Discovery and Functional Characterization of Novel Soil-Metagenome Derived Phosphatases

Total Page:16

File Type:pdf, Size:1020Kb

Discovery and Functional Characterization of Novel Soil-Metagenome Derived Phosphatases Discovery and Functional Characterization of Novel Soil-metagenome Derived Phosphatases Dissertation for the award of the degree "Doctor rerum naturalium" (Dr.rer.nat.) of the Georg-August-Universität Göttingen within the doctoral program Biology of the Georg-August University School of Science (GAUSS) submitted by Genis Andrés Castillo Villamizar from Bucaramanga, Colombia Göttingen, 2019 Thesis Committee Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen Members of the Examination Board Referent: Prof. Dr. Rolf Daniel, Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen Coreferent: PD Dr. Michael Hoppert, Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen Further Members of the Examination Board Prof. Dr. Stefanie Pöggeler, Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August University Göttingen Prof. Dr. Fabian Commichau, Department of General Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen Prof. Dr. Kai Heimel Department of Molecular Microbiology and Genetics , Institute of Microbiology and Genetics, Georg-August University Göttingen Prof. Dr. Gerhard Braus, Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, Georg-August University Göttingen Prof. Dr. Wolfgang Streit, Department of Microbiology and Biotechnology, Institute of Plant Science and Microbiology, University of Hamburg Date of oral examination: 28.03.2019 I List of Publications 1. Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity Genis A. Castillo Villamizar, Heiko Nacke, Rolf Daniel. Methods Mol Biol. (2017). 1539:249-260. DOI: 10.1007/978-1-4939-6691-2_16 2. Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases Genis Andrés Castillo Villamizar, Heiko Nacke, Marc Boehning, Kristin Herz, Rolf Daniel. mbio (2019). DOI: 10:e01966-18, DOI:10.1128/mBio.01966-18 3. Characteristics of the First Protein Tyrosine Phosphatase with Phytase Activity from a Soil Metagenome Genis Andrés Castillo Villamizar, Heiko Nacke, Laura Griese, Lydia Tabernero, Katrina Funkner and Rolf Daniel. Genes (2019). 10:101. DOI: 10.3390/genes10020101 4. Functional metagenomics unwraps a new catalytic domain associated to phytase activity: the metallo-β-lactamase superfamily domain Genis Andrés Castillo Villamizar, Katrina Funkner, Heiko Nacke, Karolin Foerster and Rolf Daniel. accepted mSphere DOI: 10.1128/mSphere.00167-19 5. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce Heiko Nacke, Kezia Goldmann, Ingo Schöning, Birgit Pfeiffer, Kristin Kaiser, Genis Andrés Castillo-Villamizar, Marion Schrumpf, François Buscot, Rolf Daniel, Tesfaye Wubet. Fine spatial scale variation of soil microbial communities under european beech and norway spruce. Front Microbiol (2017):2067. DOI: 10.3389/fmicb.2016.02067 6. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T Genis Andrés Castillo-Villamizar, Anja Poehlein. Genome Announc. (2016). 4, e00444- 00416. DOI: 10.1128/genomeA.00444-16 7. First Insights into the Genome Sequence of the Strictly Anaerobic Homoacetogenic Sporomusa sphaeroides Strain E (DSM 2875) Genis Andrés Castillo-Villamizar, Rolf Daniel, Anja Poehlein. Genome Announc. (2017). 4, e00444-00416. DOI: 10.1128/genomeA.00037-17 II Table of Contents Thesis Committee ................................................................................................................................................ I List of Publications ............................................................................................................................................ II 1 General Introduction ...................................................................................... 1 1.1. Phosphorus “the essential element” .................................................................................... 1 1.2. Factors Disturbing the Phosphorus Cycle ......................................................................... 1 1.3. Phytate as Alternative Source of Phosphorus ................................................................. 5 1.4. Phytases are Key Biocatalysts with Still Unknown Potential ................................... 6 1.5. Histidine Acid Phytases ............................................................................................................. 9 1.6. -propeller Phytases ............................................................................................................... 11 1.7. βProtein Tyrosin Phytases ...................................................................................................... 12 1.8. Purple Acid Phytases ............................................................................................................... 13 1.9. Soil Metagenomes as Source of Novel Phytases .......................................................... 14 1.10. Aim of the Thesis ....................................................................................................................... 16 1.11. References .................................................................................................................................... 18 2 Function-Based Metagenomic Library Screening and Heterologous Expression Strategy for Genes Encoding Phosphatase Activity ................................................................................... 24 3 Functional Metagenomics Reveals an Overlooked Diversity and Novel Features of Soil-Derived Bacterial Phosphatases and Phytases ........................................................................................................... 37 Supplemental Information for Chapter 3 ................................................................................... 53 4 Characteristics of the First Protein Tyrosine Phosphatase with Phytase Activity from a Soil Metagenome ............................................ 60 Supplemental Information for Chapter 4 ................................................................................... 77 5 Functional Metagenomics Unwraps a New Catalytic Domain Associated to Phytase Activity: the Metallo-β-lactamase Superfamily Domain .................................................................................... 81 5.1. Abstract ......................................................................................................................................... 82 5.2. Importance .................................................................................................................................. 82 5.3. Introduction ................................................................................................................................ 83 5.4. Results ........................................................................................................................................... 84 5.5. Discussion .................................................................................................................................... 92 5.6. References ................................................................................................................................. 101 5.7. Supplemental Information for Chapter 5 .................................................................... 105 6 General Discussion .....................................................................................117 6.1. Soil as Source of Metagenome-Derived Biocatalysts .............................................. 117 6.2. Phosphatases in Metagenome Surveys ........................................................................ 118 6.3. Metagenomics for the Recovery of New Phytases ................................................... 119 6.4. A Simple and Effective Function-Based Method for the Retrieval of Novel Phosphatases/Phytases .................................................................................................................. 123 6.5. The Metagenome Input to Phytase Research ............................................................ 126 6.6. Function-Based Metagenomics Reveals Classic Phytases with Special Characteristics and New Phosphatases ................................................................................... 127 6.7. References ................................................................................................................................. 130 7 Summary ........................................................................................................134 8 Appendix ........................................................................................................136 8.1. Thesis Declaration ................................................................................................................. 136 8.2. Additional Publications ....................................................................................................... 137 8.2.1. Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce ............................................................................................................
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation
    fermentation Article Acetogen Communities in the Gut of Herbivores and Their Potential Role in Syngas Fermentation Chunlei Yang Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; [email protected] Received: 2 May 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: To better understand the effects of host selection on gut acetogens and their potential role in syngas fermentation, the composition and hydrogenotrophic features of acetogen populations in cow and sheep rumens, rabbit ceca, and horse feces were studied. The acetogens detected in horses and rabbits were more phylogenetically diverse than those in cows and sheep, suggesting that the host species plays an important role in shaping gut acetogen populations. Acetogen enrichments from these animals presented good capacities to use hydrogen, with acetate as the major end product. Minor propionate, butyrate, and isovalerate were also produced. During 48 h of incubation, acetogen enrichments from horse consumed 4.75 moles of H2 to every 1 mole of acetate—significantly lower than rabbits, cows, and sheep (5.17, 5.53, and 5.23 moles, respectively) (p < 0.05)—and produced significantly more butyrate (p < 0.05). Enrichments from cows and sheep produced significantly higher amounts of propionate when compared to rabbits or horses (p < 0.05); enrichments from sheep produced the highest amounts of isovalerate (p < 0.05). These short chain fatty acids are important precursors for the synthesis of biofuel products, suggesting that gut contents of herbivores may be promising sources for harvesting functional acetogens for biofuel production.
    [Show full text]
  • Generated by SRI International Pathway Tools Version 25.0, Authors S
    An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000238675-HmpCyc: Bacillus smithii 7_3_47FAA Cellular Overview Connections between pathways are omitted for legibility.
    [Show full text]
  • Isolation and Identification of Microvirga Thermotolerans HR1, A
    microorganisms Article Isolation and Identification of Microvirga thermotolerans HR1, a Novel Thermo-Tolerant Bacterium, and Comparative Genomics among Microvirga Species Jiang Li 1,2, Ruyu Gao 2, Yun Chen 2, Dong Xue 2, Jiahui Han 2, Jin Wang 1,2, Qilin Dai 1, Min Lin 2, Xiubin Ke 2,* and Wei Zhang 2,* 1 School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; [email protected] (J.L.); [email protected] (J.W.); [email protected] (Q.D.) 2 Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; [email protected] (R.G.); [email protected] (Y.C.); [email protected] (D.X.); [email protected] (J.H.); [email protected] (M.L.) * Correspondence: [email protected] (X.K.); [email protected] (W.Z.) Received: 27 November 2019; Accepted: 9 January 2020; Published: 10 January 2020 Abstract: Members of the Microvirga genus are metabolically versatile and widely distributed in Nature. However, knowledge of the bacteria that belong to this genus is currently limited to biochemical characteristics. Herein, a novel thermo-tolerant bacterium named Microvirga thermotolerans HR1 was isolated and identified. Based on the 16S rRNA gene sequence analysis, the strain HR1 belonged to the genus Microvirga and was highly similar to Microvirga sp. 17 mud 1-3. The strain could grow at temperatures ranging from 15 to 50 ◦C with a growth optimum at 40 ◦C. It exhibited tolerance to pH range of 6.0–8.0 and salt concentrations up to 0.5% (w/v). It contained ubiquinone 10 as the predominant quinone and added group 8 as the main fatty acids.
    [Show full text]
  • Aspergillus Oryzae in Solid-State and Submerged Fermentations Progress Report on a Multi-Disciplinary Project
    FEMS Yeast Research 2 (2002) 245^248 www.fems-microbiology.org Aspergillus oryzae in solid-state and submerged fermentations Progress report on a multi-disciplinary project Rob te Biesebeke a;b, George Ruijter a;e, Yovita S.P. Rahardjo a;c, Marisca J. Hoogschagen a;c, Margreet Heerikhuisen b, Ana Levin a;b, Kenneth G.A. van Driel a;d, Maarten A.I. Schutyser a;c, Jan Dijksterhuis a;d, Yang Zhu b, Frans J. Weber a;c, Willem M. de Vos a;e, Kees A.M.J.J. van den Hondel b, Arjen Rinzema a;c, Peter J. Punt a;b;Ã a Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen, The Netherlands b TNO Nutrition and Food Research Institute, P.O. Box 360, Utrechtseweg 48, 3700 AJ Zeist, The Netherlands c Wageningen University, Food and Bioprocess Engineering group, P.O. Box 8129, 6700 EV Wageningen, The Netherlands d ATO B.V., P.O. Box 17, 6700 AA Wageningen, The Netherlands e Wageningen University, Laboratory of Microbiology, Hesselink van Suchtelenweg 4, 6703 CT Wageningen, The Netherlands Received 3 September 2001; received in revised form 1 February 2002; accepted 5 March 2002 First published online 24 April 2002 Abstract We report the progress of a multi-disciplinary research project on solid-state fermentation (SSF) of the filamentous fungus Aspergillus oryzae. The molecular and physiological aspects of the fungus in submerged fermentation (SmF) and SSF are compared and we observe a number of differences correlated with the different growth conditions. First, the aerial hyphae which occur only in SSFs are mainly responsible for oxygen uptake.
    [Show full text]
  • Regulation of Gene Expression by the Camp-Crp System in the Soil Bacterium Pseudomonas Putida
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA MOLECULAR Regulation of gene expression by the cAMP-Crp system in the soil bacterium Pseudomonas putida TESIS DOCTORAL Memoria presentada para optar al grado de Doctor en Ciencias Alejandro Arce Rodríguez DIRECTORES DE TESIS: Víctor de Lorenzo Prieto Belén Calles Arenales CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (CSIC) CENTRO NACIONAL DE BIOTECNOLOGÍA Madrid, 2012 En memoria de mi abuela Alicia Corrales Campos (1938-2012), quien un día se durmió en su particular “País de las maravillas” para no volver jamás. QEPD A Dios y a mi familia. Soy quien soy gracias a ustedes! In memory of my grandmother Alicia Corrales Campos (1938-2012), who one day fell asleep in her particular “Wonderland” to never come back. RIP To God and my family. Acknowledgements This work would not have been possible without the support of many people who I would like to thank with a few words. To Victor de Lorenzo, to whom I am especially grateful for the opportunity to join his group, for his teaching, his guidance and specially for supporting and encouraging me always, in the bad and good moments. Thank you very much F !! Also to Beléeeeeeen Calles for accepting to be the co-director of this Thesis, and of course for her teaching, her patience, her support and her friendship. Thank you both for showing me how to be a better scientist! Many thanks to Fernando Rojo, for accepting to be my tutor. I would like to thank Tino Krell and Raúl Platero, for their contribution with the ITC experiments and for the useful discussions about the thermodynamic properties of Crp.
    [Show full text]
  • Research Article Antimicrobial and Antioxidant Properties of a Bacterial
    Hindawi International Journal of Microbiology Volume 2020, Article ID 9483670, 11 pages https://doi.org/10.1155/2020/9483670 Research Article Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds Mampolelo M. Photolo ,1 Vuyo Mavumengwana ,2 Lungile Sitole ,1 and Matsobane G. Tlou 3 1Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Campus, Johannesburg, South Africa 2DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, Cape Town, South Africa 3Department of Biochemistry, School of Physical and Chemical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, South Africa Correspondence should be addressed to Matsobane G. Tlou; [email protected] Received 17 September 2019; Accepted 21 December 2019; Published 25 February 2020 Academic Editor: Karl Drlica Copyright © 2020 Mampolelo M. Photolo et al. -is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -is study reports on the isolation and identification of Methylobacterium radiotolerans MAMP 4754 from the seeds of the medicinal plant, Combretum
    [Show full text]
  • Sequence Homology Between Purple Acid Phosphatases And
    Volume 263, number 2, 265-268 FEBS 08346 April 1990 Sequence homology between purple acid phosphatases and phosphoprotein phosphatases Are phosphoprotein phosphatases metalloproteins containing oxide-bridged dinuclear metal centers? John B. Vincent and Bruce A. Averill University of Virginia, Department of Chemistry, Charlottesville, VA 22901, USA Received 12 January 1990; revised version received 26 February 1990 The amino acid sequences of mammalian purple acid phosphatases and phosphoprotein phosphatases are shown to possess regions of significant homology. The conserved residues contain a high percentage of possible metal-binding residues. The phosphoprotein phosphatases I, 2A and 2B are proposed to be iron-zinc metalloenzymeswith active sites isostructural (or nearly so) with those of the purple phosphatases, Protein phosphatase; Purple acid phosphatase; Sequence homology 1. INTRODUCTION tain fungi and Drosophila have been shown to be highly homologous (50-90°70) to those of mammalian PP1 Phosphoprotein phosphatases (PPs) are a class of and PP2A [13,16-20], suggesting that the phosphopro- mammalian regulatory enzymes that catalyze the tein phosphatases may be widely distributed. dephosphorylation of phosphoserine and phospho- Mammalian purple acid phosphatases (PAPs) are threonine proteins [1,2]. Phosphoprotein phosphatase novel enzymes of molecular mass -37 kDa that contain 1 (PP1), which is inhibited by inhibitor-1 and -2, an oxide-bridged dinuclear iron active site. The amino generally occurs in a glycogen- or myosin-bound form. acid sequences of the enzymes from bovine spleen, por- The type 2 enzymes (insensitive to the above inhibitors) cine uterine fluid, and human placenta are highly are further subdivided into three classes. PP2A is a homologous (-90o70), again indicating a close relation- cytosolic enzyme that possesses broad reactivity, while ship [21,22].
    [Show full text]
  • Identification of Beneficial and Detrimental Bacteria That Impact Sorghum Responses to Drought Using Multi-Scale and Multi-Syste
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.13.437608; this version posted April 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of beneficial and detrimental bacteria that impact sorghum responses to drought using multi-scale and multi-system microbiome comparisons Mingsheng Qi1, Jeffrey C. Berry1, Kira Veley1, Lily O’Connor1, Omri M. Finkel2, 3, 4, Isai Salas- González2, 3, 5, Molly Kuhs1, Julietta Jupe1, Emily Holcomb1, Tijana Glavina del Rio 6, 7, Cody Creech8, Peng Liu9, Susannah Tringe6, 7, Jeffery L. Dangl2, 3, 5, 10, 11, 12, Daniel Schachtman8, 13, Rebecca S. Bart1* Affiliations 1. Donald Danforth Plant Science Center, St. Louis, MO, USA 2. Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 3. Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 4. Present address: Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel 5. Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 6. DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 7. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA 8. Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Scottsbluff, NE, USA 9. Department of Statistics, Iowa State University, Ames, IA, USA 10. Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 11.
    [Show full text]
  • Phytic Acid (Phytate)/ Total Phosphorus
    www.megazyme.com PHYTIC ACID (PHYTATE)/ TOTAL PHOSPHORUS Measured as phosphorus released by phytase and alkaline phosphatase ASSAY PROCEDURE K-PHYT 05/19 (50 Assays per Kit) © Megazyme 2019 INTRODUCTION: Phytic acid (phytate; myo-inositol 1,2,3,4,5,6-hexakisphosphate) is the primary source of inositol and storage phosphorus in plant seeds contributing ~ 70% of total phosphorus. The abundance of phytic acid in cereal grains is a concern in the foods and animal feeds industries because the phosphorus in this form is unavailable to monogastric animals due to a lack of endogenous phytases; enzymes specific for the dephosphorylation of phytic acid. In addition, the strong chelating characteristic of phytic acid reduces the bioavailability of other essential dietary nutrients such as minerals (e.g. Ca2+, Zn2+, Mg2+, Mn2+, Fe2+/3+), proteins and amino acids.2 High phytic acid content feeds are generally supplemented with inorganic phosphate, however this causes increased faecal phosphate levels and subsequent eutrophication of waterways. Alternatively, supplementation with commercial phytases is becoming increasingly popular and reduces the requirement for inorganic phosphate supplementation as well as the associated environmental issues. Currently, there is no commercially available, simple, quantitative method for phytic acid and, while such measurement is relatively complex, the generally accepted AOAC Method 986.11 has limitations.3 For each individual analysis the method requires cumbersome anion-exchange purification and a major inherent assumption here is that only phytic acid is purified. While this assumption is viable for non-processed grains for which phytic acid comprises at least 97% of total inositol phosphates, it is not viable for processed foods and feeds which can contain higher levels of some lower myo-inositol phosphate forms (i.e.
    [Show full text]
  • Effect of Ph and Temperature on the Activity of Phytase Products Used In
    Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Effect of ph and Temperature on the Activity of ISSN 1516-635X Jul - Sept 2012/ v.14 / n.3 / 159-232 Phytase Products Used in Broiler Nutrition Author(s) ABSTRACT Naves L de P1 Corrêa AD2 The activity of three commercial microbial phytase (Aspergillus Bertechini AG3 oryzae, A. niger, and Saccharomyces cerevisae) products used in broiler Gomide EM4 Santos CD dos2 nutrition was determined at different pH (2.0 to 9.0) and temperature (20 to 90°C) values. Enzymatic activity was determined according to the reaction of the phytase with its substrate (sodium phytate), in four replicates, and was expressed in units of phytase activity (FTU). A. oryzae phytase exhibited optimal activity at pH 4.0 and 40°C, but 1Graduate student in Monogastric Nutrition of its absolute activity was the lowest of the three phytases evaluated. the Animal Science Department − Federal A. niger phytase exhibited maximal activity close to pH 5.0 and 45oC, University of Lavras (UFLA). whereas S. cerevisae phytase presented its highest activity at pH close to 2Professor of the Chemistry Department/ UFLA. 4.5 and temperatures ranging between 50 and 60°C. It was concluded 3Professor of the Animal Science Department/ that A. niger and S. cerevisae phytase products exhibited the highest UFLA. absolute activities in vitro at pH and temperature values (pH lower than 4Ph. D. student in Monogastric Nutrition of o the Animal Science Department/UFLA. 5.0 and 41 C) corresponding to the ideal physiological conditions of broilers, which would theoretically allow high hydrolysis rate of the phytate contained in the feed.
    [Show full text]
  • SUPPLEMENTARY INFORMATION in Silico Signature Prediction
    SUPPLEMENTARY INFORMATION In Silico Signature Prediction Modeling in Cytolethal Distending Toxin-Producing Escherichia coli Strains Maryam Javadi, Mana Oloomi*, Saeid Bouzari Department of Molecular Biology, Pasteur Institute of Iran, Tehran 13164, Iran http://www.genominfo.org/src/sm/gni-15-69-s001.pdf Supplementary Table 6. Aalphabetic abbreviation and description of putative conserved domains Alphabetic Abbreviation Description 17 Large terminase protein 2_A_01_02 Multidrug resistance protein 2A0115 Benzoate transport; [Transport and binding proteins, Carbohydrates, organic alcohols] 52 DNA topisomerase II medium subunit; Provisional AAA_13 AAA domain; This family of domains contain a P-loop motif AAA_15 AAA ATPase domain; This family of domains contain a P-loop motif AAA_21 AAA domain AAA_23 AAA domain ABC_RecF ATP-binding cassette domain of RecF; RecF is a recombinational DNA repair ATPase ABC_SMC_barmotin ATP-binding cassette domain of barmotin, a member of the SMC protein family AcCoA-C-Actrans Acetyl-CoA acetyltransferases AHBA_syn 3-Amino-5-hydroxybenzoic acid synthase family (AHBA_syn) AidA Type V secretory pathway, adhesin AidA [Cell envelope biogenesis] Ail_Lom Enterobacterial Ail/Lom protein; This family consists of several bacterial and phage Ail_Lom proteins AIP3 Actin interacting protein 3; Aip3p/Bud6p is a regulator of cell and cytoskeletal polarity Aldose_epim_Ec_YphB Aldose 1-epimerase, similar to Escherichia coli YphB AlpA Predicted transcriptional regulator [Transcription] AntA AntA/AntB antirepressor AraC AraC-type
    [Show full text]