serious threat to human health. Whilst the ability of the single plant species to remove VOC from the air through a process called phytoremediation is widely recognised, little evidence is available for the value of mixed plant species (i.e. plant communities) in this respect. The work reported herein explored the potential of plant communities to remove the three most dominant VOCs: benzene, toluene and m-xylene (BTX) from indoor air. During phytoremediation, bacteria in the root zone (rhizosphere) of plants are considered the principal site contributing to the VOC reduction. This project explored BTX degrading bacteria in the rhizosphere through culture-dependent and independent approaches.