<<

Carnets Geol. 16 (20)

Jurassic- transition on the Getic carbonate platform (Southern Carpathians, Romania): Benthic and algae

1 Cristian Victor MIRCESCU

1 George PLEŞ

1, 2 Ioan I. BUCUR

3 Bruno GRANIER

Abstract: The carbonate succession of the Piatra Craiului Massif, i.e., the eastern part of the Getic car- bonate platform (Southern Carpathians, Romania), comprises reefal and peritidal limestones that con- tain a diverse microfossil assemblage composed mainly of calcareous green algae and benthic foramini- fera. The biostratigraphically most significant benthic foraminifera found in the several sections studied are described; some ( lusitanica, Neokilianina rahonensis, Bramkampella arabica, Everticyclammina praekelleri) are reported for the first time in this area. Hence, assemblages of both foraminifera and calcareous algae characterize three biostratigraphic intervals in the studied suc- cession, the - lower Tithonian, the upper Tithonian - lower , and the upper Ber- riasian - ? lower Valanginian intervals. The main microfacies types (bioclastic rudstone, coral-microbial boundstone, bioclastic grainstone, interbedded mudstones and wackestones with cyanobacteria nodu- les) as well as both the foraminifera and the calcareous algae are paleoecological indicators that may contribute to the decipherment of the depositional environments and to building a depositional model for the eastern part of the Getic carbonate platform at the Late - transition. Key-words: • Upper Jurassic; • Lower Cretaceous; • Getic carbonate platform; • Southern Carpathians; • biostratigraphy; • foraminifera; • paleoenvironment.

Citation: MIRCESCU C.V., PLEŞ G., BUCUR I.I. & GRANIER B. (2016).- Jurassic-Cretaceous transition on the Getic carbonate platform (Southern Carpathians, Romania): Benthic foraminifera and algae.- Car- nets Geol., Madrid, vol. 16, no. 20, p. 491-512. Résumé : Passage Jurassique-Crétacé sur la plate-forme carbonatée gétique (Carpathes mé- ridionales, Roumanie) : Foraminifères et algues benthiques.- La série carbonatée du Massif de Piatra Craiului, c'est-à-dire de la partie orientale de la plate-forme carbonatée gétique (Carpathes méri- dionales, Roumanie), est constituée de calcaires récifaux et péritidaux qui recèlent des associations variées de microfossiles constituées d'algues vertes calcaires et de foraminifères benthiques essentiel- lement. Parmi les foraminifères benthiques identifiés dans les nombreuses coupes étudiées, nous décri- vons ceux auxquels on attribue une certaine valeur biostratigraphique. Quelques-uns (Anchispirocyclina lusitanica, Neokilianina rahonensis, Bramkampella arabica, Everticyclammina praekelleri) sont signalés pour la première fois dans ce secteur. De ce fait, dans la série étudiée, grâce aux associations combi- nées de foraminifères et d'algues calcaires, nous caractérisons trois intervalles biostratigraphiques : le Kimméridgien - Tithonien inférieur, le Tithonien supérieur - Berriasien inférieur et le Berriasien supé- rieur - ? Valanginien inférieur. Les principaux types de microfaciès (rudstone bioclastique, boundstone corallien-microbien, grainstone bioclastique, alternances de mudstones et de wackestones à nodules cyanobactériens) sont des indicateurs paléoécologiques qui, avec les foraminifères et les algues calcai- res, peuvent contribuer au décryptage des environnements de dépôt et à la construction d'un modèle dépositionnel pour la partie orientale de la plate-forme carbonatée gétique à la transition du Jurassique supérieur au Crétacé inférieur.

1 Babeş-Bolyai University, Department of Geology and Center for Integrated Geological Studies, M. Kogălniceanu str., 1, 400084 Cluj-Napoca (Romania) 2 [email protected] 3 Dépt. STU, Fac. Sci. Tech., UBO, 6 avenue Le Gorgeu, CS 93837, F-29238 Brest (France) [email protected] Department of Ecology and Evolutionary Biology, The University of Kansas, 1200 Sunnyside Avenue, Lawrence, Kansas 66045 (USA) [email protected] Published online in final form (pdf) on October 24, 2016 [Editor: Robert W. SCOTT; technical editor: Bruno GRANIER]

491 Carnets Geol. 16 (20)

Mots-clefs : The mid-Jurassic deposits are in turn over- • Jurassique supérieur ; lain by thick units of Kimmeridgian - Berriasian • Crétacé inférieur ; (- ? lower Valanginian) shallow-water carbona- • plate-forme carbonatée gétique ; tes, i.e., Štramberk-like limestones. They reach • Carpathes méridionales ; a total thickness of 1200 m (BUCUR et al., 2011; • biostratigraphie ; PLEŞ et al., 2013) near the La Om summit (Fig. • foraminifères ; 2). This succession represents an overall shal- • paléoenvironnement. lowing-upward megasequence that is defined 1. Introduction by the shift from coral-microbial bioconstruc- This paper is part of a larger integrated stu- tions to peritidal carbonates (MIRCESCU et al., dy that aims to describe the geological evolu- 2014). BUCUR (1978) first reported the presence tion of the Piatra Craiului Massif by using sedi- of Berriasian deposits in the northern part of mentological and stratigraphic techniques. The the Piatra Craiului Massif. Recent studies (BUCUR geomorphological characteristics of the Piatra et al., 2009; SĂSĂRAN et al., 2013; PLEŞ et al., Craiului Massif with extensive outcrops repre- 2013; MIRCESCU et al., 2014) have confirmed sent an optimal feature for studying the entire the presence of lowermost Cretaceous deposits carbonate succession. in that area (Fig. 2). Overlying these Štramberk limestones are either Barremian-Aptian brec- Several sections comprising the Jurassic- cias/conglomerates (UNGUREANU et al., 2015) or Cretaceous transition were studied. Earlier au- the Dâmbovicioara Formation the lowermost thors (JEKELIUS, 1923; ONCESCU, 1943; POPESCU, transgressive strata which are Early Valanginian 1966) assigned a to the stu- in age (GRĂDINARU et al., 2016). died limestones. However, other biostratigra- phic studies (BUCUR, 1978; PATRULIUS et al., 3. Materials and methods 1980; BUCUR et al., 2009; DRAGASTAN, 2010) re- Seven sections were analysed for micro- vealed the presence of Lower Cretaceous depo- facies and micropaleontological content (A-G) sits in the upper part of the carbonate succes- (Fig. 2): Curmătura-Turnu (A), Padina Închisă- sion. The present paper brings new biostratigra- Drumul lui Lehmann (B), Padina Popii (C), Cio- phical information regarding the Upper Jurassic- rânga Mare-Vf. Ascuţit-Padinile Frumoase (D), Lower Cretaceous transition in the studied area. Vlăduşca de Vest-Vlăduşca de Est (E), Zaplaz- Three biostratigraphic intervals (Kimmeridgian- Lanţuri (F), Padina Lăncii (G). The total thick- lower Tithonian, upper Tithonian-lower Berria- ness of the sampled sections ranges from 700 sian and upper Berriasian-lower Valanginian) m in the north to approximately 1200 m in the are identified. central part of the massif. Each section is de- 2. Geological framework fined by a gradual transition from massive lime- stones in their lower part towards metre/deci- The Piatra Craiului Massif forms the western meter-thick carbonate beds in their upper part. flank of a larger syncline unit, which was defi- Sections A-E were sampled at a resolution of 4 ned in the geological literature as the Piatra to 5 m and sections F and G were sampled at a Craiului Syncline. This structural unit is consi- resolution of 7 to 8 m. Nine hundred samples dered an integral part of the Dâmbovicioara were evaluated for their microfacies and micro- Couloir (PATRULIUS, 1969) (Fig. 1) and it repre- fossil content. However, 120 samples were spe- sents the eastern part of the Getic Carbonate cifically used to describe the microfossil assem- Platform (PATRULIUS, 1976). blages (Fig. 3). These sections were correlated The lower part of the sedimentary succes- by analysing repetitive patterns of microfossil sion is -early in age (Fig. 2). content and microfacies characteristics. As a It is characterized by the upward transition result, a composite bio-lithostratigraphic table from sandstones and marly limestones to lime- was generated (Fig. 3). stones and (POPESCU, 1966). These Remark: In Tethyan basinal sections strati- deposits contain ammonite fragments and pele- graphers refer to two-fold divisions of both the cypods [e.g., Bositra buchi (ROEMER, 1836)]. Kimmeridgian and the Valanginian and three- PATRULIUS (1969) and GRĂDINARU (2011) descri- fold divisions of both the Tithonian and the Ber- bed similar Bajocian deposits from the Dâmbo- riasian based of ammonites. Because there is vicioara Couloir. The age ascription is mainly no record of ammonite find in the studied shal- based on pelecypod fragments, gastropods and low-water limestones, we lack direct calibration solitary zoantharians. In the Bajocian-lower to the ammonite zones. Therefore, we do not Callovian succession hardground levels and refer to the formal subdivisions of the above condensed intervals rich in macro-oncoids and stages into substages (that come with the qua- stromatolitic structures are present (LAZĂR & lifying labels: Lower/Early, Middle and Up- GRĂDINARU, 2013). Upper Callovian- per/Late) but to informal two-fold subdvisions, radiolarites overlie the Bajocian-lower Callovian i.e., subdivisions into "lower/early" and "up- succession (Fig. 2). Detailed information about per/late" standing for "lower/earlier part of" and these deposits can be found in BUCUR (1980), "upper/later part of", respectively. MÉSZÁROS and BUCUR (1980), and BECCARO and LAZĂR (2007).

492 Carnets Geol. 16 (20)

Figure 1: Paleogeographic map indicating the position of the Piatra Craiului Syncline unit within the Dâmbovicioara Couloir (modified from PATRULIUS, 1969). 4. Lithostratigraphy intraclastic grainstones with gastropods, dasy- Sedimentological and textural features were cladalean algae, sponges, echinoderm frag- used to define three lithostratigraphic intervals ments, and foraminifera (Fig. 3). Intraclasts are labelled I to III from bottom to top of the stu- represented at some levels by various-sized died succession (Fig. 3). black pebbles (mm to cm). Some have a brec- ciated structure consisisting of blackened bio- Lithostratigraphic interval I comprises the clasts encased in a muddy matrix which is pig- lowermost 290 m of the carbonate succesion mented with organic matter. In some cases, (Fig. 3). This unit consists of alternating coral- they consist of darkened bioclasts (cyano- microbial boundstones and bioclastic intraclastic bacteria nodules, dasycladalean algae). rudstones. The rudstone levels contain en- crusting organisms [Crescentiella morronensis Lithostratigraphic interval III comprises the middle and upper parts of the carbonate depo- (CRESCENTI, 1969)], dasycladalean algae and echinoderm fragments (Fig. 3). Corals are sits from the Piatra Craiului Massif (between heavily encrusted by Lithocodium/Bacinella-ty- 408 and 880 m) (Fig. 3). Peloidal wackestone- pe structures. The sedimentology of this litho- packstone facies (Fig. 3) alternate with homo- stratigraphic interval is fully documented by geneous mudstones with cyanobacteria and floatstones of cyanobacteria nodules. However, PLEŞ et al. (2013). some levels of bioclastic packstone/grainstone Lithostratigraphic interval II includes the with dasycladalean algae and foraminifera were entire package of carbonate deposits between also identified in the uppermost part of this 290 and 408 meters of stratigraphic thickness interval (Fig. 3). (Fig. 3). The main facies type is coarse bio-

493 Carnets Geol. 16 (20)

Figure 2: Location of studied sections on the geological map of the Piatra Craiului Massif (modified from DIMITRESCU et al., 1971, 1974; PATRULIUS et al., 1971; SĂNDULESCU et al., 1972) (A-Curmătura-Turnu; B-Padina Închisă-Drumul lui Lehmann; C-Padina Popii; D-Ciorânga Mare-Vf. Ascuţit-Padinile Frumoase; E-Vlăduşca de Vest-Vlăduşca de Est; F- Zaplaz-Lanţuri; G-Padina Lăncii). 5. Micropaleontology Nautiloculina cf. broennimanni This chapter focuses on the systematic ARNAUD-VANNEAU & PEYBERNÈS, 1978 description of the most abundant and biostrati- (Fig. 6.F) graphically important foraminiferal species, identified in 120 samples. Apart from these, 1978 - Nautiloculina broennimanni n. sp. - ARNAUD- other associated species are represented inclu- VANNEAU & PEYBERNÈS, p. 81, Pl. 2, figs. 4-11. ding Nodosaria sp. (Fig. 3), Lenticulina sp. (Fig. 1991 - Nautiloculina broennimanni ARNAUD-VANNEAU & PEYBERNÈS, 1978 - ALTINER, p. 194, Pl. 7, figs. 3), Lituola baculiformis SCHLAGINTWEIT & GAW- 15-16. LICK , 2007 (Fig. 4.E), Frentzenella involuta 1997 - Nautiloculina broennimanni ARNAUD-VANNEAU (MANTSUROVA & GORBATCHIK, 1982) (Fig. 4.B), & PEYBERNÈS, 1978 - KOŁODZIEJ & DECROUEZ, p. Bulbobaculites sp. (Fig. 5.A), Scythiolina sp. 149, Pl. 1, fig. 3. (Fig. 6.J), and Freixialina planispiralis RAMALHO, Description: The test is lenticular in shape, 1969 (Fig. 6.O). Taxonomy of benthic foramini- planispirally coiled, made of agglutinated carbo- fera follows SEPTFONTAINE (1988), RIGAUD et al. nate particles. The inner structure is simple, (2013) and KAMINSKI (2014). Taxonomy of characterized by numerous chambers that calcareous algae follows that of BASSOULLET et expand in a very short distance from the prolo- al. (1978). culus to the end of the last whorl. An additional Class Foraminifera ORBIGNY, 1826 micritic layer coats the septa as a new chamber develops. The aperture is equatorial/low interio- Order Lituolida LANKESTER, 1885 marginal. Suborder Nezzazatina KAMINSKI, 2004 Superfamily Nezzazatoidea Remarks: N. broennimanni differs from Cha- rentia cuvillieri in not having a developed pseu- HAMAOUI & SAINT-MARC, 1970 doalveolar layer and canaliculated wall structu- Family Nautiloculinidae res. The identified specimens are smaller than LOEBLICH & TAPPAN, 1985 the original specimens described by ARNAUD- Genus Nautiloculina MOHLER, 1938 VANNEAU & PEYBERNÈS, 1978. Stratigraphic range: Tithonian-?Albian.

494 Carnets Geol. 16 (20)

Figure 3: Lithostratigraphic and micropaleontological characteristics of the carbonate succession from the Piatra Craiului Massif [1-Bioclastic rudstone with coral fragments, echinoderm spines, dasycladalean algae (Salpingoporella pygmaea) and encrusting organisms (Crescentiella morronensis); 2-Coarse bioclastic intraclastic grainstone with cyanobacteria nodules, dasycladalean algae (Neoteutloporella socialis; Campbeliella striata) and gastropods. Black pebbles consist of blackened cyanobacteria nodules; 3-Peloidal fenestral packstone with cyanobacteria nodules; 4- Peloidal intraclastic grainstone with cyanobacteria nodules and angular/subangular micritic intraclasts; 5-Peloidal bio- clastic intraclastic grainstone. Bioclasts: foraminifera (Bramkampella arabica), dasycladalean algae (Pseudocymopolia jurassica); 6-Peloidal grainstone with cyanobacteria nodules] (Scale bar: 1 mm). Order lars and vertical beams of the uncoiled part KAMINSKI & MIKHALEVIC, 2004 form a particular labyrinthic inner structure, Suborder Loftusiina best observed in longitudinally sectioned speci- mens. Aperture is simple in early ontogenetic KAMINSKI & MIKHALEVIC, 2004 stages, later becoming multiple. Superfamily Loftusioidea BRADY, 1884 Family Mesoendothyridae Stratigraphic range: uppermost Oxfordian- lower Tithonian. VOLOSHINOVA, 1958 Subfamily Labyrinthininae Family Everticyclamminidae SEPTFONTAINE, 1988 SEPTFONTAINE, 1988 Genus Labyrinthina WEYNSCHENK, 1951 Genus Everticyclammina Labyrinthina mirabilis REDMOND, 1964 WEYNSCHENK, 1951 Everticyclammina praekelleri BANNER & HIGHTON, 1990 (Fig. 4.D) (Fig. 4.F-G) 1951 - Labyrinthina mirabilis n. sp. - WEYNSCHENK, p. 798, Pl. 112, figs. 4, 6-7, 9. 1990 - Everticyclammina praekelleri n. sp. - BANNER 2005 - Labyrinthina mirabilis WEYNSCHENK, 1951 - & HIGHTON, p. 8, 10; Pl. 1, fig. 1; Pl. 3, fig. 5; SCHLAGINTWEIT et al., p. 31, Fig. 13.a-b. Pl. 4, figs. 1-11. Description: The test is characterized by a 2015 - Everticyclammina praekelleri BANNER & planispiral development juvenile and an HIGHTON, 1990 - PLEŞ et al., p. 46, Fig. 3.f-h. uncoiled rectilinear adult stage. Wall is fine Description: The test is planispirally coiled in agglutinated, imperforated. The interseptal pil- early ontogenetic stages, later starting to uncoil reaching terminal rectilinearity in most speci-

495 Carnets Geol. 16 (20)

mens. Wall is alveolar, imperforate made of Family Cyclamminidae MARIE, 1941 agglutinated carbonate grains. In the adult sta- Subfamily Choffatellinae MAYNC, 1958 ge, the hypodermis is characterized by the pre- Genus Bramkampella REDMOND, 1964 sence of elongated broadened alveoli in the Bramkampella arabica REDMOND, 1964 posterior-lateral area and widely spaced alveoli in the anterior-peripheral area. The aperture is (Fig. 4.C) single, terminal. 1964 - Bramkampella arabica n. sp. - REDMOND, p. Remarks: The differences between Everticy- 410, Pl. 1, figs. 26-29. clammina praekelleri and E. kelleri are related 1991 - Bramkampella arabica REDMOND, 1964 - mainly to the development of the alveolar BANNER & WHITTAKER, p. 45, Pl. 2, figs. 1-7. structures. E. praekelleri has much enlarged 2005 - Bramkampella arabica REDMOND, 1964 - BU- lateral alveoli compared with E. kelleri. The pre- CUR & SĂSĂRAN, Pl. 2, figs. 6-7. sence of this foraminifer in the Piatra Craiului Description: Medium-sized robust subconical Massif is mentioned for the first time in this test, planspirally enrolled in early stage. The study. test uncoils in a short distance and progressi- vely gains size in the adult stage. Wall is al- Stratigraphic range: lower Kimmeridgian-up- veolar, agglutinated. A network of elongated per Tithonian. interseptal alveoli radially developed defines the Everticyclammina kelleri inner structure of the foraminifer. The septa are (HENSON, 1948) high-arched, pierced by many openings (mul- tiple aperture type). (Fig. 6.H) Remarks: The highly curved septa and the 1948 - Pseudocyclammina kelleri n. sp. - HENSON, multiple aperture type, differentiate this species p. 16-17, Pl. 9, figs. 4-5, 7. from Rectocyclammina chouberti. The presence 1990 - Everticyclammina kelleri (HENSON, 1948) - of this foraminifer in the Piatra Craiului Massif is BANNER & HIGHTON, p. 5, Pl. 1, figs. 2-6; p. 7, mentioned for the first time in this study. Pl. 2, figs. 1-4; p. 9, Pl. 3, figs. 1-2. Description: Planispirally enrolled test in ear- Stratigraphic range: Kimmeridgian-lower Va- ly ontogenetic stages, involute. In several spe- langinian. cimens, in the adult stage, the last two cham- Suborder Ataxophragmiina bers can be uncoiled. Wall is thick, alveolar, FURSENKO, 1958 with agglutinated particles. The inner structure Superfamily Ataxophragmioidea of the foraminifer is composed of networks of SCHWAGER, 1877 bifurcated alveoli, mostly in the lateral parts of the hypodermis. The chambers are flattened; Family Montsaleviidae the septa are thick, non alveolar, pierced by a ZANINETTI et al., 1987 simple-type aperture. Genus Montsalevia Remarks: In comparison with E. praekelleri, ZANINETTI et al., 1987 E. kelleri specimens possess a more developed Montsalevia salevensis planispiral stage. (CHAROLLAIS et al., 1966) Stratigraphic range: ?Tithonian-Valanginian. (Fig. 6.I) Genus Rectocyclammina 1966 - Pseudotextulariella salevensis n. sp. - CHA- HOTTINGER, 1967 ROLLAIS et al., p. 28, Pl. 1, figs. 1-5. ? Rectocyclammina sp. 1966 - Pseudotextulariella salevensis - BRÖNNIMANN, Pl. III, fig. 4. (Figs. 5.D & 6.G) 1987 - "Montsalevia" salevensis - ZANINETTI et al., p. 166 Description: The test is conical, tall, elon- 1988 - Pseudotextulariella salevensis CHAROLLAIS et gated with a relatively short planispiral early al., 1966 - BUCUR, p. 387, Pl. 2, figs. 11-12. stage. The adult stage consists of inflated 1991 - Montsalevia salevensis - ALTINER, p. 170, chambers that rapidly increase in height as they Fig. 3; p. 173-177, Pl. 11, figs. 1-23. successively develop. The chambers are sepa- 2010 - Montsalevia salevensis (CHAROLLAIS et al., rated by thick septa. Wall is alveolar (alveoli 1966) - IVANOVA & KOŁODZIEJ, p. 25, Pl. 2, fig. network), agglutinated. The aperture seems to 10. be circular, in the center of the apertural face. 2016 - Montsalevia salevensis (CHAROLLAIS et al., 1966) - GRĂDINARU et al., Fig. 14.G-K. Description: Small-sized conical test that is trochospirally enrolled in the initial stage, later becoming biserial. The inner-structure is divi- ded by radial partitions in numerous small flat- ten chamberlets. The wall is microgranular (finely agglutinated), imperforated. Aperture is interiomarginal. Stratigraphic range: Berriasian-.

496 Carnets Geol. 16 (20)

Figure 4: Foraminiferal assemblage identified in biostratigraphic interval A (A: Mohlerina basiliensis; B: Frentzenella involuta; C: Bramkampella arabica; D: Labyrinthina mirabilis; E: Lituola baculiformis; F-G: Everticyclamina prae- kelleri; H: Redmondoides lugeoni; I-L: Neokilianina rahonensis; M-N: Parurgonina caelinensis) (A: Sample 216, Vlăduşca de Vest-Vlăduşca de Est section; B: Sample 17, Zaplaz-Lanţuri section; C: Sample 92, Padina Popii section; D: Sample 743, Padina Lăncii section; E: Sample 18, Zaplaz-Lanţuri section; F: Sample 634, Zaplaz-Lanţuri section; H: Sample 630, Zaplaz-Lanţuri section; I-J, L: Sample 633, Zaplaz-Lanţuri section; K: Sample 628, Zaplaz-Lanţuri section; M: Sample 650, Zaplaz-Lanţuri section; N: Sample 652, Zaplaz-Lanţuri section).

497 Carnets Geol. 16 (20)

Family Cuneolinidae SADOIVA, 1981 Family Hauraniidae SEPTFONTAINE, 1988 Subfamily Cuneolininae SADOIVA, 1981 Subfamily Amijellinae Genus Pseudotextulariella SEPTFONTAINE, 1988 BARNARD, 1953 Genus Anchispirocyclina Pseudotextulariella courtionensis JORDAN & APPLIN, 1952 BRÖNNIMANN, 1966 cf. Anchispirocyclina lusitanica (EGGER, 1902) (Fig. 5.C) 1966 - Pseudotextulariella courtionensis n. sp. - (Fig. 5.E-F) BRÖNNIMANN, p. 267-276, Figs. 1-8; Pl. I, figs. 1902 - Dicyclina lusitanica n. sp. - EGGER, p. 585, 1-5; Pl. II, figs. 1-2; Pl. III, fig. 3. Pl. 6, figs. 3-5. 1977 - Pseudotextulariella courtionensis BRÖNNI- 1967 - Anchispirocyclina lusitanica lusitanica (EG- MANN, 1966 - AZÉMA et al., p. 137, Pl. 3, figs. GER, 1902) - HOTTINGER, p. 74, Pl. 13, figs. 6-8. 13-14. 1987 - Anchispirocyclina lusitanica (EGGER, 1902) - 1983 - Pseudotextulariella courtionensis BRÖNNI- GRANIER, Pl. 48, fig. k. MANN, 1966 - DARSAC, Pl. 5, figs. 1-8. 2005 - Anchispirocyclina lusitanica (EGGER, 1902) - 2016 - Pseudotextulariella courtionensis BRÖNNI- SCHLAGINTWEIT et al., p. 25, Fig. 5.a-c. MANN, 1966 - GRĂDINARU et al., Fig. 14.B. Description: Test large, compressed, plani- Description: The initial stage of the test is spirally to asymmetrically coiled in juvenile sta- trochospirally developed, subsequently beco- ge, in adult stage spreading becoming penero- ming triserial and biserial in the adult stage. pliform or circular. The wall is imperforate, fine- Shape of the test is low to high conical. The ly agglutinated. Reticulate layers of beams and internal structure is composed of horizontal and rafters characterize the hypodermis. The central vertical partitions. Wall is finely agglutinated. part of the test is represented by a multitude of Aperture face is flattened with a slit-type radial interseptal pillars. The chambers are opening at the base. elongated, especially in adult stages, separated Stratigraphic range: Berriasian. by highly curved septa. Aperture is cribate, Suborder Orbitolinina KAMINSKI, 2004 extending across the apertural face. Superfamily Pfenderinoidea Remarks: The specimens identified in Piatra SMOUT & SUGDEN, 1962 Craiului are poorly preserved, and the above- Family Pfenderinidae described characteristics are difficult to obser- ve. The presence of this foraminifer in the Pia- SMOUT & SUGDEN, 1962 tra Craiului Massif is mentioned for the first Subfamily Pfenderininae time in this study. SMOUT & SUGDEN, 1962 Stratigraphic range: Tithonian-lower Berria- Genus Pfenderina HENSON, 1948 sian. Pfenderina neocomiensis Genus Pseudocyclammina (PFENDER, 1938) YABE & HANZAWA, 1926 (Fig. 6.M-O) Pseudocyclammina lituus 1938 - Eorupertia neocomiensis n. sp. - PFENDER - (YOKOYAMA, 1890) p. 236, Pl. XVI, figs. 1-7. 1961 - Pfenderina neocomiensis (PFENDER, 1938) - (Figs. 5.B & 6.A-B) SMOUT & SUGDEN, p. 585-588, Pl. 73, figs. 1-9; 1890 - lituus n. sp. - YOKOYAMA, p. 26, Pl. 74, figs. 1-3; Pl. 75, fig. 1. Pl. 5, fig. 7. 1995 - Pfenderina neocomiensis (PFENDER, 1938) - 1926 - Pseudocyclammina lituus (YOKOYAMA, 1890) BUCUR et al., p. 369, Pl. 6, figs. 4-6. - YABE & HANZAWA, p. 10, Pl. 2, figs. 3-6. Description: The test is high trochospiral 1995 - Pseudocyclammina lituus (YOKOYAMA, 1890) with a thickened (columellar) central zone. The - BUCUR et al., p. 358, Pl. 1, figs. 3-4. chambers are small and numerous separated by 2006 - Pseudocyclammina lituus (YOKOYAMA, 1890) oblique septa. The wall is agglutinated/micro- - KOBAYASHI & VUKS, p. 840, Figs. 5, 7-14. granular imperforate. Primary aperture is multi- Description: Planispirally enrolled medium to ple, secondary one being represented by an in- large-sized test tending to uncoil in advanced tercameral passage (groove), spiraling around ontogenetic stages. Wall alveolar, coarsely ag- the thick axial zone. glutinated with layers of thick alveoli in the hypodermis; septa are very thick. Aperture is Stratigraphic range: upper Berriasian-Valan- areal, multiple, across the apertural face. ginian. Stratigraphic range: Kimmeridgian-lower Va- langinian.

498 Carnets Geol. 16 (20)

Figure 5: Foraminiferal assemblage identified in biostratigraphic interval B (A: Bulbobaculites sp.; B: Pseudo- cyclammina lituus; C: Pseudotextulariella courtionensis; D: Rectocyclammina sp.; E-F: cf. Anchispirocyclina lusitani- ca) (A: Sample 394, Padina Închisă-Drumul lui Lehmann section; B: Sample 269, Vlăduşca de Vest-Vlăduşca de Est section; C: Sample 464, Padina Închisă-Drumul lui Lehmann section; D: Sample 464, Padina Închisă-Drumul lui Leh- mann section; E-F: Sample 46, Zaplaz-Lanţuri section).

Family Parurgoninidae Genus Neokilianina SEPTFONTAINE, 1988 SEPTFONTAINE, 1988 Neokilianina rahonensis Genus Parurgonina (FOURY & VINCENT, 1967) CUVILLIER et al., 1968 (Fig. 4.I-L) Parurgonina caelinensis CUVILLIER et al., 1968 1967 - Kilianina rahonensis n. sp. - FOURY & VIN- CENT, Pl. 2, figs. 1-14. (Fig. 4.M-N) 1988 - Neokilianina rahonensis (FOURY & VINCENT, 1967) - SEPTFONTAINE, p. 249. 1968 - Urgonina (Parurgonina) caelinensis n. sp. - 2005 - "Kilianina" rahonensis FOURY & VINCENT, CUVILLIER et al., p. 151, Pl. 2, figs. 1-12. 1967 - SCHLAGINTWEIT et al., p. 29, Fig. 11.a-d. 1975 - Parurgonina caelinensis CUVILLIER et al., Description: Medium sized conical test, with 1968 - SCHROEDER et al., p. 320-325, Pl. 1, figs. numerous chambers in the adult stage. The 1-4; Pl. 2, figs. 3-5. shape of the chamber lumen in longitudinal 2014 - Parurgonina caelinensis CUVILLIER et al., 1968 - MIRCESCU et al., p. 13, Pl. 1, fig. 1. sections is more or less triangular (oblique sto- Description: Test is conical, trochospirally lons/low arched septa). Closely spaced inter- developed in the initial part, later becoming septal pillars are developed in the central part uniserial. The chambers are cylindrical/semi-lu- of the test. Wall is finely agglutinated with nar in shape, separated by vertical pillars and canaliculate structure; aperture multiple. low-arched septa. The wall is pseudo-keriothe- Remarks: The presence of this foraminifer in cal, made of fine fibrous microstructural ele- the Piatra Craiului Massif is mentioned for the ments. Aperture is multiple. first time in this study. Remarks: P. caelinensis differs from Neoki- Stratigraphic range: uppermost Oxfordian- lianina rahonensis by internal structural fea- lower Tithonian. tures (pillar development and the shape of the chamber lumen). Stratigraphic range: uppermost Oxfordian- lower Tithonian.

499 Carnets Geol. 16 (20)

Superfamily Orbitolinoidea may develop canaliculated features in some MARTIN, 1890 specimens. Aperture is interiomarginal (slit- Subfamily Praedictyorbitolininae type) enclosed by a flat lip (Fig. 4.G). SCHROEDER, 1990 Stratigraphic range: upper -lower Genus Paracoskinolina MOULLADE, 1965 Tithonian. Paracoskinolina ? jourdanensis Order Involutinida (FOURY & MOULLADE, 1966) HOHENEGGER & PILLER, 1977 Suborder Involutinina (Fig. 6.K-L) HOHENEGGER & PILLER, 1977 1966 - Meyendorffina (Paracoskinolina) jourda- Superfamily Involutinoidea nensis n. sp. - FOURY & MOULLADE, p. 252, Pl. 1, ÜTSCHLI figs. 1-6. B , 1880 1980 - Paracoskinolina ? jourdanensis (FOURY & Family Trocholinidae MOULLADE, 1966) - ARNAUD-VANNEAU, Pl. 102, KRISTAN-TOLLMANN, 1963 figs. 1-4. Subfamily Trocholininae 2008 - Paracoskinolina ? jourdanensis (FOURY & KRISTAN-TOLLMANN, 1963 MOULLADE, 1966) - MICHETIUC et al., p. 226, Pl. 3, fig. 3. Genus Coscinoconus LEUPOLD, 1936 2014 - Paracoskinolina ? jourdanensis (FOURY & Coscinoconus campanellus MOULLADE, 1966) - BRUCHENTAL et al., p. 36, Fig. (ARNAUD-VANNEAU et al., 1988) 3.a. 2016 - Paracoskinolina ? jourdanensis (FOURY & (Fig. 6.C-D) MOULLADE, 1966) - GRĂDINARU et al., Fig. 14.A. Description: High conical test, some speci- 1988 - Trocholina campanella n. sp. - ARNAUD-VAN- mens with an apical bulb (a short juvenile NEAU et al., p. 371, Pl. 3, figs. 9-15. 1994 - Andersenolina campanella (ARNAUD-VANNEAU spire), followed by rectilinear development. et al., 1988) - NEAGU, p. 143, Pl. 13, figs. 19- Long intercameral vertical pillars characterize 20. the internal structure of the foraminifer. Also 2013 - Coscinoconus campanellus (ARNAUD-VANNEAU two sets of radial beams are present in the sub- et al., 1988) - RIGAUD et al., p. 330. epidermal region. Wall is microgranular, imper- 2016 - Coscinoconus campanellus (ARNAUD-VANNEAU forated. Aperture is composed of multiple pores et al., 1988) - GRĂDINARU et al., Fig. 14.U. on the basal side. Description: Large-sized Coscinoconus re- presentative with a bell-shaped (or piriform), Stratigraphic range: upper Berriasian-lower trochospirally coiled test and a convex base. Barremian. The chambers are tubular, undivided. Apical an- Order Textulariida gle ranges between 60 and 70 degrees. Wall DELAGE & HÉROUARD, 1896 (originally aragonitic) is hyaline, perforated. Suborder Textulariina Aperture located at the end of the tubular DELAGE & HÉROUARD, 1896 chambers. Superfamily Chrysalidinoidea Remarks: This species differs from the other NEAGU, 1968 Coscinoconus representatives by the apical an- Family Paravalvulinidae gle and by the pyriform shape of the test. BANNER et al., 1991 Stratigraphic range: upper Berriasian-Valan- Subfamily Paravalvulininae ginian. BANNER et al., 1991 Coscinoconus cherchiae Genus Redmondoides (ARNAUD-VANNEAU et al., 1988) BANNER et al., 1991 (Fig. 6.E) Redmondoides lugeoni (SEPTFONTAINE, 1977) 1988 - Trocholina cherchiae n. sp. - ARNAUD-VAN- NEAU et al., p. 369, Pl. 2, figs. 9-21. (Fig. 4.H) 1994 - Andersenolina cherchiae (ARNAUD-VANNEAU et al., 1988) - NEAGU, p. 126, Pl. 5, figs. 1-14. 1977 - Valvulina lugeoni n. sp. - SEPTFONTAINE, p. 2013 - Coscinoconus cherchiae (ARNAUD-VANNEAU et 612-613, Pl. 2, figs. 2-5. al., 1988) - RIGAUD et al., p. 330. 1987 - Valvulina lugeoni SEPTFONTAINE, 1977 - GRA- 2016 - Coscinoconus cherchiae (ARNAUD-VANNEAU et NIER, Pl. 14, fig. g. al., 1988) - GRĂDINARU et al., Fig. 14.V. 1991 - Redmondoides lugeoni (SEPTFONTAINE, 1977) Description: The test is medium in size cha- - BANNER et al., p. 127, figs. 46-54. racterized by variations of shape during onto- 2016 - Redmondoides lugeoni (SEPTFONTAINE, 1977) - GRANIER et al., p. 259, Pl. 1, fig. 17. geny. In the initial stage, the test is low to high Description: Large-sized conical, trochospiral conical in shape (40-50 degrees apical angle), test with thick microgranular/agglutinated walls and in advanced ontogenetic stages, the test and septa. The test is quadriserial throughout becomes more cylindrical and elongated. Cham- most ontogenetic stages. The microgranular bers are broader than those of C. campanellus material that forms the test walls and septa and triangular in shape in lungitudinal sections.

500 Carnets Geol. 16 (20)

Stratigraphic range: upper Berriasian-Valan- 6. Biostratigraphy of the Upper ginian. Jurassic-Lower Cretaceous transition Family Ventrolaminidae Three biostratigraphic intervals (A-C) were WEYNSCHENK, 1950 differentiated in the Upper Jurassic-Lower Cre- Genus Protopeneroplis taceous carbonate succession from Piatra WEYNSCHENK, 1950 Craiului Massif based on the occurrence of Protopeneroplis ultragranulata several species of foraminifera and dasycla- dalean algae (Fig. 3). (GORBATCHIK, 1971) 6.A. Biostratigraphic interval A (Fig. 6.P) (Kimmeridgian-lower Tithonian) 1971 - Hoeglundina ? ultragranulata n. sp. - GOR- The first interval contains the following algae BATCHIK, p. 135, Pl. 5, fig. 2.a-c. and foraminifera (Fig. 3): Campbeliella striata 1974 - Protopeneroplis trochangulata n. sp. - SEPT- (CAROZZI, 1954), Clypeina sulcata (ALTH, 1882), FONTAINE., p. 608, Pl. 1, figs. 1-18. 1987 - Protopeneroplis trochangulata SEPTFONTAINE, Neoteutloporella socialis (PRATURLON, 1963), Pe- 1974 - GRANIER, Pl. 3, figs. g-j; Pl. 44, figs. a, trascula bursiformis (ETALLON, 1859), Salpingo- d. porella annulata CAROZZI, 1953, S. pygmaea 1993 - Protopeneroplis ultragranulata (GORBATCHIK, (GÜMBEL, 1891), Steinmanniporella kapelensis 1971) - BUCUR, p. 221, Pl. 2, figs. 1-2, 5, 8, (SOKAČ & NIKLER, 1973), Bramkampella arabica 11-12. REDMOND, 1964 (Fig. 4.C), Everticyclammina 1997 - Protopeneroplis ultragranulata (GORBATCHIK, praekelleri BANNER & HIGHTON, 1990 (Fig. 4.F-G), 1971) - BUCUR, Pl. 6, figs. 1-14. Frentzenella involuta (MANTSUROVA & GORBATCHIK, 2016 - Protopeneroplis ultragranulata (GORBATCHIK, 1971) - GRĂDINARU et al., Fig. 14.S-T. 1982) (Fig. 4.B), Labyrinthina mirabilis WEYNS- Description: Small-sized trochospirally en- CHENK, 1951 (Fig. 4.D), Lituola baculiformis rolled, lenticular test, involute, with a two laye- SCHLAGINTWEIT & GAWLICK, 2007 (Fig. 4.E), Lenti- red calcareous wall. The inner layer is micro- culina sp., Mohlerina basiliensis (MOHLER, 1938) granular, protected by a hyaline outer layer. (Fig. 4.A), Neokilianina rahonensis (FOURY & Aperture is areal. VINCENT, 1967) (Fig. 4.I-L), Nodosaria sp., Parurgonina caelinensis CUVILLIER et al., 1968 Remarks: The trochospiral model of coiling (Fig. 4.M-N), and Redmondoides lugeoni (SEPT- of P. ultragranulata differentiates it from P. FONTAINE, 1977) (Fig. 4.H). The microfossil striata WEYNSCHENK. assemblage identified in this interval (0-410 m) Stratigraphic range: middle Tithonian-Bar- is characteristic of the Kimmeridgian-lower remian (acme in Berriasian-Valanginian). Tithonian interval. Order Rotaliida LANKESTER, 1885 Although some species of algae (e.g., Suborder Rotaliina Salpingoporella pygmaea or Clypeina sulcata) DELAGE & HÉROUARD, 1986 have longer stratigraphic distributions, most ?Family Rosalinidae REISS, 1963 taxa provide valuable biostratigraphic infor- Genus Mohlerina BUCUR et al., 1996 mation: Mohlerina basiliensis (MOHLER, 1938) • Several authors mentioned Campbeliella striata from Kimmeridgian-lower Berriasian (Fig. 4.A) limestones (CAROZZI, 1954; FARINACCI & RA- 1938 - Conicospirillina basiliensis n. sp. - MOHLER, DOIČIĆ, 1964). However, it is more common p. 27, Pl. 4, figs. 4-5. in Kimmeridgian-Tithonian deposits (JAFFRE- 1987 - "Conicospirillina" basiliensis MOHLER, 1938 - ZO, 1970; BERNIER, 1971). GRANIER, Pl. 3, figs. g-j; Pl. 44, fig. e. • Clypeina sulcata is characteristic of the 1996 - Mohlerina basiliensis (MOHLER, 1938) - BU- Kimmeridgian-Berriasian interval. It was CUR et al., p. 74, Pl. 3, figs. 3-6. mostly described from Upper Jurassic, Kim- 2012 - Mohlerina basiliensis (MOHLER, 1938) - meridgian-Tithonian sedimentary rocks SCHLAGINTWEIT, p. 639, Fig. 2.a-j. (BASSOULLET et al., 1978). Description: The test is generally low conical Petrascula bursiformis and Neoteutloporella in shape, trochospirally coiled. The test wall is • socialis are two algal species that are calcareous bilamellar (microcrystalline layer and common in the Upper Jurassic. They have radial-fibrous calcitic layer). Aperture is been identified in many Kimmeridgian- possibly slit-type. Tithonian deposits of the Tethyan realm Remarks: M. basiliensis is considered to be (DRAGASTAN, 1975; SCHLAGINTWEIT & EBLI, the single species of the genus Mohlerina. 1999; BUCUR et al., 2005; MEINHOLD et al., Stratigraphic range: middle Bathonian-lower 2009; SCHLAGINTWEIT, 2011). Valanginian. • Salpingoporella pygmaea is known from Bajocian-Aptian carbonate deposits (GRA- NIER & DELOFFRE, 1993; BUCUR, 1999; CARRAS et al., 2006) and it is most frequently re- ported in the Upper Jurassic (Kimmerid-

501 Carnets Geol. 16 (20)

gian-Tithonian) (FARINACCI & RADOIČIĆ, 1991; goporella annulata CAROZZI, 1953, Selliporella SENOWBARI-DARYAN et al., 1994). neocomiensis (RADOIČIĆ, 1963), cf. Anchispiro- • Steinmanniporella kapelensis is a rare cyclina lusitanica (EGGER, 1902) (Fig. 5.E-F), species known only from Tithonian deposits Bulbobaculites sp. (Fig. 5.A), Pseudocyclam- (SOKAČ & NIKLER, 1973; SCHLAGINTWEIT & mina lituus (YOKOYAMA, 1890) (Fig. 5.B, Pseu- EBLI, 1999; BUCUR & SĂSĂRAN, 2012; MIR- dotextulariella courtionensis BRÖNNIMANN, 1966 CESCU et al., 2014). (Fig. 5.C), and Rectocyclammina sp. HOTTINGER, 1967 (Figs. 5.D & 6.G). Regarding the foraminiferal assemblage, Neokilianina rahonensis, Parurgonina caelinen- • FARINACCI and RADOIČIĆ (1991) described sis and Labyrinthina mirabilis represent the Clypeina parasolkani from upper Tithonian- most biostratigraphically important taxa for this Berriasian deposits from Turkey (Pontides). interval. They were reported mainly from It is common in similar deposits from Sar- Kimmeridgian-Tithonian strata (CUVILLIER et al., dinia (DIENI & RADOIČIĆ, 1999), (Apen- 1968; SEPTFONTAINE, 1988; TASLI, 1993; POP & nines) (BRUNI et al., 2007), and Switzerland BUCUR, 2001; VELIĆ, 2007; PLEŞ et al., 2015). (GRANIER et al., 2014). • Selliporella neocomiensis is a typical species Considering this, the whole micropaleontolo- of Berriasian shallow water carbonates (PEY- gical assemblage identified in this biostratigra- BERNÈS, 1976; LUPERTO-SINNI & MASSE, 1986; phic interval (Fig. 3) represents the Kimmerid- GRANIER & DELOFFRE, 1993; BUCUR, 1999; gian-lower Tithonian interval. Although some SĂSĂRAN & BUCUR, 2001). species of foraminifera (Labyrinthina mirabilis, • Anchispirocyclina spp., including A. lusita- Neokilianina rahonensis, and Parurgonina caeli- nica, have been reported by several authors nensis) appear lower in the geological record in mostly from Tithonian-lowermost Berriasian the uppermost Oxfordian (SEPTFONTAINE, 1988; deposits (FOURCADE, 1970; JAFFREZO, 1980; BASSOULLET, 1997; VELIĆ, 2007; PLEŞ et al., DYA, 1992; SCHLAGINTWEIT et al., 2005). 2015), well-dated Oxfordian radiolarites (MÉS- • Pseudocyclammina lituus has a Kimmerid- ZÁROS & BUCUR, 1980; BECCARO & LAZĂR, 2007) gian-lower Valanginian distribution and is are directly below the limestones of interval A. most common in Tithonian-Berriasian depo- Moreover, many microfossils of the assemblage sits (DARGA & SCHLAGINTWEIT, 1991; MOSHA- (Clypeina sulcata, Petrascula bursiformis, Sal- MER & SCHLAGINTWEIT, 1999). pingoporella pygmaea, Coscinoconus alpinus, • Pseudotextulariella courtionensis is a Ber- Everticyclammina praekelleri, Mohlerina basi- riasian foraminifer commonly found in liensis, Redmondoides lugeoni) represent typi- Lower Cretaceous limestones from Switzer- cal Kimmeridgian-Tithonian biota (BUCUR, 1999; land (BRÖNNIMANN, 1966), France (DARSAC, SCHLAGINTWEIT et al., 2005), and most of the 1983) and Spain (Pyrenees) (SCHROEDER et mentioned taxa are known from carbonates no al., 2000). older than lower Kimmeridgian (BASSOULLET, The lower part of the biostratigraphic inter- 1997). In addition, the presence of Steinmanni- val B is probably still Tithonian in age. The first porella kapelensis and several sclerosponge occurrence of "cf. Anchispirocyclina lusitanica" species (Calcistella jachenhausenensis REITNER, is recorded near the base of biostratigraphic 1992, Neuropora lusitanica TERMIER, 1985, and interval B (Fig. 3) where this foraminifer is Thalamopora lusitanica TERMIER et al., 1985) associated with the alga Clypeina parasolkani. confirms the Tithonian age of the upper part of Pseudocyclammina lituus appears slightly biostratigraphic interval A. higher in the same interval of the sections stu- 6.B. Biostratigraphic interval B died. The first primary evidence for a Berriasian (upper Tithonian-lower Berriasian) age is brought by the first occurrence of Selli- In the second biostratigraphic interval (B), porella neocomiensis (Fig. 3), followed by that the total number of species of dasycladalean al- of Pseudotextulariella courtionensis. Thus the gae decreases compared to that of the forami- upper part of the biostratigraphic interval B can nifera species (Fig. 3). The following species definitely be ascribed to the lower Berriasian have been identified in this interval: Clypeina (GRANIER & BUCUR, 2011). parasolkani FARINACCI & RADOIČIĆ, 1991, Salpin-

X Figure 6: Foraminiferal assemblage identified in biostratigraphic interval C [(A-B: Pseudocyclammina lituus; C-D: Coscinoconus campanellus; E: Coscinoconus cherchiae; F: Nautiloculina cf. broennimanni; G: Rectocyclammina sp.; H: Everticyclammina kelleri; I: Montsalevia salevensis; J: Scythiolina sp.; K-L: Paracoskinolina ? jourdanensis; M-O: Pfenderina neocomiensis; O: Freixialina planispiralis (arrow); P: Protopeneroplis ultragranulata (arrows)] (A: Sample 11828, Ciorânga Mare-Vf. Ascuţit-Padinile Frumoase section; B: Sample 11879, Ciorânga Mare-Vf. Ascuţit-Padinile Frumoase section; C-D: Sample 11867, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; E: Sample 11868, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; F: Sample 11821, Ciorânga Mare- Vf. Ascuţit -Padinile Fru- moase section; G: Sample 11843, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; H: Sample 11867, Zaplaz- Lanţuri section; Sample 11867, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; I: Sample 11867, …/…

502 Carnets Geol. 16 (20)

Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; J: Sample 287, Vlăduşca de Vest-Vlăduşca de Est section; K: Sample 331, Vlăduşca de Vest-Vlăduşca de Est section; L: Sample 11830, Ciorânga Mare- Vf. Ascuţit -Padinile Fru- moase section; M: Sample 9, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; N: Sample 11830, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; O: Sample 12831, Ciorânga Mare- Vf. Ascuţit -Padinile Frumoase section; P: Sample 411, Padina Închisă-Drumul lui Lehmann section).

503 Carnets Geol. 16 (20)

It is impossible to identify the Tithonian-Ber- • However, it is common in upper Berriasian- riasian boundary in interval B, because none of lower Valanginian deposits in association the markers, either primary or secondary, or with Pfenderina neocomiensis (BUCUR et al., proxies are present in our material. The micro- 1995). paleontological assemblage of this stratigraphic • Protopeneroplis ultragranulata has a long interval (Fig. 3) merely indicates the Upper Ju- stratigraphic range (middle Tithonian-Barre- rassic-Lower Cretaceous transition. mian) with an acme in the Berriasian- Valanginian (ALTINER, 1991; CHIOCCHINI et 6.C. Biostratigraphic interval C al., 1994; BUCUR, 1997). (upper Berriasian-? lower Valanginian) Some foraminifera found in this assemblage As in interval B (Fig. 3), the total number of (e.g., Protopeneroplis ultragranulata) extend up foraminiferal species in interval C exceeds that into the Barremian (BUCUR, 1997; GRANIER & of other taxa such as dasycladalean algae. The BUCUR, 2011). However, most algae or foramini- main microfossils are represented by: Pseudo- fera listed above do not extend higher than the cymopolia jurassica (DRAGASTAN, 1968), Salpin- Valanginian and some have never been repor- goporella praturloni (DRAGASTAN, 1978) (Fig. 3), ted from Upper Valanginian strata. In conclu- Coscinoconus campanellus (ARNAUD-VANNEAU et sion, the above mentioned assemblage indi- al., 1988) (Figs. 3 & 6.C-D), C. cherchiae (AR- cates a late Berriasian-early Valanginian age for NAUD-VANNEAU et al., 1988) (Figs. 3 & 6.E), biostratigraphic unit C. Everticyclammina kelleri (HENSON, 1948) (Fig. 6.H), Freixialina planispiralis RAMALHO, 1969 The exact position of the Berriasian-Valangi- (Fig. 6.O, arrow), Montsalevia salevensis (CHA- nian boundary is difficult to identify on the sole ROLLAIS et al., 1966) (Figs. 3 & 6.I), Nautilocu- basis of the micropaleontological assemblage. lina cf. broennimanni (ARNAUD-VANNEAU & PEY- However, based on ammonite and BERNÈS, 1978) (Figs. 3 & 6.F), Paracoskinolina ? finds, the lowermost strata of the transgressive jourdanensis FOURY & MOULLADE, 1966 (Figs. 3 & Dâmbovicioara Formation that directly overlie 6.K-L), Pfenderina neocomiensis (PFENDER, limestones of interval C are dated as Early 1938) (Figs. 3 & 6.M-O), Protopeneroplis ultra- Valanginian (GRĂDINARU et al., 2016). At this granulata (GORBATCHIK, 1971) (Figs. 3 & 6.P), point, only two options are considered: 1) the Pseudocyclammina lituus (YOKOYAMA, 1890) (Fig. uppermost strata of lithostratigraphic unit III 6.A-B), and Scythiolina sp. (Fig. 6.J). and biostratigraphic unit C could be earliest Va- langinian in age, or 2) the hiatus at the boun- Dasycladalean algae (Pseudocymopolia ju- dary with the overlying Dâmbovicioara Forma- rassica, Salpingoporella praturloni) are rare. tion spans the stage boundary and the upper- They were identified in a stratigraphic level in most strata of lithostratigraphic unit III and bio- the uppermost part of this interval. Foraminife- stratigraphic unit C are Late Berriasian in age. ra (Coscinoconus campanellus, C. cherchiae, Montsalevia salevensis, Nautiloculina cf. broen- 7. Paleoenvironmental implications of nimanni, Paracoskinolina ? jourdanensis, Pfen- benthic foraminifera and derina neocomiensis, Protopeneroplis ultragra- calcareous algae nulata) are abundant in the same level (Fig. 3). The Upper Jurassic-Lower Cretaceous suc- • Pseudocymopolia jurassica and Salpingopo- cession from Piatra Craiului contains mainly rella praturloni are generally known from benthic foraminifera. Various factors, such as Berriasian-lower Valanginian deposits (DRA- salinity, water temperature, and nutrients GASTAN, 1975; JAFFREZO, 1980; BUCUR, 1985; (REISS & HOTTINGER, 1984; HUGHES, 2000), play FARINACCI & RADOIČIĆ, 1991; BUCUR & SĂ- an essential role in the diversity and abundance SĂRAN, 2005). of the benthic microfauna and the associated • Coscinoconus campanellus and C. cherchiae calcareous algae. Therefore, paleoecological are commonly found in upper Berriasian- information can be derived from their assem- lower Valanginian carbonate rocks in Italy blages and their analysis may contribute to im- (MANCINELLI & COCCIA, 1999), Serbia (BUCUR proving the depositional model of the carbonate et al., 1995), Romania (NEAGU, 1994), and succession. Bulgaria (IVANOVA, 2000). • Montsalevia salevensis is known from nu- The lowermost part of the carbonate succes- merous Valanginian deposits throughout sion corresponding to lithostratigraphic interval I (Fig. 3) consists of interbedded reef rudstones Europe (CHAROLLAIS et al., 1966; VELIĆ & SO- and coral microbial boundstones, i.e., a gradual KAČ, 1983; BOISSEAU, 1987; CHIOCCHINI et transition from reef slope areas to reef margin al., 1988; BUCUR, 1988; SCHROEDER et al., 2000). environments with bioconstructions becoming • Paracoskinolina ? jourdanensis was descri- dominant towards the top. Carbonate material bed for the first time from lower Barremian was transported from the bioconstructions and reworked on the deeper fore-reef slope where deposits by FOURY and MOULADE (1966). coral fragments and echinoderm plates are the most important bioclasts (Fig. 7) (PLEŞ et al., 2013). Lithostratigraphic interval I (0-289 m)

504 Carnets Geol. 16 (20)

(Fig. 3) contains Lenticulina sp., Nodosaria sp. Carbonate sediment was accumulating in inter- (Fig. 3) and other foraminiferal species cha- tidal ponds where cyanobacteria were the main racteristic of the lower and middle parts of bio- sediment producers. The supratidal environ- stratigraphic interval A (Fig. 3). They are asso- ment is indicated by the presence of abundant ciated with fragments of juvenile ammonites cyanobacteria, plant roots and fine, micritic and encrusting organisms (mainly Crescentiella sediment (Fig. 7). As the carbonate platform morronensis) (Fig. 7). The presence of Lenti- was prograding, the accomodation space was culina sp. in the assemblage with other bio- reduced and cyanobacteria became the main clasts points to a moderately deep, open- carbonate producers (SĂSĂRAN et al., 2013). marine environment (HUGHES, 2000; REOLID et However, high-energy bioclastic packstones- al., 2008a, 2008b; NIKITENKO et al., 2013). grainstones in the uppermost part of the inter- Lithostratigraphic interval II (290-408 m) val at 865 m contain foraminifera and dasycla- (Fig. 3) contains foraminifera from the upper dalean algae (Fig. 3). Pseudocymopolia juras- part of biostratigraphic interval A (Fig. 3). The sica and Salpingoporella praturloni are com- number of specimens of Neokilianina rahonensis monly associated with well oxygenated, shal- and Parurgonina caelinensis gradually increases low-water, subtidal environments (BUCUR & between 290-340 m. Their abundance is higher SĂSĂRAN, 2005). Other species (Coscinoconus at 340 m compared with their isolated occur- campanellus, C. cherchiae and Nautiloculina cf. rence 50 meters below. According to HUGHES broennimanni) usually also reflect similar (2000), "the progressively ascending appearan- palaeoecological conditions (ARNAUD-VANNEAU & ce of certain species" and the gradual increase PEYBERNÈS, 1978; ARNAUD-VANNEAU, 1980; SIM- of "their vertical extent and abundance until a MONS 1990). In addition, presence of large consistent presence" up section reflects a "pos- dasycladalean algae (Pseudocymopolia juras- sible gradual shallowing" of the depositional sica, Salpingoporella praturloni) in this litho- environments. These foraminifera are in coarse stratigraphic interval indicates a shallow-water bioclastic grainstones (lithostratigraphic interval environment. These sediments were probably II) associated with reworked black-pebbles and carried through a network of tidal channels dasycladalean algae (Steinmanniporella kape- crossing the intertidal and supratidal areas lensis and Neoteutloporella socialis) (Fig. 7), where cyanobacteria were growing in restricted which define high-energy, shallow-water plat- conditions (Fig. 7). The Upper Jurassic-Lower form margin environments. Redmondoides lu- Cretaceous foraminiferal assemblage from Pia- geoni, Coscinoconus alpinus and Everticyclam- tra Craiului Massif comprises mainly subtropical mina praekelleri are also present in lithostra- forms (Everticyclammina, Labyrinthina, Nautilo- tigraphic interval II (Fig. 3). Several authors culina, Protopeneroplis, and Pseudocyclammina) (PÉLISSIÉ et al., 1984; TYSZKA, 1994; SAVELIEVA with very few tropical exceptions (Bramkam- et al., 2014) have described these species from pella, Paracoskinolina, and Redmondoides) similar high-energy facies (bioclastic grain- (KUZNETSOVA et al., 1996). stones) and depositional settings (Fig. 7). Fur- 8. Conclusions ther discussion regarding the lithostratigraphy of these deposits can be found in MIRCESCU et al. 1. The Kimmeridgian-Berriasian (? Lowermost (2014). The facies identified in lithostratigraphic Valanginian) limestones from Piatra Craiului interval II point to the presence of elevated Massif correspond to an overall regressive carbonate margin deposits where coarser sedi- depositional sequence that is subdivided ments were accumulating under high-energy into three informal lithostratigraphic units conditions within a shallow-water environment labelled I to III. (Fig. 7). Coral fragments are common which 2. The foraminiferal and algal assemblages suggests that reworking has occurred either identified in the studied interval provide from the underlying bioconstructions or from supplementary information regarding the adjacent and coeval bioconstructions. The pre- depositional environments that range from sence of micritic-rimmed bioclasts indicates that fore-reef to innermost platform settings. the calcareous sand bars were probably adja- 3. In addition, these assemblages allow sub- cent to a lagoonal area where the micritisation division of the studied interval into three occurred under more restrictive conditions. successive chronostratigraphic units. Subsequently, the micritised bioclasts were re- 4. The first and second lithostratigraphic units, worked in high-energy deposits. i.e., units I and II, correspond to a single Lithostratigraphic interval III (Fig. 3) is com- biostratigraphic unit, i.e., unit A. They are posed of interbedded intertidal/supratidal probably Kimmeridgian to early Tithonian in peloidal wackestone-packstone and homoge- age. neous mudstone with cyanobacteria nodules. 5. The position of the Kimmeridgian – Titho- Cyanobacteria are forming the main bioclasts. nian stage boundary cannot be precisely lo- The intertidal conditions are indicated by abun- cated. dant laminoid fenestral structures (Fig. 7).

505 Carnets Geol. 16 (20)

Figure 7: Conceptual depositional model of the Upper Jurassic-Lower Cretaceous carbonate succession from the Piatra Craiului Massif (1: Fore-reef rudstone facies; 2: Platform margin coral-microbial bioconstructions; 3: Platform margin sand-bar grainstone facies; 4: Intertidal pond fenestral wackestone facies; 5: Tidal channel grainstone facies; 6: Supratidal marsh, mudstone-wackestone facies; 7: Coral fragments; 8: Corals; 9: Echinoderm plates; 10: Microbial crust fragments; 11: Microbial crusts; 12: Pelecypods; 13: Dasycladalean algae; 14: Benthic foraminifera; 15: Cyanobacteria nodules; 16: Gastropods; 17: Fenestral structures; 18: Peloids and black pebbles). 6. The third lithostratigraphic unit, i.e., unit tinuity of the Dâmbovicioara Formation (or III, spans two biostratigraphic units, i.e., of Barremian-Aptian breccias/conglomera- units B and C. They are probably late Titho- tes) that possibly spans the boundary. Such nian to Berriasian in age, althought an early discontinuities tied either to a major rela- Valanginian age cannot be excluded for its tive sea-level fall (VAIL's hypothesis), a uppermost strata. drowning event (SCHLAGER's hypothesis), or 7. The Tithonian-Berriasian stage boundary is a combination of both have been reported located in biostratigraphic unit B, but its from several localities around the world exact position within the interval cannot be near the Berriasian-Valanginian (e.g., GRA- identified. NIER, 1994; GRANIER et al., 1995, 2006). 8. The Berriasian-Valanginian stage boundary 10. To summarize, biostratigraphers have diffi- is possibly located in biostratigraphic unit C, culty in clearly identifying stage or substage near the top of this unit, which is also the boundaries in shallow-water carbonate set- top of the lithostratigraphic unit III and tings of the Jurassic-Cretaceous transition. which coincides with the basal discontinuity An holostratigraphic approach, integrating of the Dâmbovicioara Formation (or of sequence , will hopefully provi- Barremian- Aptian breccias/conglomerates). de refined results. In any case, further in- vestigations should be carried out because, 9. There is an alternative hypothesis for the for instance, they could help to better loca- location of this last stage boundary, i.e., te the Berriasian-Valanginian boundary. the hiatus associated with the basal discon-

506 Carnets Geol. 16 (20)

Acknowledgments ration-Production elf-Aquitaine, Pau, Mé- This study is a contribution to the CNCS moire, vol. 17, p. 293-304. research project financed by the PN-II-ID-PCE- BASSOULLET J.-P., BERNIER P., CONRAD M.A., 2011-3-0025 grant. The authors are grateful to DELOFFRE R. & JAFFREZO M. (1978).- Les algues dasycladales du Jurassique et du Cré- Mr. Mircea VERGHELEŢ (Director) and the scien- tific council of the Piatra Craiului National Park tacé.- Geobios, Lyon, Mémoire Spécial no. 2, for granting permission to work in the studied 330 p. BECCARO P. & LAZĂR I. (2007).- Oxfordian and area. Last but not least, R.W. SCOTT, F. SCHLA- Callovian radiolarians from the Bucegi Massif GINTWEIT and an anonymous reviewer are than- ked for their constructive comments on the and Piatra Craiului Mountains (Southern original manuscript. carpathians, Romania).- Geologica Carpa- thica, Bratislava, vol. 58, no. 4, p. 305-320. Bibliographic references BERNIER P. (1971).- Deux nouvelles algues ALTINER D. (1991).- Microfossil biostratigraphy Dasycladacées du Jurassique supérieur du (mainly foraminifers) of the Jurassic-Lower Jura méridional.- Geobios, Lyon, vol. 4, no. Cretaceous successions in north-western 3, p. 173-184. Anatolia (Turkey).- Geologica Romana, Ro- BOISSEAU T. (1987).- La plate-forme jurassique ma, vol. 27, p. 167-213. et sa bordure subalpine au Berriasien-Va- ARNAUD-VANNEAU A. (1980).- Micropaléontologie, langinien (Chartreuse-Vercors). Analyse et paléoécologie et sédimentologie d'une plate- corrélation avec les séries de bassin.- Thèse forme carbonatée de la marge passive de la de Doctorat, Université du Grenoble, 413 p. Téthys : L'Urgonien du Vercors septentrional BRÖNNIMANN P. (1966).- Pseudotextulariella et de la Chartreuse.- Thèse Doctorat es courtionensis, n. sp., from the Valanginian of Sciences; Geologie Alpine, Grenoble, 3 volu- well Courtion 1, Courtion, Canton of Fri- mes, 876 p. bourg, Switzerland.- Archives des Sciences, ARNAUD-VANNEAU A., BOISSEAU T. & DARSAC C. Genève, vol. 19, no. 3, p. 265-278. RUCHENTAL UCUR OCIUBA E (1988).- Le genre Trocholina PAALZOW 1922 B C., B I.I., C I. & H - et ses espèces au Crétacé.- Revue de Paléo- BRIŞTEAN A.M. (2014).- Sea-level changes biologie, Genève, Volume Spécial no. 2 and sedimentary response across the Barre- (Benthos '86), p. 353-377. mian-Early Aptian in Pădurea Craiului Moun- ARNAUD-VANNEAU A. & PEYBERNÈS B. (1978).- Les tains, Romania.- Acta Paleontologica Roma- représentants éocrétacés du genre Nautilo- niae, Cluj Napoca, vol. 9, no. 2, p. 33-46. RUNI UCUR RÉAT culina MOHLER, 1938 (Foraminifera, Fam. B R., B I.I. & P A. (2007).- Upper- Lituolidae ?) dans les chaînes subalpines most Jurassic-lowermost Cretaceous carbo- septentrionales (Vercors) et les Pyrénées nate deposits from Fara San Martino franco-espagnoles.- Géobios, Lyon, vol. 11, (Maiella, Italy): Biostratigraphic remarks.- p. 67-81. Studia UBB Geologia, Cluj Napoca, vol. 52, AZÉMA J., CHABRIER G., FOURCADE É. & JAFFREZO M. no. 2, p. 45-54. (1977).- Nouvelles données micropaléonto- BUCUR I.I. (1978).- Microfacies of white lime- logiques, stratigraphiques et paléogéogra- stones from the northern part of the Piatra phiques sur le Portlandien et le Néocomien Craiului Massif. Biostratigraphical remarks.- de Sardaigne.- Revue de Micropaléontologie, Dări de Seamă ale Şedinţelor Institutului Paris, vol. 20, no. 3, p. 125-139. Geologic al României, Bucureşti, vol. 64 (for BANNER F.T. & HIGHTON J. (1990).- On Everticy- 1976-1977), p. 89-105 [in Romanian]. UCUR LAKE clammina REDMOND (foraminifera), especially B I.I. (1980).- Rhaxella sorbyana (B ) in E. kelleri.- Journal of Micropalaeontology, Oxfordian radiolarites from the Piatra Craiu- London, vol. 9, no. 1, p. 1-14. lui Massif.- Dări de Seamă ale Şedinţelor BANNER F.T., SIMMONS M.D. & WHITTAKER J.E. Institutului Geologic al României, Bucureşti, (1991).- The Mesozoic Chrysalidinidae (Fora- vol. 65 (for 1977-1978), p. 31-35. minifera, Textulariacea) of the Middle East: BUCUR I.I. (1985).- Sur la présence des cystes The REDMOND (ARAMCO) taxa and their rela- reproducteurs dans les ramifications de tives.- Bulletin of the British Museum of Macroporella praturloni et quelques consi- Natural History, London, (Geology), vol. 47, dérations concernant l'évolution de la clado- p. 101-152. sporie chez les dasycladales fosiiles.- Evolu- BANNER F.T. & WHITTAKER J.E. (1991).- REDMOND's tion Adaptation, Cluj Napoca, p. 101-109. "new lituolid foraminifera" from the Mesozoic BUCUR I.I. (1988).- Les foraminifères du Crétacé of Saudi Arabia.- Micropaleontology, New inférieur (Berriasien-Valanginien) de la zone York, vol. 37, no. 1, p. 41-59. de Reşiţa-Moldova Nouă (Carpathes Méridio- BASSOULLET J.-P. (1997).- Les grands Forami- nales, Roumanie). Remarques biostratigra- nifères. In: CARIOU E. & HANTZPERGUE P. phiques.- Revue de Paléobiologie, Genève, (eds.), Biostratigraphie du Jurassique ouest- Volume Spécial no. 2 (Benthos '86), p. 379- européen et méditerranéen : Zonations 389. parallèles et distribution des microfossiles.- BUCUR I.I. (1993).- Remarks on Pseudocymo- Bulletin des Centres de Recherches Explo- polia jurassica (DRAGASTAN, 1968). In: BARAT-

507 Carnets Geol. 16 (20)

TOLO F., DE CASTRO P. & PARENTE M. (eds.), ve, vol. 7, p. 319-324. Studies on fossil benthic algae.- Bolletino de CARRAS N., CONRAD M.A. & RADOIČIĆ R. (2006).- la Societa Paleontologica Italiana, Modena, Salpingoporella, a common genus of Meso- Special Volume 1, p. 69-80. zoic Dasycladales (calcareous green algae).- BUCUR I.I. (1997).- Representatives of the Revue de Paléobiologie, Genève, vol. 25, no. genus Protopeneroplis (Foraminifera) in the 2, p. 457-517. Jurassic and Lower Cretaceous deposits in CHAROLLAIS J., BROENNIMANN P. & ZANINETTI L. Romania. Comparisons with other regions of (1966).- Troisième note sur les foraminifères the Tethyan Area.- Acta Paleontologica du Crétacé inférieur de la région genevoise. Romaniae, Cluj Napoca, vol. 1, p. 65-74. Remarques stratigraphiques et description BUCUR I.I. (1999).- Stratigraphic significance of de Pseudotextulariella salevensis, n. sp. ; some skeletal algae (Dasycladales, Cauler- Haplophragmoides joukowskyi, n. sp. ; pales) of the Phanerozoic. In: FARINACCI A. & Citaella? favrei, n. sp.- Archives des Scien- LORD A.R. (eds.), Depositional episodes and ces, Genève, vol. 19, no. 1, p. 23-48. bioevents.- Palaeopelagos Special Publica- CHIOCCHINI M., FARINACCI A., MANCINELLI A., tion, Rome, vol. 2, p. 53-104. MOLINARI V. & POTETTI M. (1994).- Biostrati- BUCUR I.I., CONRAD M. & RADOIČIĆ R. (1995).- grafia a foraminiferi, dasicladali e calpionelle Foraminifers and calcareous algae from delle successioni carbonatiche mesozoiche Valanginian limestones in the Jerma river dell'Appennino centrale (Italia).- Studi Geo- canyon, Eastern Serbia.- Revue de Paléo- logici Camerti, Camerino, Volume Speciale, biologie, Genève, vol. 14, no. 2, p. 349-377. Biostratigrafia dell'Italia centrale, p. 9-128. BUCUR I.I., DRAGASTAN O., LAZĂR I., SĂSĂRAN E. & CHIOCCHINI M., MANCINELLI A. & MARCUCCI C. POPA M. (2011).- Mesozoic algae bearing (1988).- Distribution of benthic foraminifera deposits from Hăghimaş Mountains (Bicaz and algae in the Lazium-Abruzzi carbonate Valley Area). In: BUCUR I.I. & SĂSĂRAN E. platform facies (Central Italy) during Upper (eds.), Calcareous algae from romanian Malm-Neocomian.- Revue de Paléobiologie, Carpathians.- Field Trip Guidebook, 10th Genève, Volume Spécial no. 2 (Benthos '86), International Symposium on Fossil Algae, p. 219-227. Cluj University Press, Cluj Napoca, p. 137. CUVILLIER J., FOURY G. & PIGNATTI-MORANO A. BUCUR I.I., HOFFMANN M. & KOŁODZIEJ B. (2005).- (1968).- Foraminifères nouveaux du Juras- Uppermost Jurassic-Lowermost Cretaceous sique supérieur du Val Celina (Frioul occi- benthic algae from Tethys and the European dental, Italie).- Geologica Romana, Roma, Platform. A case study from Poland.- Revista vol. 7, p. 141-156. Española de Micropaleontologia, Madrid, vol. DARGA R. & SCHLAGINTWEIT F. (1991).- Mikro- 37, no. 1, p. 105-129. fazies, paläontologie und stratigraphie der BUCUR I.I. & SĂSĂRAN E. (2005).- Relationship Lerchkogelkalke (Tithon-Berrias) des Die- between algae and paleoenvironment: An trichshorns (Salzburger Land, Nördliche Kal- Early Cretaceous case study, Trascău Moun- kalpen).- Jahrbuch der Geologischen Bunde- tains, Romania.- Facies, Erlangen, vol. 51, sanstalt, Wien, vol. 134, no. 2, p. 205-226. p. 274-286. DARSAC C. (1983).- La plateforme berriaso- BUCUR I.I. & SĂSĂRAN E. (2012).- Large dasy- valanginienne du Jura méridional aux mas- cladalean algae from Upper Jurassic lime- sifs subalpins (Ain, Savoie). Sédimentologie, stone deposits of the Apuseni Mountains minéralogie, stratigraphie, paléogéographie, (Romania) - habitat and depositional envi- micropaléontologie.- Thèse de Doctorat, Uni- ronment.- Geodiversitas, Paris, vol. 34, no. versité du Grenoble, 319 p. 1, p. 219-239. DIENI I. & RADOIČIĆ R. (1999).- Clypeina BUCUR I.I., SĂSĂRAN E., IACOB R., ICHIM C. & TURI dragastani sp. nov.; Salpingoporella granieri V. (2009).- Upper Jurassic shallow-water sp. nov. and other dasycladalean algae from carbonate deposits from some Carpathian the Berriasian of Eastern Sardinia.- Acta areas: New micropaleontological results. In: Paleontologica Romaniae, Cluj Napoca, vol. Proceedings of the 8th Symposium of IGCP 2, p. 105-123. 506, Marine and non-marine Jurassic: Global DIMITRESCU R., PATRULIUS D. & POPESCU I. correlation and major global events, Bucha- (1971).- Geological map of Romania, rest (Romania).- Abstracts Volume, Univer- 1:50.000, sheet 110c.- Institutul Geologic şi sity of Bucharest, p. 13-14. Geofizic al României, Bucureşti [in Roma- BUCUR I.I., SENOWBARI-DARYAN B. & ABATE B. nian]. (1996).- Remarks on some foraminifera DIMITRESCU R., POPESCU I. & SCHUSTER C.A. from the Upper Jurassic (Tithonian) reef (1974).- Geological map of Romania, limestone of Madonie Mountains ().- 1:50.000, sheet 110a.- Institutul Geologic şi Bolletino della Società Paleontologica Italia- Geofizic al României, Bucureşti [in Roma- na, Modena, vol. 35, no. 1, p. 65-80. nian]. CAROZZI A. (1954).- Survivance du genre DRAGASTAN O.N. (1975).- Upper Jurassic and Teutloporella dans le Jurassique supérieur du Lower Cretaceous microfacies from the Bicaz Grand Salève.- Archives des Sciences, Genè- Valley basin (East Carpathians).- Mémoires

508 Carnets Geol. 16 (20)

de l'Institut de Géologie et Géophysique, Geología, Rosario, vol. 79-81, p. 9-10. Bucarest, vol. 21, p. 1-87. GRANIER B., CLAVEL B., CHAROLAIS J. & WEIDMANN DRAGASTAN O.N. (2010).- The Getic Carbonate M. (2014).- Latest Jurassic-Early Cretaceous Platform. Jurassic-Lower Cretaceous strati- dasycladalean algae (Chlorophyta) from the graphy, paleogeographical reconstruction, Morand drilling at Montricher (Canton of provinces and biodiversity.- Bucharest Uni- Vaud, Switzerland).- Acta Paleontologica versity Press, 621 p. Romaniae, Cluj Napoca, vol. 10, no. 1-2, p. DYA M. (1992).- Mikropaleontologische und 25-38. fazielle Unterschungen in Oberjura zwischen GRANIER B. & DELOFFRE R. (1993).- Inventaire Salzburg und Lofer.- PhD Thesis, University critique des algues dasycladales fossiles. IIº of Berlin, 137 p. Partie - Les algues dasycladales du Jurassi- EGGER J.G. (1902).- Der Bau der Orbitolinen und que et du Crétacé.- Revue de Paléobiologie, verwandter Formen.- Abhandlungen der Genève, vol. 12, no. 1, p. 19-65. Mathematisch-Physikalischen Klasse der Kö- GRANIER B., PEEBLES R.G. & SANDER N.J. (2006).- niglisch Bayerischen Akademie der Wissen- Discussion on the Jurassic evolution of the schaften, München, Band XXI, Abh. 3, p. Arabian carbonate platform edge in the 577-600. central Oman Mountains, Geological Society FARINACCI A. & RADOIČIĆ R. (1964).- Correlazione of London Journal, vol. 162, 2005, pp. 349- fra serie giurese e cretacee dell'Appennino 362.- Journal of the Geological Society, vol. centrale e della Dinaridi externe.- La Ricerca 163, no. 6, p. 1047-1050. Scientifica, Roma, vol. 2A, no. 7, p. 269- GRANIER B., TOLAND C., GÈZE R., AZAR D. & 300. MAKSOUD S. (2016).- Some steps toward a FARINACCI A. & RADOIČIĆ R. (1991).- Late Juras- new story for the Jurassic-Cretaceous tran- sic-Early Cretaceous dasycladales (green sition in Mount Lebanon.- Carnets Geol., algae) from the Western Pontides, Turkey.- Madrid, vol. 16, no. 8, p. 247-269. Geologica Romana, Roma, vol. 27, p. 135- GRANIER B., VIRGONE A., BUSNARDO R. & BULOT 165. L.G. (1995).- Des calpionelles dans l'Hau- FOURCADE É. (1970).- Le Jurassique et le Crétacé terivien supérieur. Découverte exception- aux confins des chaînes bétiques et ibéri- nelle à Busot (Alicante, Espagne).- Comptes- ques (Sud-Est de l'Espagne).- Thèse de Rendus de l'Académie des Sciences, Paris, Doctorat, Paris, 3 volumes, 255 p. (IIa), t. 321, p. 1179-1186. FOURY G. & MOULLADE M. (1966).- Orbitolinidae GRĂDINARU M. (2011).- Jurassic hardgrounds nouveaux du Barrémien (faciès urgonien) from Bucegi Mountains (western slope) and des Alpilles (Bouches-du-Rhône).- Revue de Almăjului Mountains (Sviniţa).- PhD Thesis Micropaléontologie, Paris, vol. 8, no. 4, p. (in Romanian), Universitatea din Bucureşti, 249-257. 200 p. FOURY G. & VINCENT E. (1967).- Morphologie et GRĂDINARU M., LAZĂR I., BUCUR I.I., GRĂDINARU E., répartition stratigraphique du genre Kilianina SĂSĂRAN E., DUCEA M.N. & ANDRĂŞANU A. PFENDER (Foraminifère).- Eclogae geologicae (2016).- The Valanginian history of the Helvetiae, Bâle, vol. 60, no. 1, p. 33-51. eastern part of the Getic Carbonate Platform GORBATCHIK T.N. (1971).- On Early Cretaceous (Southern Carpathians, Romania): Evidence foraminifera of the Crimea.- Akademia Nauk, for emergence and drowning of the plat- Voprosi Micropaleontologija, Moscow, vol. form.- Cretaceous Research, vol. 66, p. 11- 14, p. 125-139. 42. GRANIER B. (1987).- Le Crétacé inférieur de la HENSON F.R.S. (1948).- Larger imperforate Costa Blanca entre Busot et Altea, Alicante Foraminifera of south-western Asia. Families (Espagne) : Biostratigraphie, sédimentolo- Lituolidae, Orbitolinidae and Meandropsini- gie, évolution tectono-sédimentaire.- Thèse, dae.- British Museum (Natural History), Lon- Docteur de l'Université Paris VI (nouveau don, 126 p. régime); Mémoires des Sciences de la Terre, HOTTINGER L. (1967).- Foraminifères imperforés Université Pierre et Marie Curie, Paris, no. du Mésozoïque marocain.- Notes et Mémoi- 87-49, vol. I: 281 p.; vol. II: 54 Pls. res du Service géologique, Rabat, vol. 209, GRANIER B. (1994).- Early Valanginian unconfor- 179 p. mities in Central Atlantic and Western HUGHES W.G. (2000).- Saudi Arabian Late Mediterranean areas.- Géologie Méditerra- Jurassic and Early Cretaceous agglutinated néenne, Marseille, t. XXI, p. 81-85. foraminiferal associations and their appli- GRANIER B. & BUCUR I.I. (2011).- Stratigraphic cation for age, paleoenvironmental interpre- ranges of some Tithonian-Berriasian benthic tation, sequence stratigraphy and carbonate foraminifers and Dasycladales. Re-evaluation reservoir architecture. In: HART M.B., KA- of their use in identifying this stage boun- MINSKI M.A. & STUART C.W. (eds.), Procee- dary in carbonate platform settings. In: dings of the Fifth International Workshop on GROSHENY D., GRANIER B. & SANDERS N. (eds.), agglutinated Foraminifera.- Grzybowski Platform to basin correlations in Cretaceous Foundation Special Publication, Krakow, vol. times.- Boletín del Instituto de Fisiografía y 7, p. 149-165.

509 Carnets Geol. 16 (20)

IVANOVA D. (2000).- Middle Callovian to Valan- no. 1, p. 33-66. ginian microfossil biostratigraphy in the MANCINELLI A. & COCCIA B. (1999).- Le Trocholine West Balkan Mountain, Bulgaria (SE Euro- dei sedimenti mesozoici di piattaforma pe).- Acta Paleontologica Romaniae, Cluj carbonatica dell'Appennino-centro-meridio- Napoca, vol. 2 (for 1999), p. 231-236. nale (Abruzzo e Lazio).- Revue de Paléobio- IVANOVA D. & KOLODZIEJ B. (2010).- Late logie, Genève, vol. 18, no. 1, p. 147-171. Jurassic-Early Cretaceous foraminifera from MEINHOLD G., KOSTOPOULOS D., REISCHMANN T., Štramberk-type limestones, Polish Outer FREI D. & BOUDAGHER-FADEL K.M. (2009).- Carpathians.- Studia UBB Geologia, Cluj Geochemistry, provenance and stratigraphic Napoca, vol. 55, no. 22, p. 3-31. age of metasedimentary rocks from the JAFFREZO M. (1970).- Précisions stratigraphiques eastern Vardar suture zone, northern et tectoniques sur le lobe de Fontjoncouse Greece.- Palæogeography, Palæoclimatolo- de la nappe de Corbières orientales.- Bulletin gy, Palæoecology, vol. 277, p. 199-225. de la Société géologique de France, Paris, MÉSZÁROS N. & BUCUR I.I. (1980).- Oxfordian (7e série), vol. 12, no. 1, p. 65-77. nannoplankton from the Piatra Craiului Mas- JAFFREZO M. (1980).- Les formations carbona- sif.- Muzeul Bruckental Ştiinţe Naturale, vol. tées des Corbières (France) du Dogger à 24, p. 73-77 [in Romanian]. l'Aptien : Micropaléontologie, stratigraphie, MICHETIUC M., CATINCUŢ C. & BUCUR I.I. (2008).- biozonation, paléoécologie. Extension des Microfacies and microfossils of the Lower résultats à la Mésogée.- Thèse de Doctorat Cretaceous limestones from the southern d'État, Université Pierre et Marie Curie, Pa- part of Vâlcan Mountains.- Acta Paleonto- ris, 655 p. logica Romaniae, Cluj Napoca, vol. 6, p. JEKELIUS E. (1923).- Das Gebirge von Braşov.- 217-227. Anuarul Institutului Geologic al României, MIRCESCU C.V., BUCUR I.I. & SĂSĂRAN E. (2014).- Bucureşti, vol. 19, p. 308-406. Dasycladalean algae from Upper Jurassic- KAMINSKI M. (2014).- The 2010 classifica- Lower Cretaceous limestones of Piatra tion of the agglutinated foraminifera. In: Craiului Massif (South Carpathians, Roma- ALEGRET L. & KAMINSKI M. (eds.), Advances in nia) and their relationship to paleoenviron- agglutinated foraminiferal research: The ment.- Studia UBB Geologia, Cluj Napoca, Ninth International Workshop on Agglutina- vol. 59, no. 1 (for 2013), p. 5-27. ted Foraminifera, IWAF-9.- Micropaleon- MOHLER W. (1938).- Mikropaläontologische Un- tology, London, vol. 60, no. 1, p. 89-108. tersuchungen in der nordschweizerischen KOBAYASHI F. & VUKS V.J.A. (2006).- Tithonian- Juraformation.- Abhandlungen der Schwei- Berriasian foraminiferal faunas from the zerischen Paläeontologischen Gesellschaft, Torinosu-type calcareous blocks of the vol. 60, p. 1-53. southern Kanto Mountains, Japan: Their MOSHAMMER S. & SCHLAGINTWEIT F. (1999).- The implications for post-accretionary tectonics Ernstbrunn limestone (Lower Austria): New of Jurassic to Cretaceous terranes.- Geobios, data on biostratigraphy and applied geolo- Lyon, vol. 39, p. 833-843. gy.- Abhandlungen der Geologischen Bunde- KOŁODZIEJ B. & DECROUEZ D. (1997).- Forami- sanstalt, vol. 56, no. 2, p. 553-565. nifera and incertae sedis from the Štram- NEAGU T. (1994).- Early Cretaceous Trocholina berk-type limestone (Tithonian-Berriasian). group and some related genera from Roma- Preliminary results.- Revue de Paléobiologie, nia. Part I.- Revista Española de Micropa- Genève, vol. 16, no. 1, p. 145-150. leontologia, Madrid, vol. 26, no. 3, p. 117- KUZNETSOVA K.I., GRIGELIS A.A., ADJAMIAN J., JAR- 143. MAKANI E. & HALLAQ L. (1996).- Zonal strati- NIKITENKO B.L., REOLID M. & GLINSKIKH L. graphy and Foraminifera of the Tethyan (2013).- Ecostratigraphy of benthic forami- Jurassic (Eastern Mediterranean).- Gordon nifera for interpreting Arctic record of Early and Breach Publishers, Amsterdam, 255 p. biotic crisis (northern Siberia, LAZĂR I. & GRĂDINARU M. (2013).- Paleoenviron- Russia).- Palæogeography, Palæoclimatolo- mental context and paleoecological signi- gy, Palæoecology, vol. 376, p. 200-212. ficance of unique agglutinated polychaete ONCESCU N. (1943).- Région de Piatra Craiului- worm tube-ferruginous microstromatolite Bucegi. Étude géologique.- Anuarul Institu- assemblages from the of the tului Geologic al României, Bucureşti, vol. 9, Southern Carpathians (Romania).- Facies, p. 3-124. Erlangen, vol. 60, no. 2, p. 515-540. PATRULIUS D. (1969).- Geology of Bucegi Massif LOEBLICH A.R. & TAPPAN H. (1988).- Foraminiferal and Dâmbovicioara Couloir.- Editura Acade- genera and their classification.- Van miei Republicii Socialiste România, Bucu- Nostrand Reinhold, New York, 970 p. reşti, 222 p. [in Romanian]. LUPERTO SINNI E. & MASSE J.-P. (1986).- Données PATRULIUS D. (1976).- Upper Jurassic-Lower nouvelles sur la stratigraphie des calcaires Cretaceous carbonate rocks in the eastern de plate-forme du Crétacé inférieur du Gar- part of the Getic carbonate platform and the gano (Italie méridionale).- Revista Italiana di adjacent flysch troughs. In: PATRULIUS D., Paleontologia e Stratigrafia, Roma, vol. 92, DRĂGĂNESCU A., BALTREş A., POPESCU B. &

510 Carnets Geol. 16 (20)

RĂDAN S. (eds.), Carbonates rocks and eva- REISS Z. & HOTTINGER L. (1984).- The Gulf of porates - Guidebook.- International Collo- Aqaba: Ecological micropaleontology. Ecolo- quium on Carbonates Rocks and Evaporites, gical studies.- Springer-Verlag, Berlin-Hei- Institute of Geology and Geophysics, delberg, vol. 50, 534 p. Bucharest, Guidebook 15, p. 71-82. REOLID M., RODRIGUEZ-TOVAR F.J., NAGY J. & PATRULIUS D., ANTONESCU A., AVRAM E., BALTREŞ OLÓRIZ F. (2008a).- Benthic foraminiferal A., DUMITRICĂ P., IORDAN M., IVA M., MORARIU morphogroups of mid to outer shelf envi- A., POP G., POPA E. & POPESCU I. (1980).- ronments of the Late Jurassic (Prebetic Complex petrological and biostratigraphical Zone, southern Spain): Characterization of study of the Jurassic and Neocomian for- biofacies and environmental siginificance.- mations from the Romanian Carpathians and Palæogeography, Palæoclimatology, Palæo- Dobrogea for the evaluation of their mineral ecology, vol. 261, p. 280-299. resources potential. The Leaota-Braşov-Per- REOLID M., RODRIGUEZ-TOVAR F.J., NAGY J. & şani Massif sector.- Fieldwork report, Insti- OLÓRIZ F. (2008b).- Foraminiferal assem- tutul Geologic şi Geofizic al României, Bucu- blages as palaeoenvironmental bioindicators reşti, 218 p. [in Romanian]. in Late Jurassic epicontinental platforms: PATRULIUS D., DIMITRESCU R. & POPESCU I. Relation with trophic conditions.- Acta (1971).- Geological map of Romania, Palaeontologica Polonica, Warsaw, vol. 53, 1:50.000, sheet 110d.- Institutul Geologic şi p. 705-722. Geofizic al României, Bucureşti [in Roma- RIGAUD S., BLAU J., MARTINI R. & RETTORI R. nian]. (2013).- Taxonomy and phylogeny of the PÉLISSIÉ T., PEYBERNÈS B. & RAY J. (1984).- Les Trocholinidae (Involutinina).- Journal of grands foraminifères benthiques du Juras- Foraminiferal Research, Lawrence, vol. 43, sique moyen/supérieur du Sud-Ouest de la no. 4, p. 317-339. France (Aquitaine, Causses, Pyrénées). Inté- SAVELIEVA J.N., FEODOROVA A.A., SHUREKOVA O.V. rêt biostratigraphique paléoécologique et & ARKADIEV V. (2014).- Integrated palaeon- paléobiogéographique.- Bulletin du Centre tological characteristics (ammonites, ostra- de Recherches Exploration-Production elf- cods, foraminifers, dinocysts) of the Berria- Aquitaine, Pau, Mémoire, vol. 6, p. 479-489. sian deposits of central Crimea.- Volumina PEYBERNÈS B. (1976).- Le Jurassique et le Jurassica, Warsaw, vol. 12, no. 1, p. 129- Crétacé inférieur des Pyrénées franco-espa- 162. gnoles entre la Garonne et la Méditerranée.- SĂNDULESCU M., POPESCU I., SĂNDULESCU J., Thèse de Doctorat d'État, Université Paul MIHĂILĂ N. & SCHUSTER C.A. (1972).- Geo- Sabatier, Toulouse, 459 p. logical map of Romania, 1:50.000, sheet PFENDER J. (1938).- Les foraminifères du Valan- 110b.- Institutul Geologic şi Geofizic al ginien provençal.- Bulletin de la Société României, Bucureşti [in Romanian]. géologique de la France, Paris, (5e série), SĂSĂRAN E. & BUCUR I.I. (2001).- Upper Jurassic- vol. 8, no. 3-4, p. 231-242. Lower Cretaceous microbialites and calca- PLEŞ G., BUCUR I.I. & PĂCURARIU A. (2015).- reous algae from the Štramberk like Foraminiferal assemblages and facies asso- limestones in Cheile Turzii area. In: BUCUR ciations in the Upper Jurassic carbonates I.I., FILIPESCU S. & SĂSĂRAN E. (eds.), Algae from Ardeu Unit (Metaliferi Mountains, Ro- and carbonate platforms in western part of mania).- Acta Paleontologica Romaniae, Cluj Romania. Fieldtrip Guidebook, 4th Regional Napoca, vol. 11, no. 2, p. 43-57. Meeting of IFAA.- Cluj University Press, p. PLEŞ G., MIRCESCU C.V., BUCUR I.I. & SĂSĂRAN E. 191-207. (2013).- Encrusting micro-organisms and SĂSĂRAN E., PLEș G., MIRCESCU C.V. & BUCUR I.I. microbial structures in Upper Jurassic lime- (2013).- Peritidal cyclical sequences of stones from the Southern Carpathians (Ro- Kimmeridgian - Beriassian - ? Valanginian mania).- Facies, Erlangen, vol. 59, p. 19-48. limestones from Piatra Craiului Massif POP G. & BUCUR I.I. (2001).- Upper Jurassic and (Romania); the role of microbialites and Lower Cretaceous sedimentary formations rivulariacean-type cyanobacteria. In: Pro- from the Vâlcan Mountains (South Car- ceedings of the 11 th Workshop on Alpine pathians).- Studia UBB Geologia, Cluj Napo- Geological Studies & 7th IFAA, Schladming- ca, vol. XLVI, no. 2, p. 77-94. Dachstein (Austria).- Abstracts Volume, POPESCU I. (1966).- Contributions to the know- Berichte Geologische B.A., Vienna, p. 116- ledge of the stratigraphy and geological 117. structure of the Piatra Craiului Massif.- Dări SCHLAGINTWEIT F. (2011).- The dasycladalean de Seamă ale Şedinţelor Institutului Geologic algae of the Plassen Carbonate Platform al României, Bucureşti, vol. 52, no. 2, p. (Kimmeridgian-Early Berriasian): taxonomic 157-176 [in Romanian]. inventory and palaeogeographical implica- REDMOND C.D. (1964).- Lituolid foraminifera tions within the Northern calcareous Alps form the Jurassic and the Cretaceous of (Austria, p. p. Germany).- Geologia Croatica, Saudi Arabia.- Micropaleontology, New York, Zagreb, vol. 64, no. 3, p. 185-206. vol. 10, p. 405-414.

511 Carnets Geol. 16 (20)

SCHLAGINTWEIT F. (2012).- Mohlerina basiliensis na.- Paleontology, vol. 4, no. 4, p. 581-591. (MOHLER, 1938): A Middle Jurassic-Early Cre- SOKAČ B. & NIKLER L. (1973).- Calcareous algae taceous facultative (?) epilithic benthic from the Lower Cretaceous of the environs foraminifer.- Facies, Erlangen, vol. 58, no. 4, of Nikšić, Crna Gora (Montenegro).- Paleon- p. 637-647. tologija jugoslavica, Zagreb, vol. 13, p. 1- SCHLAGINTWEIT F. & EBLI O. (1999).- New results 57. on microfacies, biostratigraphy and sedi- TASLI K. (1993).- Micropaléontologie, stratigra- mentology of Late Jurassic-Early Cretaceous phie et environnement de dépôt des séries Alps, Part I: Tressenstein Limestone, Plassen jurassiques à faciés de la plate-forme de la Formation.- Geologie ohne Grenzen Fest- région de Kale-Gümüshane (Pontides orien- schrift 150 Jahre Geologische Bundesanstalt, tales, Turquie).- Revue de Micropaléonto- Vienna, vol. 56, no. 2, p. 379-418. logie, Paris, vol. 36, no. 1, p. 45-65. SCHLAGINTWEIT F., GAWLICK H.J. & LEIN R. TYSZKA J. (1994).- Response of Middle Jurassic (2005).- Micropaleontology and biostratigra- benthic foraminiferal morphogroups to phy of the Plassen carbonate platform of the dysoxic/anoxic conditions in the Pieniny type locality (Upper Jurassic to Lower Klippen Basin, Polish Carpathians.- Palæo- Cretaceous, Salzkammergut, Austria).- Jour- geography, Palæoclimatology, Palæoecology, nal of Alpine Geology, Vienna, vol. 47, p. 11- vol. 110, p. 55-81. 102. UNGUREANU R.R., SĂSĂRAN E., BUCUR I.I., UNGUR SCHROEDER R., CLAVEL B., CONRAD A.M., ZANINETTI C.G. & MIRCESCU C.V. (2015).- The Berria- L., BUSNARDO R., CHAROLLAIS J. & CHERCHI A. sian-Valanginian and Aptian deposits from (2000).- Corrélations biostratigraphiques en- the north-western part of the Piatra Craiului tre la coupe d'Organya (Pyrénées catalanes, Massif: Stratigraphic relationships, facies NE de l'Espagne) et le Sud-Est de la France and depositional environments.- Acta Pa- pour l'intervalle Valanginien-Aptien.- Tre- leontologica Romaniae, Cluj Napoca, vol. 11, balls del Museo de Geologia de Barcelona, no. 2, p. 59-74. vol. 9, p. 5-41. VELIĆ I. (2007).- Stratigraphy and palaeobio- SCHROEDER R., GUELLAL S. & VILA J.M. (1975).- geography of Mesozoic benthic For aminifera Parurgonina caelinensis CUVILLIER, FOURY & of the Karst Dinarides (SE Europe).- Geo- PIGNATTI MORANO 1968 dans le Malm du logia Croatica, Zagreb, vol. 60, no. 1, p. 1- Djebel Téioualt (Constantinois, Algérie).- 113. Eclogae geologicae Helvetiae, Bâle, vol. 68, VELIĆ I. & SOKAČ B. (1983).- Stratigraphy of the no. 2, p. 319-326. Lower Cretaceous index fossils in the Karst SENOWBARI-DARYAN B., BUCUR I.I. & ABATE B. Dinarides (Yugoslavia).- Zitteliana – (1994).- Upper Jurassic calcareous algae Abhandlungen der Bayerischen Staatssamm- from the Madonie Mountains, Sicily.- Bei- lung für Paläontologie, München, vol. 10, p. träge Paläontologie, Vienna, vol. 19, p. 227- 485-491. 259. WEYNSCHENK R. (1951).- Two new foraminifera SEPTFONTAINE M. (1974).- Présence de Protope- from the Dogger and Upper of the neroplis trochangulata sp. nov. (Foraminifè- Sonnwend Mountains of Tyrol.- Journal of res) dans le Crétacé inférieur du Jura méri- Paleontology, Tulsa, vol. 25, p. 793-795. dional et révision de Protopeneroplis WEYNS- YABE H. & HANZAWA S. (1926).- Choffatella CHENK, 1950.- Eclogae geologicae Helvetiae, SCHLUMBERGER and Pseudocyclammina, a new Bâle, vol. 67, no. 3, p. 605-628. genus of arenaceous foraminifera.- Science SEPTFONTAINE M. (1977).- Bullopora tuberculata Reports of the Tôhoku Imperial University, (SOLLAS) et autres foraminifères fixés du Sendai, (Series 2), vol. 9, no. 1, p. 9-11. Dogger des Préalpes Médianes - Relation YOKOYAMA M. (1890).- Foraminiferen aus dem avec le microfaciès.- Archives des Sciences, Kalksteine von Torinosu und Kompira.- Genève, vol. 30, no. 1, p. 65-76. Denkschriften der Kaiserlichen Akademie der SEPTFONTAINE M. (1988).- Vers une classification Wissenschaften, Wien, (Mathematisch-Na- évolutive des Lituolides (Foraminifères) turwissenschaftliche Klasse), vol. 57, p. 26- jurassiques en milieu de plate-forme carbo- 27. natée.- Revue de Paléobiologie, Genève, ZANINETTI L., SALVINI-BONNARD G. & DECROUEZ D. Volume Spécial no. 2 (Benthos '86), p. 229- (1987).- Montsalevia, n. gen. (Montsale- 256. viidae, n. fam. Foraminifère), dans le Créta- SIMMONS M.D. (1990).- Aspects of the micropa- cé inférieur (Berriasien moyen-Valanginien) leontology and stratigraphy of Cretaceous du Mont Salève et du Jura Méridional shelf carbonates from the Oman Mountains.- (Haute-Savoie, France). Note préliminaire.- PhD Thesis, University College of Wales, Revue de Paléobiologie, Genève, vol. 6, no. Swansea, 270 p. 1, p. 165-168. SMOUT A.H. & SUGDEN W. (1961).- New infor- mation on the foraminiferal genus Pfenderi-

512