Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis Convoluta Strain HHT

Total Page:16

File Type:pdf, Size:1020Kb

Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis Convoluta Strain HHT microorganisms Article Analysis of the Complete Genome of the Alkaliphilic and Phototrophic Firmicute Heliorestis convoluta Strain HHT 1 1 1 1, Emma D. Dewey , Lynn M. Stokes , Brad M. Burchell , Kathryn N. Shaffer y, 1 1, 2 2 Austin M. Huntington , Jennifer M. Baker z , Suvarna Nadendla , Michelle G. Giglio , 3 4,§ 5, 3 Kelly S. Bender , Jeffrey W. Touchman , Robert E. Blankenship k, Michael T. Madigan and W. Matthew Sattley 1,* 1 Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA; [email protected] (E.D.D.); [email protected] (L.M.S.); [email protected] (B.M.B.); kshaff[email protected] (K.N.S.); [email protected] (A.M.H.); [email protected] (J.M.B.) 2 Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA; [email protected] (S.N.); [email protected] (M.G.G.) 3 Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA; [email protected] (K.S.B.); [email protected] (M.T.M.) 4 School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; jeff[email protected] 5 Departments of Biology and Chemistry, Washington University in Saint Louis, St. Louis, MO 63130, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-765-677-2128 Present address: School of Pharmacy, Cedarville University, Cedarville, OH 45314, USA. y Present address: Department of Microbiology and Immunology, University of Michigan, Ann Arbor, z MI 48109, USA. § Present address: Intrexon Corporation, 1910 Fifth Street, Davis, CA 95616, USA. Present address: 3536 South Kachina Drive, Tempe, AZ 85282, USA. k Received: 26 January 2020; Accepted: 22 February 2020; Published: 25 February 2020 Abstract: Despite significant interest and past work to elucidate the phylogeny and photochemistry of species of the Heliobacteriaceae, genomic analyses of heliobacteria to date have been limited to just one published genome, that of the thermophilic species Heliobacterium (Hbt.) modesticaldum str. Ice1T. Here we present an analysis of the complete genome of a second heliobacterium, Heliorestis (Hrs.) convoluta str. HHT, an alkaliphilic, mesophilic, and morphologically distinct heliobacterium isolated from an Egyptian soda lake. The genome of Hrs. convoluta is a single circular chromosome of 3.22 Mb with a GC content of 43.1% and 3263 protein-encoding genes. In addition to culture-based observations and insights gleaned from the Hbt. modesticaldum genome, an analysis of enzyme-encoding genes from key metabolic pathways supports an obligately photoheterotrophic lifestyle for Hrs. convoluta. A complete set of genes encoding enzymes for propionate and butyrate catabolism and the absence of a gene encoding lactate dehydrogenase distinguishes the carbon metabolism of Hrs. convoluta from its close relatives. Comparative analyses of key proteins in Hrs. convoluta, including cytochrome c553 and the Fo alpha subunit of ATP synthase, with those of related species reveal variations in specific amino acid residues that likely contribute to the success of Hrs. convoluta in its highly alkaline environment. Keywords: heliobacteria; Heliorestis convoluta; alkaliphilic bacteria; soda lake; anoxygenic phototroph; bacteriochlorophyll g Microorganisms 2020, 8, 313; doi:10.3390/microorganisms8030313 www.mdpi.com/journal/microorganisms Microorganisms 2020, 8, 313 2 of 24 1. IntroductionMicroorganisms 2020, 8, 313 2 of 23 1.Heliobacteria Introduction comprise a unique group of strictly anaerobic, anoxygenic phototrophs that have been isolated from a wide diversity of soil and aquatic habitats [1–4]. Unlike all other phototrophic Heliobacteria comprise a unique group of strictly anaerobic, anoxygenic phototrophs that have bacteria, heliobacteria use bacteriochlorophyll (Bchl) g as the chief chlorophyll pigment for phototrophic been isolated from a wide diversity of soil and aquatic habitats [1–4]. Unlike all other phototrophic growth [5], but despite their ability to use light as an energy source, heliobacteria are apparently bacteria, heliobacteria use bacteriochlorophyll (Bchl) g as the chief chlorophyll pigment for incapablephototrophic of autotrophic growth [5], growth but despite and, thus, their areability obligate to use heterotrophslight as an energy [4,6]. source, Heliobacteria heliobacteria are are the onlyapparently phototrophs incapable of the of large autotrophic bacterial growth phylum and, Firmicutesthus, are obligate[4,7,8], heterotrophs and although [4,6]. they Heliobacteria typically stainare Gram-negatively, the only phototrophs thin of sections the large of bacterial cells of phylum heliobacteria Firmicutes exhibit [4,7,8], aand Gram-positive although they celltypically wall morphologystain Gram-negatively, [9,10]. In addition thin tosections these of distinctive cells of heliobacteria properties, cellsexhibit of a heliobacteria Gram-positive are cell able wall to differentiatemorphology into [9,10]. heat-resistant In addition endospores to these [4distinctiv,11], ande someproperties, heliobacteria cells of haveheliobacteria also demonstrated are able to the abilitydifferentiate to reduce into heat-resistant toxic metals, en suchdospores as Hg [4,11],2+, and and thereforesome heliobact mayeria be have useful also for demonstrated applications the in bioremediationability to reduce [12,13 ].toxic metals, such as Hg2+, and therefore may be useful for applications in bioremediationSpecies of Heliobacteriaceae [12,13]. can be divided into two physiological groups—neutrophiles and alkaliphiles—thatSpecies of track Heliobacteriaceae closely with can their be divided phylogeny into [7two] (Figure physiological1). Included groups—neutrophiles in the neutrophilic and clade,alkaliphiles—that the moderate thermophile track closelyHbt. with modesticaldum their phylogenywas [7] the(Figure first 1). heliobacterium Included in the to neutrophilic have its genome clade, sequencedthe moderate and, with thermophile its simple phototrophicHbt. modesticaldum machinery was consistingthe first heliobacterium of a type I reaction to have center its (RC)genome and no peripheralsequenced antenna and, with photocomplex, its simple phototrophic has been amachinery model organism consisting for of studies a type of I photosynthesisreaction center (RC) and relatedand photochemistry no peripheral antenna [6,14]. Likephotoc otheromplex, neutrophilic has been heliobacteria,a model organismHbt. for modesticaldum studies of photosynthesisexhibits both phototrophicand related growth photochemistry in the light [6,14]. and chemotrophic Like other neutrophilic growth in heliobacteria, the dark [3,15 Hbt.–17 modesticaldum]. exhibits both phototrophic growth in the light and chemotrophic growth in the dark [3,15–17]. FigureFigure 1. Phylogenetic 1. Phylogenetic (16S (16S rRNA) rRNA) tree tree of Heliorestisof Heliorestis convoluta convolutaand and related relatedFirmicutes Firmicutes.. Heliobacteria,Heliobacteria, the onlythe only phototrophic phototrophicFirmicutes Firmicutes, are, are divided divided into into alkaliphilic alkaliphilic and and neutrophilic neutrophilic species. species.Heliobacterium Heliobacterium modesticaldummodesticaldum(boxed) (boxed) is theis the model model organism organism for for physiological physiological and and biochemical biochemical studiesstudies ofof the heliobacteria;heliobacteria;Hrs. Hrs. convoluta convoluta(boxed) (boxed) is is the the first first alkaliphilic alkaliphilic heliobacterium heliobacterium toto havehave aa describeddescribed genome.genome. Note Note that that the the branching branching pattern pattern shown shown here here suggests suggests a a possible possible alkaliphilic alkaliphilic originorigin to the heliobacteria,heliobacteria, as previously as previously discussed discussed by by Sattley Sattley and an Swingleyd Swingley [7 ].[7]. The The weighted weighted neighbor-joiningneighbor-joining methodmethod [18] and[18] and Jukes-Cantor Jukes-Cantor corrected corrected distance distance model model were were used used for for tree tree construction. construction. NodesNodes representrepresent bootstrap bootstrap values values ( 50%) (≥50%) based based on 100 on replicates,100 replicates, and andEscherichia Escherichia coli wascoli was used used to root to root the tree.the ≥ GenBanktree. accessionGenBank accession numbers fornumbers eachsequence for each sequence used in the used analysis in the areanalysis shown are in shown parentheses, in parentheses, adapted fromadapted Sattley andfrom Swingley Sattley and [7], SwingleyAdv. Bot. [7], Res. Adv.2013 Bot., 66 Res., 67–97, 2013, Copyright66, 67–97, Copyright 2013 Elsevier 2013 Ltd. Elsevier Ltd. Microorganisms 2020, 8, 313 3 of 24 Microorganisms 2020, 8, 313 3 of 23 Species of alkaliphilicalkaliphilic heliobacteria grow optimally between pH 8–9.5 and, unlikeunlike neutrophilicneutrophilic heliobacteria, are obligate photoheterotrophs, us usinging light and organic compounds for growth but incapableincapable ofof chemotrophic chemotrophic growth growth in darkness in darkness [19–22]. [19–22]. Consistent Consistent with other with alkaliphilic other heliobacteriaalkaliphilic originatingheliobacteria from originating the soils andfrom waters the soils of soda and lakes waters [19 ,of20 soda,22], Hrs. lakes convoluta [19,20,22],str. Hrs. HHT convolutawas isolated str. fromHHT thewas shore isolated of the from alkaline the shore (pH 10)of the Lake alkaline El Hamra (pH (Figure10) Lake2A), El locatedHamra in(Figure the Wadi
Recommended publications
  • The Landscape of Cancer Cell Line Metabolism
    The Landscape of Cancer Cell Line Metabolism The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Li, Haoxin, Shaoyang Ning, Mahmoud Ghandi, Gregory V. Kryukov, Shuba Gopal, Amy Deik, Amanda Souza, et. al. 2019. The Landscape of Cancer Cell Line Metabolism. Nature Medicine 25, no. 5: 850-860. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41899268 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Nat Med Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 November 08. Published in final edited form as: Nat Med. 2019 May ; 25(5): 850–860. doi:10.1038/s41591-019-0404-8. The Landscape of Cancer Cell Line Metabolism Haoxin Li1,2, Shaoyang Ning3, Mahmoud Ghandi1, Gregory V. Kryukov1, Shuba Gopal1, Amy Deik1, Amanda Souza1, Kerry Pierce1, Paula Keskula1, Desiree Hernandez1, Julie Ann4, Dojna Shkoza4, Verena Apfel5, Yilong Zou1, Francisca Vazquez1, Jordi Barretina4, Raymond A. Pagliarini4, Giorgio G. Galli5, David E. Root1, William C. Hahn1,2, Aviad Tsherniak1, Marios Giannakis1,2, Stuart L. Schreiber1,6, Clary B. Clish1,*, Levi A. Garraway1,2,*, and William R. Sellers1,2,* 1Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA 2Department
    [Show full text]
  • Thermodynamics of DNA Binding by DNA Polymerase I and Reca
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans Jaycob Dalton Warfel Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Warfel, Jaycob Dalton, "Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans" (2014). LSU Doctoral Dissertations. 2382. https://digitalcommons.lsu.edu/gradschool_dissertations/2382 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING BY DNA POLYMERASE I AND RECA RECOMBINASE FROM DEINOCOCCUS RADIODURANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Jaycob Dalton Warfel B.S. Louisiana State University, 2006 May 2015 ACKNOWLEDGEMENTS I would like to express my utmost gratitude to the myriad of individuals who have lent their support during the time it has taken to complete this dissertation. First and foremost is due glory to God, The Father, The Son and The Holy Spirit, through whom all is accomplished. It is with extreme thankfulness for the blessings bestowed upon me, and with vast appreciation for the beauty of God’s creation that I have pursued a scientific education.
    [Show full text]
  • Dynamic Consolidated Bioprocessing for Innovative Lab-Scale Production of Bacterial Alkaline Phosphatase from Bacillus Paraliche
    www.nature.com/scientificreports OPEN Dynamic consolidated bioprocessing for innovative lab‑scale production of bacterial alkaline phosphatase from Bacillus paralicheniformis strain APSO Soad A. Abdelgalil1,2*, Nadia A. Soliman1, Gaber A. Abo‑Zaid1 & Yasser R. Abdel‑Fattah1 To meet the present and forecasted market demand, bacterial alkaline phosphatase (ALP) production must be increased through innovative and efcient production strategies. Using sugarcane molasses and biogenic apatite as low‑cost and easily available raw materials, this work demonstrates the scalability of ALP production from a newfound Bacillus paralicheniformis strain APSO isolated from a black liquor sample. Mathematical experimental designs including sequential Plackett– Burman followed by rotatable central composite designs were employed to select and optimize the concentrations of the statistically signifcant media components, which were determined to be molasses, (NH4)2NO3, and KCl. Batch cultivation in a 7‑L stirred‑tank bioreactor under uncontrolled pH conditions using the optimized medium resulted in a signifcant increase in both the volumetric and specifc productivities of ALP; the alkaline phosphatase throughput 6650.9 U L−1, and µ = 0.0943 ­h−1; respectively, were obtained after 8 h that, ameliorated more than 20.96, 70.12 and 94 folds compared to basal media, PBD, and RCCD; respectively. However, neither the increased cell growth nor enhanced productivity of ALP was present under the pH‑controlled batch cultivation. Overall, this work presents novel strategies for the statistical optimization and scaling up of bacterial ALP production using biogenic apatite. Te bioeconomy represents the value chain of sustainable manufacturing using renewable, low-cost biological resources to sustainably produce food, energy, and industrial products1.
    [Show full text]
  • ASN2 Is a Key Enzyme in Asparagine Biosynthesis Under Ammonium Sufficient Conditions
    Plant Biotechnology 26, 153–159 (2009) Original Paper ASN2 is a key enzyme in asparagine biosynthesis under ammonium sufficient conditions Daisuke Igarashi,* Takashi Ishizaki, Kazuhiko Totsuka, Chieko Ohsumi Institute of Life Sciences, Ajinomoto Co., Inc., Kawasaki, Kanagawa 210-8681, Japan * E-mail: [email protected] Tel: ϩ81-44-244-5643 Fax: ϩ81-44-244-9617 Received August 18, 2008; accepted October 30, 2008 (Edited by H. Takahashi) Abstract The modification and enhancement of plant amino acid accumulation is potentially beneficial in terms of the production of suitable crop plants for food or feeds, and also with respect to possible environmental improvement via the effective use of nitrogen nutrition. It is also expected that modified plants will produce beneficial nitrogenous compounds, such as proteins, secondary metabolites, or nucleic acids. The size of amino acid pools in plants is strictly controlled by certain environmental factors such as light and nutrition. In order to gain an understanding of the mechanisms that control amino acid biosynthesis and metabolism, we investigated the diurnal changes in amino acid contents and also how the amino acid contents change with the progression of growth. We observed that almost all the amino acids in plant leaves undergo diurnal changes and that the pattern of these changes was different in young and old stages. We focused on correlation of the asparagine content and the expression of ASN2 asparagine synthetase, since under our experimental conditions their fluctuating patterns were found to be similar. The asparagine contents of ASN2-overexpressing and -underexpressing plants were increased and decreased, respectively, when they were grown under normal light and nutrient conditions.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Marine Extremophiles: a Source of Hydrolases for Biotechnological Applications
    Mar. Drugs 2015, 13, 1925-1965; doi:10.3390/md13041925 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Marine Extremophiles: A Source of Hydrolases for Biotechnological Applications Gabriel Zamith Leal Dalmaso 1,2, Davis Ferreira 3 and Alane Beatriz Vermelho 1,* 1 BIOINOVAR—Biotechnology laboratories: Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] 2 Graduate Program in Plant Biotechnology, Health and Science Centre, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil 3 BIOINOVAR—Biotechnology Laboratories: Virus-Cell Interaction, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902 Rio de Janeiro, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-(21)-3936-6743; Fax: +55-(21)-2560-8344. Academic Editor: Kirk Gustafson Received: 1 December 2014 / Accepted: 25 March 2015 / Published: 3 April 2015 Abstract: The marine environment covers almost three quarters of the planet and is where evolution took its first steps. Extremophile microorganisms are found in several extreme marine environments, such as hydrothermal vents, hot springs, salty lakes and deep-sea floors. The ability of these microorganisms to support extremes of temperature, salinity and pressure demonstrates their great potential for biotechnological processes. Hydrolases including amylases, cellulases, peptidases and lipases from hyperthermophiles, psychrophiles, halophiles and piezophiles have been investigated for these reasons.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Sulphate-Reducing Bacteria's Response to Extreme Ph Environments and the Effect of Their Activities on Microbial Corrosion
    applied sciences Review Sulphate-Reducing Bacteria’s Response to Extreme pH Environments and the Effect of Their Activities on Microbial Corrosion Thi Thuy Tien Tran 1 , Krishnan Kannoorpatti 1,* , Anna Padovan 2 and Suresh Thennadil 1 1 Energy and Resources Institute, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] (T.T.T.T.); [email protected] (S.T.) 2 Research Institute for the Environment and Livelihoods, College of Engineering, Information Technology and Environment, Charles Darwin University, Darwin, NT 0909, Australia; [email protected] * Correspondence: [email protected] Abstract: Sulphate-reducing bacteria (SRB) are dominant species causing corrosion of various types of materials. However, they also play a beneficial role in bioremediation due to their tolerance of extreme pH conditions. The application of sulphate-reducing bacteria (SRB) in bioremediation and control methods for microbiologically influenced corrosion (MIC) in extreme pH environments requires an understanding of the microbial activities in these conditions. Recent studies have found that in order to survive and grow in high alkaline/acidic condition, SRB have developed several strategies to combat the environmental challenges. The strategies mainly include maintaining pH homeostasis in the cytoplasm and adjusting metabolic activities leading to changes in environmental pH. The change in pH of the environment and microbial activities in such conditions can have a Citation: Tran, T.T.T.; Kannoorpatti, significant impact on the microbial corrosion of materials. These bacteria strategies to combat extreme K.; Padovan, A.; Thennadil, S. pH environments and their effect on microbial corrosion are presented and discussed.
    [Show full text]
  • The Reaction Center of Green Sulfur Bacteria1
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1507 (2001) 260^277 www.bba-direct.com Review The reaction center of green sulfur bacteria1 G. Hauska a;*, T. Schoedl a, Herve¨ Remigy b, G. Tsiotis c a Lehrstuhl fu«r Zellbiologie und P£anzenphysiologie, Fakulta«tfu«r Biologie und Vorklinische Medizin, Universita«t Regensburg, 93040 Regenburg, Germany b Biozentrum, M.E. Mu«ller Institute of Microscopic Structural Biology, University of Basel, CH-4056 Basel, Switzerland c Division of Biochemistry, Department of Chemistry, University of Crete, 71409 Heraklion, Greece Received 9 April 2001; received in revised form 13 June 2001; accepted 5 July 2001 Abstract The composition of the P840-reaction center complex (RC), energy and electron transfer within the RC, as well as its topographical organization and interaction with other components in the membrane of green sulfur bacteria are presented, and compared to the FeS-type reaction centers of Photosystem I and of Heliobacteria. The core of the RC is homodimeric, since pscA is the only gene found in the genome of Chlorobium tepidum which resembles the genes psaA and -B for the heterodimeric core of Photosystem I. Functionally intact RC can be isolated from several species of green sulfur bacteria. It is generally composed of five subunits, PscA^D plus the BChl a-protein FMO. Functional cores, with PscA and PscB only, can be isolated from Prostecochloris aestuarii. The PscA-dimer binds P840, a special pair of BChl a-molecules, the primary electron acceptor A0, which is a Chl a-derivative and FeS-center FX.
    [Show full text]
  • Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
    Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • Horizontal Operon Transfer, Plasmids, and the Evolution of Photosynthesis in Rhodobacteraceae
    The ISME Journal (2018) 12:1994–2010 https://doi.org/10.1038/s41396-018-0150-9 ARTICLE Horizontal operon transfer, plasmids, and the evolution of photosynthesis in Rhodobacteraceae 1 2 3 4 1 Henner Brinkmann ● Markus Göker ● Michal Koblížek ● Irene Wagner-Döbler ● Jörn Petersen Received: 30 January 2018 / Revised: 23 April 2018 / Accepted: 26 April 2018 / Published online: 24 May 2018 © The Author(s) 2018. This article is published with open access Abstract The capacity for anoxygenic photosynthesis is scattered throughout the phylogeny of the Proteobacteria. Their photosynthesis genes are typically located in a so-called photosynthesis gene cluster (PGC). It is unclear (i) whether phototrophy is an ancestral trait that was frequently lost or (ii) whether it was acquired later by horizontal gene transfer. We investigated the evolution of phototrophy in 105 genome-sequenced Rhodobacteraceae and provide the first unequivocal evidence for the horizontal transfer of the PGC. The 33 concatenated core genes of the PGC formed a robust phylogenetic tree and the comparison with single-gene trees demonstrated the dominance of joint evolution. The PGC tree is, however, largely incongruent with the species tree and at least seven transfers of the PGC are required to reconcile both phylogenies. 1234567890();,: 1234567890();,: The origin of a derived branch containing the PGC of the model organism Rhodobacter capsulatus correlates with a diagnostic gene replacement of pufC by pufX. The PGC is located on plasmids in six of the analyzed genomes and its DnaA- like replication module was discovered at a conserved central position of the PGC. A scenario of plasmid-borne horizontal transfer of the PGC and its reintegration into the chromosome could explain the current distribution of phototrophy in Rhodobacteraceae.
    [Show full text]