Mechanisms of Brain Ventricle Development

Total Page:16

File Type:pdf, Size:1020Kb

Mechanisms of Brain Ventricle Development Mechanisms of Brain Ventricle Development by Laura Anne Lowery B.S. Biology University of California San Diego, 2000 M.S. Biology University of California San Diego, 2001 Submitted to the Department of Biology in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology at the Massachusetts Institute of Technology June 2008 © 2008 Laura Anne Lowery. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part. Signature of Author…………….…………………………………………………………… Department of Biology May 2008 Certified by…….…………………………………………………………………………… Hazel L. Sive Professor of Biology Associate Dean School of Science Thesis Supervisor Accepted by.………………………………………………………...……………………… Stephen P. Bell Professor of Biology Chairman, Graduate Student Committee 1 2 Mechanisms of Brain Ventricle Formation By Laura Anne Lowery Submitted to the Department of Biology on April 2008 in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology ABSTRACT The brain ventricles are a conserved system of fluid-filled cavities within the brain that form during the earliest stages of brain development. Abnormal brain ventricle development has been correlated with neurodevelopmental disorders including hydrocephalus and schizophrenia. The mechanisms which regulate formation of the brain ventricles and the embryonic cerebrospinal fluid are poorly understood. Using the zebrafish, I initiated a study of brain ventricle development to define the genes required for this process. The zebrafish neural tube expands into the forebrain, midbrain, and hindbrain ventricles rapidly, over a four-hour window during mid-somitogenesis. In order to determine the genetic mechanisms that affect brain ventricle development, I studied 17 mutants previously-identified as having embryonic brain morphology defects and identified 3 additional brain ventricle mutants in a retroviral-insertion shelf-screen. Characterization of these mutants highlighted several processes involved in brain ventricle development, including cell proliferation, neuroepithelial shape changes (requiring epithelial integrity, cytoskeletal dynamics, and extracellular matrix function), embryonic cerebrospinal fluid secretion, and neuronal development. In particular, I investigated the role of the Na+K+ATPase alpha subunit, Atp1a1, in brain ventricle formation, elucidating novel roles for its function during brain development. This study was facilitated by the snakehead mutant, which has a mutation in the atp1a1 gene and undergoes normal brain ventricle morphogenesis but lacks ventricle inflation. Analysis of the temporal and spatial requirements of atp1a1 revealed an early requirement during formation, but not maintenance, of the neuroepithelium. I also demonstrated a later neuroepithelial requirement for Atp1a1-driven ion pumping that leads to brain ventricle inflation, likely by forming an osmotic gradient that drives fluid flow into the ventricle space. Moreover, I have discovered that the forebrain ventricle is particularly sensitive to Na+K+ATPase function, and reducing or increasing Atp1a1 levels leads to a corresponding decrease or increase in ventricle size. Intriguingly, the Na+K+ATPase beta subunit atp1b3a, expressed in the forebrain and midbrain, is specifically required for their inflation, and thus may highlight a distinct regulatory mechanism for the forebrain and midbrain ventricles. In conclusion, my work has begun to define the complex mechanisms governing brain ventricle development, and I suggest that these mechanisms are conserved throughout the vertebrates. Thesis Supervisor: Hazel L. Sive Title: Professor of Biology 3 4 Dedicated to my grandparents, Lester and Leah Sopkin 5 6 Table of Contents Page Abstract 3 Acknowledgements 9 Curriculum Vitae 11 Chapter 1 Introduction – A Discussion of the Formation and Function of the Embryonic Brain Ventricles 13 Introduction 15 The Brain Ventricular System 16 Brain Ventricle Abnormalities 18 Formation of the Embryonic Brain Ventricles 20 Mechanisms of Brain Ventricle Development 21 Preview of Thesis 34 Figures 35 References 51 Chapter 2 The zebrafish as a model for analyzing neural tube defects 63 Introduction 65 Zebrafish as a Model System 65 Ontogeny of the Zebrafish Nervous System 67 Zebrafish as a Model for Brain Ventricle Formation 75 Lessons from Zebrafish Mutants 78 Conclusion 82 Table and Figures 83 References 99 Chapter 3 Characterization and Classification of 20 Zebrafish Brain Morphology Mutants 111 Abstract 113 Background 114 Results and Discussion 115 Conclusions 123 Experimental Procedures 124 Table and Figures 127 References 141 7 Chapter 4 Initial Formation of Zebrafish Brain Ventricles Occurs Independently of Circulation and Requires the nagie oko and snakehead/atp1a1 Gene Products 147 Abstract 149 Introduction 150 Results 151 Discussion 158 Experimental Procedures 161 Figures 167 References 187 Chapter 5 The Spatial and Temporal Requirements for Na+K+ATPase during Brain Ventricle Development 193 Abstract 195 Introduction 196 Results 197 Discussion 204 Experimental Procedures 207 Tables and Figures 213 References 233 Chapter 6 Conclusions and Future Directions 239 Future studies of eCSF formation and function 241 Na+K+ATPase function during brain development 246 Cell proliferation and brain ventricle opening 248 Table and Figures 249 References 261 Appendix 1 whitesnake/sfpq is Required for Cell Survival and Neuronal Development in the Zebrafish 265 Abstract 266 Introduction 267 Results and Discussion 267 Experimental Procedures 274 Figures 279 References 301 Appendix 2 Formation of the midbrain-hindbrain boundary constriction requires laminin-dependent basal constriction 305 Abstract 306 Introduction 307 Results and Discussion 308 Experimental Procedures 312 Figures 315 References 327 8 Acknowledgments I would like to thank all members of the Sive lab for their encouragement, support, and advice over the past six years. I am particularly thankful to the generosity of Elizabeth Wiellette, who taught me almost everything related to the zebrafish, Amanda Dickinson, who taught me microscopy, imaging, and Photoshop, and Jennifer Gutzman, my baymate and partner in zebrafish brain morphogenesis for the last three years. Jen Gutzman, in particular, has generously answered countless questions and has always been willing to give me needed feedback. Additionally, Jen Gutzman and Ellie Graeden provided significant support editing several thesis chapters. Furthermore, I could not have done my research without the fish husbandry provided by the Sive lab fish technician, Olivier Paugois. It was also a pleasure to mentor two MIT undergraduates, Jamie Rubin and Jenny Ruan, and I enjoyed teaching them as well as benefitted from their learning. The Sive Lab is fortunate to have the incredible Heather Ferguson as our administrative assistant, and I am quite appreciative of her work. Finally, I am indebted to my advisor, Hazel Sive. Without a doubt, I could not have chosen a better graduate advisor. She has been extraordinarily supportive, challenging, and understanding, changing depending on my own needs, and my success is in part a reflection of her outstanding abilities as my advisor. I will always be grateful for her infallible support. I would also like to thank the current and past members of my thesis committee for their time, energy, and support: Martha Constantine-Paton, Richard Hynes, Paul Garrity, David Housman, and Michael Levin. My research project could not have been possible without the great generosity of the zebrafish community. Over a dozen different labs provided me with zebrafish mutants to study and other useful reagents. Additionally, I want to thank Duaa Mohammad for friendship and support throughout graduate school. She also read parts of this thesis and provided critiques. Most importantly, I need to thank my family: my parents, who taught me that I have the ability to do anything and who have always believed in me; my in-laws Catherine and Burrell, who provided me with a special home and refuge during my time here at MIT; my son, Elliot, who has reminded me in an extreme way that there are more important things in life than work; and I am most thankful to my husband, Drew, who has brought me peace in times of chaos and has provided incredible support and partnership throughout graduate school and throughout our life together. 9 10 Curriculum Vitae Laura Anne Lowery former name: Laura Anne Hardaker Education • Ph.D. Biology, Massachusetts Institute of Technology – 06/08 • M.S. Biology, University of California, San Diego – 03/01 • B.S. Biology, University of California, San Diego – 03/00, Cum Laude Research Experience • 05/02 – 06/08, Doctoral thesis in lab of Dr. Hazel Sive, MIT/Whitehead Institute “Mechanisms of brain ventricle development” • 04/99-06/01, Master’s thesis in lab of Dr. William R. Schafer, UC San Diego “Neuroendocrine regulation of egg-laying behavior in C. elegans” Teaching Experience • Fall 04 – Spring 06: Whitehead High School Partnership Program • Fall 04 – Spring 07: Undergraduate Research Mentor, MIT • Spring 05: Graduate Teaching Assistant, 7.02: Undergrad Biology Lab, MIT • Fall 02: Grad Teaching Assistant, 7.22: Undergrad Developmental Biology, MIT • 11/00: Guest Lecturer for Undergraduate Biology class, University of San Diego • Spring 00: Grad Teaching Assistant, BIBC 102: Undergrad Metabolic Biochemistry, UCSD • Winter 00: Undergrad
Recommended publications
  • Fetal Brain Anomalies Associated with Ventriculomegaly Or Asymmetry: an MRI-Based Study
    ORIGINAL RESEARCH PEDIATRICS Fetal Brain Anomalies Associated with Ventriculomegaly or Asymmetry: An MRI-Based Study X E. Barzilay, X O. Bar-Yosef, X S. Dorembus, X R. Achiron, and X E. Katorza ABSTRACT BACKGROUND AND PURPOSE: Fetal lateral ventriculomegaly is a relatively common finding with much debate over its clinical signifi- cance. The purpose of this study was to examine the association between ventriculomegaly and asymmetry and concomitant CNS findings as seen in fetal brain MR imaging. MATERIALS AND METHODS: Fetal brain MR imaging performed for various indications, including ventriculomegaly, with or without additional ultrasound findings, was assessed for possible inclusion. Two hundred seventy-eight cases found to have at least 1 lateral ventricle with a width of Ն10 mm were included in the study. Ventriculomegaly was considered mild if the measurement was 10–11.9 mm; moderate if, 12–14.9 mm; and severe if, Ն15 mm. Asymmetry was defined as a difference of Ն2 mm between the 2 lateral ventricles. Fetal brain MR imaging findings were classified according to severity by predefined categories. RESULTS: The risk of CNS findings appears to be strongly related to the width of the ventricle (OR, 1.38; 95% CI, 1.08–1.76; P ϭ .009). The prevalence of associated CNS abnormalities was significantly higher (P ϭ .005) in symmetric ventriculomegaly compared with asymmetric ventriculomegaly (38.8% versus 24.2%, respectively, for all CNS abnormalities and 20% versus 7.1%, respectively, for major CNS abnormalities). CONCLUSIONS: In this study, we demonstrate that the rate of minor and major findings increased with each millimeter increase in ventricle width and that the presence of symmetric ventricles in mild and moderate ventriculomegaly was a prognostic indicator for CNS abnormalities.
    [Show full text]
  • Meninges Ventricles And
    Meninges ,ventricles & CSF Dr.Sanaa Al-Shaarawy Dr. Essam Eldin Salama OBJECTIVES • By the end of the lecture the student should be able to: • Describe the cerebral meninges & list the main dural folds. • Describe the spinal meninges & locate the level of the termination of each of them. • Describe the importance of the subarachnoid space. • List the Ventricular system of the CNS and locate the site of each of them. • Describe the formation, circulation, drainage, and functions of the CSF. • Know some clinical point about the CSF MENINGES • The brain and spinal cord are invested by three concentric membranes ; • The outermost layer is the dura matter. • The middle layer is the arachnoid matter. • The innermost layer is the pia matter. DURA MATER ▪The cranial dura is a two layered tough, fibrous thick membrane that surrounds the brain. ▪It is formed of two layers; periosteal and meningeal. ▪The periosteal layer is attached to the skull. ▪The meningeal layer is folded forming the dural folds : falx cerebri, and tentorium cerebelli. ▪Sensory innervation of the dura is mostly from : meningeal branches of the trigeminal and vagus nerves & C1 to C3(upper cervical Ns.). DURA MATER Folds Two large reflection of dura extend into the cranial cavity : 1.The falx cerebri, In the midline, ▪It is a vertical sickle-shaped sheet of dura, extends from the cranial roof into the great longitudinal fissure between the two cerebral hemispheres. ▪It has an attached border adherent to the skull. ▪And a free border lies above the corpus callosum. DURA MATER Folds 2. A horizontal shelf of dura, The tentorium cerebelli, ▪ It lies between the posterior part of the cerebral hemispheres and the cerebellum.
    [Show full text]
  • Locus Coeruleus Complex of the Family Delphinidae
    www.nature.com/scientificreports OPEN Locus coeruleus complex of the family Delphinidae Simona Sacchini 1, Manuel Arbelo 1, Cristiano Bombardi2, Antonio Fernández1, Bruno Cozzi 3, Yara Bernaldo de Quirós1 & Pedro Herráez1 Received: 19 July 2017 The locus coeruleus (LC) is the largest catecholaminergic nucleus and extensively projects to widespread Accepted: 22 March 2018 areas of the brain and spinal cord. The LC is the largest source of noradrenaline in the brain. To date, the Published: xx xx xxxx only examined Delphinidae species for the LC has been a bottlenose dolphin (Tursiops truncatus). In our experimental series including diferent Delphinidae species, the LC was composed of fve subdivisions: A6d, A6v, A7, A5, and A4. The examined animals had the A4 subdivision, which had not been previously described in the only Delphinidae in which this nucleus was investigated. Moreover, the neurons had a large amount of neuromelanin in the interior of their perikarya, making this nucleus highly similar to that of humans and non-human primates. This report also presents the frst description of neuromelanin in the cetaceans’ LC complex, as well as in the cetaceans’ brain. Te locus coeruleus (LC) is a densely packed cluster of noradrenaline-producing neurons located in the upper part of the rostral rhombencephalon, on the lateral edge of the fourth ventricle. Te LC is the largest catechola- minergic nucleus of the brain, and it supplies noradrenaline to the entire central nervous system. Noradrenaline neurons are located in the medulla oblongata and pons (termed A1-A7 divisions), while adrenaline neurons are located only in the medulla oblongata, near A1-A3 (and termed C1-C3)1.
    [Show full text]
  • A Recommended Workflow Methodology in the Creation of An
    Manson et al. BMC Medical Imaging (2015) 15:44 DOI 10.1186/s12880-015-0088-6 TECHNICAL ADVANCE Open Access A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding Amy Manson1,2, Matthieu Poyade2 and Paul Rea1* Abstract Background: The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Methods: Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. Results: We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model.
    [Show full text]
  • Neuroanatomy Dr
    Neuroanatomy Dr. Maha ELBeltagy Assistant Professor of Anatomy Faculty of Medicine The University of Jordan 2018 Prof Yousry 10/15/17 A F B K G C H D I M E N J L Ventricular System, The Cerebrospinal Fluid, and the Blood Brain Barrier The lateral ventricle Interventricular foramen It is Y-shaped cavity in the cerebral hemisphere with the following parts: trigone 1) A central part (body): Extends from the interventricular foramen to the splenium of corpus callosum. 2) 3 horns: - Anterior horn: Lies in the frontal lobe in front of the interventricular foramen. - Posterior horn : Lies in the occipital lobe. - Inferior horn : Lies in the temporal lobe. rd It is connected to the 3 ventricle by body interventricular foramen (of Monro). Anterior Trigone (atrium): the part of the body at the horn junction of inferior and posterior horns Contains the glomus (choroid plexus tuft) calcified in adult (x-ray&CT). Interventricular foramen Relations of Body of the lateral ventricle Roof : body of the Corpus callosum Floor: body of Caudate Nucleus and body of the thalamus. Stria terminalis between thalamus and caudate. (connects between amygdala and venteral nucleus of the hypothalmus) Medial wall: Septum Pellucidum Body of the fornix (choroid fissure between fornix and thalamus (choroid plexus) Relations of lateral ventricle body Anterior horn Choroid fissure Relations of Anterior horn of the lateral ventricle Roof : genu of the Corpus callosum Floor: Head of Caudate Nucleus Medial wall: Rostrum of corpus callosum Septum Pellucidum Anterior column of the fornix Relations of Posterior horn of the lateral ventricle •Roof and lateral wall Tapetum of the corpus callosum Optic radiation lying against the tapetum in the lateral wall.
    [Show full text]
  • Ventriculomegaly
    Great Ormond Street Hospital for Children NHS Foundation Trust: Information for Families Ventriculomegaly This information sheet from Great Ormond Street Hospital (GOSH) explains the causes, symptoms and treatment of ventriculomegaly and hydrocephalus and where to get help. Ventricles are cavities within the brain filled Without signs of increased pressure in the with cerebro-spinal fluid (CSF) acting as a brain (hydrocephalus), ventriculomegaly most ‘cushion’. CSF also supplies nutrients to the likely will not cause any problems. However, brain. The brain has four ventricles: two it can be linked with hydrocephalus and other lateral ventricles, the third ventricle and the problems. Ventriculomegaly can be diagnosed fourth ventricle. during pregnancy and occurs in around two CSF is created within the brain and flows from per cent of all pregnancies. the lateral ventricles into the third ventricle. It then flows through a narrow tube (the What causes cerebral aqueduct) into the fourth ventricle which lies towards the base of the brain. From ventriculomegaly? the fourth ventricle, it flows around the spinal In many cases, we do not know what causes cord and over the surface of the brain before ventriculomegaly (in the absence of any raised being re-absorbed. CSF pressure) but it can occur if there has been Ventriculomegaly is the medical term used to brain damage for any reason leading to loss describe enlargement of the ventricles of the of brain tissue. Often however it is a “chance” brain. Hydrocephalus is the term used when finding and when the ventricles are only a enlargement of the ventricles has been caused little enlarged of little significance.
    [Show full text]
  • Estimation of Ventricles Size of Human Brain by Magnetic Resonance
    Original Research Article Original Research Article Journal of Gandaki Medical College Nepal Estimation of ventricles size of human brain by Magnetic Resonance Imaging in Nepalese Population: A retrospective study Sushma Singh1* iD , Bhoj Raj Sharma2, Urusha Prajapati3, Pujan Sharma4, Manoj Bhatta3, Nawaraj Poudel2 1Lecturer/B.Sc MIT Programe Coordinator, Department of Radiology Gandaki Medical College 2Lecturer, Department of Radiology Gandaki Medical College 3Radiological Technologist 4Associate Professor, Department of Radiology Gandaki Medical College ABSTRACT Background and Objective: data Magnetic resonance imaging (MRI) provides image acquisition of three-dimensional and measurement in any chosen imaging plane. Objective of this study is to assess the size of ventricles of the dimensions among different age and gender. Materials and methods: This is a cross-sectional retrospective study done brain of normal Nepalese people and establish the range of size of the ventricular system and compute the ventricular at Gandaki Medical College, Pokhara. A total of 106 MRI scan data of healthy individuals were collected over a period of seven months between March to September 2019. Patients ranged between eight and eighty years of age with 58 males and 48 females. Measurements of the mean of bifrontal diameter (BFD), bihemispheric diameter (BHD), third ventricle Result: transverse dimension (TVTD), fourth ventricle antero-posterior dimension (FVAP), fourth ventricle width (FVW), and frontal horn ratio (FHR) were done. The mean of BFD, BHD, TVTD, FVAP, FVW, and FHR were found to be 3.05 ± 0.10 cm, 10.11 ± 0.40 cm, 0.43 ± 0.11 cm, 0.90 ± 0.11 cm, 1.22 ± 0.12 cm, and 0.30 ± 0.01 cm, respectively.
    [Show full text]
  • Morphometric Analysis of Ventricular System of Human Brain - a Study by Dissection Method
    Jemds.com Original Research Article Morphometric Analysis of Ventricular System of Human Brain - A Study by Dissection Method Prabahita Baruah1, Purujit Choudhury2, Pradipta Ray Choudhury3 1Department of Anatomy, Silchar Medical College and Hospital, Silchar, Assam, India. 2Department of Surgery, Gauhati Medical College and Hospital, Guwahati, Assam, India. 3Department of Anatomy, Silchar Medical College and Hospital, Silchar, Assam, India. ABSTRACT BACKGROUND It is often a challenge to determine if the brain ventricles are within normal limits Corresponding Author: or swollen with the age of the patient. With a standardized and comparable system, Dr. Purujit Choudhury, it is therefore necessary to define normal ventricular size ranges. Cadaveric Associate Professor, dissection is always considered the gold standard of anatomical education. Present Department of Surgery, Gauhati Medical College and Hospital, work is undertaken to study morphometric analysis of lateral, third & fourth Guwahati, Assam, India. ventricles by dissection method. Morphometric assessment of the ventricular E-mail: [email protected] system is helpful in the diagnosis as well as classification of hydrocephalus and in the evaluation and monitoring of ventricular system enlargement during DOI: 10.14260/jemds/2020/121 ventricular shunt therapy. Financial or Other Competing Interests: METHODS None. Different parameters of all parts of lateral ventricle, third and fourth ventricle were How to Cite This Article: measured with digital vernier caliper in cadaveric brain specimens. The brain Baruah P, Choudhury P, Choudhury PR. specimens were obtained from dead bodies subjected to post-mortem Morphometric analysis of ventricular examinations in the Department of Forensic Medicine and from the dead bodies system of human brain- a study by voluntarily donated to the Department of Anatomy, Silchar Medical College, Silchar.
    [Show full text]
  • Brain Anatomy
    BRAIN ANATOMY Adapted from Human Anatomy & Physiology by Marieb and Hoehn (9th ed.) The anatomy of the brain is often discussed in terms of either the embryonic scheme or the medical scheme. The embryonic scheme focuses on developmental pathways and names regions based on embryonic origins. The medical scheme focuses on the layout of the adult brain and names regions based on location and functionality. For this laboratory, we will consider the brain in terms of the medical scheme (Figure 1): Figure 1: General anatomy of the human brain Marieb & Hoehn (Human Anatomy and Physiology, 9th ed.) – Figure 12.2 CEREBRUM: Divided into two hemispheres, the cerebrum is the largest region of the human brain – the two hemispheres together account for ~ 85% of total brain mass. The cerebrum forms the superior part of the brain, covering and obscuring the diencephalon and brain stem similar to the way a mushroom cap covers the top of its stalk. Elevated ridges of tissue, called gyri (singular: gyrus), separated by shallow groves called sulci (singular: sulcus) mark nearly the entire surface of the cerebral hemispheres. Deeper groves, called fissures, separate large regions of the brain. Much of the cerebrum is involved in the processing of somatic sensory and motor information as well as all conscious thoughts and intellectual functions. The outer cortex of the cerebrum is composed of gray matter – billions of neuron cell bodies and unmyelinated axons arranged in six discrete layers. Although only 2 – 4 mm thick, this region accounts for ~ 40% of total brain mass. The inner region is composed of white matter – tracts of myelinated axons.
    [Show full text]
  • The Ventricular System and Cerebrospinal Fluid (CSF) 3Rd Ventricle in Diencephalon
    1/20/2014 Simple Tube Shape of Early CNS with fluid filled canal in middle The Ventricular System and Cerebrospinal Fluid (CSF) In adults there is still a continuous canal running thru all levels of the adult CNS – it is just harder to follow. Book Fig. 1.19 Lateral Ventricles in the Hemispheres Side & Frontal Views of Ventricles Remember – these represent fluid filled cavities in brain “Wishbone” shape means there is ventricle within each of the lobes. Lateral Ventricles From Above 3rd Ventricle in Diencephalon • These are the canals of the cerebral hemispheres or telencephalon 1 1/20/2014 Interventricular foramen links lateral ventricles to 3rd You can see the 2 dark lateral ventricles as well as the vertical midline 3 rd ventricle Sagittal Section Thru 3 rd Vent. (#2 in figure) • Connects to skinny cerebral aqueduct, the canal of the midbrain (just under the #10) Choroid plexus located in ventricles continuously 4th Ventricle in the Hindbrain produces CSF, replacing the ~125-150 ml several times/day Normal pressure 3 holes in the roof of CSF: of the 4 th venticle 100-150 mmH2O allow most CSF to lying down leave ventricles 200-300 mmH2O and enter the sitting up subarachnoid space around brain 2 1/20/2014 Circulation of CSF in • Why is CSF pressure measured in mm H2O? • Larger pressure differences (like BP) are ventricles measured by the movement of a column of always heavier liquid (Mercury or Hg) moves • Smaller pressure differences are measured by the movement of a column of lighter liquid (H2O) posteriorly, – CSF moves that column ~150 mm but would toward only move Hg about 2 mm.
    [Show full text]
  • Hydrocephalus Really Communicating? Prospective Study on the Value of 3D-Constructive Interference in Steady State ORIGINAL RESEARCH Sequence at 3T
    Published July 30, 2009 as 10.3174/ajnr.A1726 Is All “Communicating” Hydrocephalus Really Communicating? Prospective Study on the Value of 3D-Constructive Interference in Steady State ORIGINAL RESEARCH Sequence at 3T A. Dinçer BACKGROUND AND PURPOSE: 3D-constructive interference in steady state (3D-CISS) sequence has S. Kohan been used to assess the CSF pathways. The aim of this study was to investigate the additive value of 3D-CISS compared with conventional sequences in the diagnosis of obstructive membranes in M.M. O¨ zek hydrocephalus. MATERIALS AND METHODS: A total of 134 patients with hydrocephalus underwent MR imaging examination with a 3T unit consisting of turbo spin-echo, 3D-CISS, and cine phase-contrast (cine PC) sequences. 3D-CISS was used to assess obstructive membranes in CSF pathways compared with other sequences. Cine PC, follow-up imaging, and surgical findings were used to confirm obstructive membranes. RESULTS: Comparing the number of noncommunicating cases by using the conventional and 3D-CISS images, we found 26 new cases (19.4%) of 134 cases that were previously misdiagnosed as communicating hydrocephalus by conventional images. 3D-CISS sequence identified obstructive membranes invisible in other sequences, which facilitated selection of neuroendoscopy in the treat- ment of 31 patients (23.1%) in total who would have been otherwise treated with shunt insertion. These patients included 26 newly diagnosed noncommunicating cases after demonstration of intra- ventricular and/or fourth ventricular outlet membranes and 5 cases of communicating hydrocephalus with obstructing cisternal membranes. There were obstructions of the foramina of Luschka in 22 of 26 newly found noncommunicating cases.
    [Show full text]
  • Anatomy and Physiology of Cerebrospinal Fluid
    European Annals of Otorhinolaryngology, Head and Neck diseases (2011) 128, 309—316 Available online at www.sciencedirect.com REVIEW OF THE LITERATURE Anatomy and physiology of cerebrospinal fluid L. Sakka a,b,∗, G. Coll b, J. Chazal a,b a Laboratoire d’anatomie, faculté de médecine, université d’Auvergne, 28, place Henri-Dunant, 63001 Clermont-Ferrand cedex 1, France b Image-Guided Clinical Neuroscience and Connectomics, université d’Auvergne, UFR Médecine, CHU de Clermont-Ferrand, Hôpital Gabriel Montpied, 58 rue Montalembert, 63003 Clermont-Ferrand, France Available online 18 November 2011 KEYWORDS Summary The cerebrospinal fluid (CSF) is contained in the brain ventricles and the cranial Cerebrospinal fluid; and spinal subarachnoid spaces. The mean CSF volume is 150 ml, with 25 ml in the ventricles CSF; and 125 ml in subarachnoid spaces. CSF secretion; CSF is predominantly, but not exclusively, secreted by the choroid plexuses. Brain interstitial CSF circulation; fluid, ependyma and capillaries may also play a poorly defined role in CSF secretion. CSF space CSF circulation from sites of secretion to sites of absorption largely depends on the arterial comparative anatomy pulse wave. Additional factors such as respiratory waves, the subject’s posture, jugular venous pressure and physical effort also modulate CSF flow dynamics and pressure. Cranial and spinal arachnoid villi have been considered for a long time to be the predominant sites of CSF absorption into the venous outflow system. Experimental data suggest that cranial and spinal nerve sheaths, the cribriform plate and the adventitia of cerebral arteries constitute substantial pathways of CSF drainage into the lymphatic outflow system.
    [Show full text]