16Th July 2001

Total Page:16

File Type:pdf, Size:1020Kb

16Th July 2001 AUSTRALASIAN ASSOCIATION OF CLINICAL BIOCHEMISTS INC 5/85 Bourke Rd, Alexandria NSW, 2015 Telephone: +61 2 9669 6600 Facsimile: +61 2 9669 6607 Email: [email protected] Draft Guideline Title Harmonisation of Endocrine Dynamic Testing (HEDT) Document Number: 2018 DGD02 Publication date: Draft for comment September 2018 Next review date: Owner: ESA/AACB/RCPA HEDT Working Party This draft manual for Harmonisation of Endocrine Dynamic Testing is a joint initiative from ESA/AACB/RCPA and is now open for comment and feedback for 90 days. Information provided is a guide only and needs to be verified and modified according to local procedures (e.g. patient consent, sample type, name of test set). A separate paediatric endocrine dynamic testing protocol is in progress with the HDET-P working party. Please direct comments to the chair of the HEDT working party: Dr Cherie Chiang ([email protected]) with the subject heading " HEDT feedback" 2018 DGD02 Harmonisation of Endocrine Dynamic Testing (HEDT) This manual is a joint initiative from ESA/AACB/RCPA and is freely available as a resource for Endocrinologists and Biochemists. Information provided is a guide only and needs to be verified and modified according to local procedures (e.g. patient consent, sample type, name of test set). Queries can be directed to the chair of the HEDT working party. A separate paediatric endocrine dynamic testing protocol is in progress with the HDET-P working party. 2018 DGD02 Page 1 Table of Contents HEDT Working Group Members: ...........................................................................................................4 Endocrine Analyte Reporting Unit and Sample Tube .............................................................................5 1 Adrenal ............................................................................................................................................8 1.1 SHORT SYNACTHEN TEST .........................................................................................................8 1.2 PRIMARY ALDOSTERONISM INVESTIGATION ....................................................................... 10 1.3 SALINE SUPPRESSION TEST ................................................................................................... 12 1.4 FLUDROCORTISONE SUPPRESSION TEST .............................................................................. 13 1.5 ORAL SODIUM LOADING TEST .............................................................................................. 15 1.6 ADRENAL VENOUS SAMPLING.............................................................................................. 16 2 Cushing Overview ......................................................................................................................... 20 2.1 OVERNIGHT DEXAMETHASONE SUPPRESSION TEST (1 mg DST) ......................................... 21 2.2 LATE NIGHT SALIVARY CORTISOL ......................................................................................... 21 2.3 24 HOUR URINARY FREE CORTISOL (UFC) ............................................................................ 23 2.4 2-DAY LOW DOSE DEXAMETHASONE SUPPRESSION TEST (LDDST) ..................................... 24 2.5 DEXAMETHASONE-CRH TEST ............................................................................................... 26 2.6 IV 4 mg DEXAMETHASONE SUPPRESSION TEST ................................................................... 28 2.7 ACTH Dependent Cushing’s Syndrome ................................................................................ 29 2.7.1 HIGH DOSE DEXAMETHASONE SUPPRESSION TEST (HDDST)........................................... 29 2.7.2 PERIPHERAL CRH TEST ...................................................................................................... 30 2.7.3 BILATERAL INFERIOR PETROSAL SINUS SAMPLING .......................................................... 31 3 Hypopituitarism ............................................................................................................................ 34 3.1 INSULIN TOLERANCE TEST .................................................................................................... 34 3.2 OVERNIGHT METYRAPONE TEST .......................................................................................... 38 3.3 GLUCAGON STIMULATION TEST ........................................................................................... 40 3.4 GONADOTROPHIN RELEASING HORMONE STIMULATION TEST .......................................... 42 4 Acromegaly .................................................................................................................................. 43 4.1 GROWTH HORMONE SUPPRESSION TEST ............................................................................ 43 5 Hyperglycaemia investigation ...................................................................................................... 44 5.1 ORAL GLUCOSE TOLERANCE TEST (OGTT) ............................................................................ 44 6 Hypoglycaemia investigation ....................................................................................................... 47 6.1 MIXED MEAL TEST ................................................................................................................ 47 6.2 PROLONGED OGTT ............................................................................................................... 51 6.3 72 HOUR FAST ...................................................................................................................... 52 6.4 CALCIUM STIMULATION TEST FOR INSULINOMA ................................................................ 55 2018 DGD02 Page 2 7 Diabetes Insipidus ........................................................................................................................ 57 7.1 WATER DEPRIVATION TEST .................................................................................................. 57 8 Thyroid .......................................................................................................................................... 61 8.1 TRH TEST ............................................................................................................................... 61 8.2 T3 SUPPRESSION TEST .......................................................................................................... 62 8.3 CALCIUM STIMULATION TEST FOR MEDULLARY THYROID CANCER .................................... 63 9 Phaeochromocytoma .................................................................................................................... 65 9.1 CLONIDINE SUPPRESSION TEST ............................................................................................ 65 Acknowledgements: ............................................................................................................................. 67 Amendment history: ............................................................................................................................. 68 2018 DGD02 Page 3 HEDT Working Group Members: Members Site Affiliations Stream email Dr Cherie Chiang (chair) VIC ESA, AACB, Adult [email protected] RCPA Assoc Prof Warrick Inder QLD ESA Adult [email protected] Prof Mathis Grossmann VIC ESA Adult [email protected] Assoc Prof Rory Clifton-Bligh NSW ESA Adult [email protected] Dr Penny Coates SA ESA, AACB, Adult [email protected] RCPA Dr Ee Mun Lim WA ESA, AACB, Adult [email protected] RCPA Mr Peter Ward NSW AACB Adult [email protected] Dr Phoebe Stanford NSW ESA, AACB, Adult [email protected] RCPA Assoc Prof Chris Florkowski NZ AACB, RCPA Adult [email protected] Dr James Doery VIC AACB, RCPA Paediatric [email protected] 2018 DGD02 Page 4 Endocrine Analyte Reporting Unit and Sample Tube The following table is provided as a guide, check with local laboratory for sample type. Test Standard Alternate Conversion Collection Collection comment unit unit to alternate tube unit ACTH pmol/L pg/mL 4.54 EDTA Collect on ice ng/L Aldosterone pmol/L ng/dL 0.036 EDTA State erect (seated for 10 mins) or supine (for 30 mins) on request slip Aldosterone- pmol/L ng/dL 0.036 plain Urine 24 h Urine container Keep the container refrigerated during the collection period AVP / ADH pmol/L pg/mL 0.923 2 x 4 ml Collect on ice EDTA Androstenedione nmol/L ng/dL 28.65 Li heparin βHCG IU/L mIU/mL 1 Li heparin C-peptide nmol/L ng/mL 0.331 Li heparin Fasting Calcitonin pmol/L pg/mL 0.292 Li heparin Fasting specimen is or serum preferred. tube Collect on ice. NOT EDTA. Chromogranin A ug/L Serum Fasting specimen preferred. Collect on ice. Copeptin pmol/L Li heparin Cortisol nmol/L µg/dL 27.588 Li heparin/ Morning 8 – 9 am sample serum Cortisol - Saliva nmol/L µg/dL 27.588 Salivette 11 pm to midnight collection. Nil by mouth/ no teeth brushing 30 mins prior. DHEAS µmol/L µg/dL 0.027 Serum Estradiol pmol/L pg/mL 0.272 Serum Free T3 pmol/L pg/dL 64.9 Li heparin/ serum Free T4 pmol/L ng/dL 0.0775 Li heparin/ serum FSH IU/L mIU/mL 1 Li heparin Gastrin pmol/L pg/mL 0.481 Serum Fasting, collect on ice. Proton pump inhibitors elevate result. 2018 DGD02 Page 5 Glucagon ng/L pg/mL 1 EDTA & Fasting. Collect on ice trasylol containing GLASS tube (Use 6 mg Na EDTA + 2,500 KIU trasylol per 5 ml blood) Glucose mmol/L mg/dL 18 Fluoride Li heparin/ serum if rapid oxalate transport to laboratory GH µg/L mU/L 3 Li heparin
Recommended publications
  • Hyperthyroidism with an FSH- and TSH-Secreting Pituitary Adenoma
    • Hyperthyroidism with an FSH- and TSH-secreting pituitary adenoma JOHN BERMINGHAM, DO LOUIS C. HAENEL, DO A 34-year-old man was found noma is rare. The combined secretion of follicle- to have elevated thyroxine (T 4 ), triiodothy- stimulating hormone (FSH) and TSH by a pi- ronine (T3 ), calculated free T4 , thyroid- tuitary adenoma is rarer. But with current stimulating hormone (TSH), follicle-stimu- widespread use of TSH assays, plus the future lating hormone (FSH), and alpha subunits clinical availability of more sensitive TSH as- of TSH and FSH. A computed tomography says as well as TSH bioactivity testing, more scan of the head showed a 16-mm mac- patients will have pituitary-induced hyperthy- roadenoma of the pituitary gland. There roidism correctly diagnosed, and the disorder was no evidence of loss or excess secre- will be better understood. tion of other pituitary hormones. The large As illustrated in the following case study, chromophobe adenoma was removed via making the correct diagnosis of primary ver- a transphenoidal approach. The patient sus secondary hyperthyroidism is imperative has been taken off all medication. Thyroid because the treatment and potential conse- function has returned to normal and there quences of each of these diseases are totally has been no loss of pituitary secretory ca- different. pacity of other pituitary hormones. The oc- currence of a combined TSH- and FSH- Report of case secreting pituitary adenoma is rare; to the In August 1985, a 34-year-old man was seen with authors knowledge, only one case has complaints that were initially vague and nonspe- been documented in the literature.
    [Show full text]
  • A Case of Cushing Syndrome with Both Secondary Hypothyroidism and Hypercalcemia Due to Postoperative Adrenal Insufficiency
    Endocrine Journal 2004, 51 (1), 105–113 NOTE A Case of Cushing Syndrome with Both Secondary Hypothyroidism and Hypercalcemia Due to Postoperative Adrenal Insufficiency MASAHITO KATAHIRA, TSUTOMU YAMADA* AND MASAHIKO KAWAI* Department of Internal Medicine, Kyoritsu General Hospital, Nagoya 456-8611, Japan *Division of Endocrinology, Department of Internal Medicine, Okazaki City Hospital, Okazaki 444-8553, Japan Abstract. A 48-year-old woman was referred to our hospital because of secondary hypothyroidism. Upon admission a left adrenal tumor was also detected using computed tomography. Laboratory data and adrenal scintigraphy were compatible with Cushing syndrome due to the left adrenocortical adenoma, although she showed no response to the TRH stimulation test. Hypercortisolism resulting in secondary hypothyroidism was diagnosed. After a left adrenalectomy, hydrocortisone administration was begun and the dose was reduced gradually. After discharge on the 23rd postoperative day, she began to suffer from anorexia. ACTH level remained low, and serum cortisol, free thyroxine and TSH levels were within the normal range. Since her condition became worse, she was re-admitted on the 107th postoperative day at which time serum calcium level was high (15.6 mg/dl). Both ACTH response to the CRH stimulation test and TSH response to the TRH stimulation test were restored to almost normal levels, but there was no response of cortisol to CRH stimulation test. We diagnosed that the hypercalcemia was due to adrenal insufficiency. Although the serum calcium level decreased to normal after hydrocortisone was increased (35 mg/day), secondary hypothyroidism recurred. It was suggested that sufficient glucocorticoids suppressed TSH secretion mainly at the pituitary level, which resulted in secondary (corticogenic) hypothyroidism.
    [Show full text]
  • ACTH Stimulation Tests for the Diagnosis of Adrenal Insufficiency: Systematic Review and Meta-Analysis
    ORIGINAL ARTICLE ACTH Stimulation Tests for the Diagnosis of Adrenal Insufficiency: Systematic Review and Meta-Analysis Naykky Singh Ospina,* Alaa Al Nofal,* Irina Bancos, Asma Javed, Khalid Benkhadra, Ekta Kapoor, Aida N. Lteif, Neena Natt, and M. Hassan Murad Evidence-Based Practice Research Program (N.S.O., A.A.N., K.B., M.H.M.), Mayo Clinic, Rochester, Downloaded from https://academic.oup.com/jcem/article/101/2/427/2810551 by guest on 29 September 2021 Minnesota; Knowledge and Evaluation Research Unit (N.S.O., K.B., M.H.M.), Mayo Clinic, Rochester, Minnesota; Division of Endocrinology, Diabetes, Metabolism, and Nutrition (N.S.O., N.N., I.B.), Mayo Clinic, Rochester, Minnesota; Division of Pediatric Endocrinology and Metabolism (A.A.N., A.J., A.N.L.), Mayo Clinic, Rochester, Minnesota; Division of General Internal Medicine (E.K.), Mayo Clinic, Rochester, Minnesota 55905 Context: The diagnosis of adrenal insufficiency is clinically challenging and often requires ACTH stimulation tests. Objective: To determine the diagnostic accuracy of the high- (250 mcg) and low- (1 mcg) dose ACTH stimulation tests in the diagnosis of adrenal insufficiency. Methods: We searched six databases through February 2014. Pairs of independent reviewers se- lected studies and appraised the risk of bias. Diagnostic association measures were pooled across studies using a bivariate model. Data Synthesis: For secondary adrenal insufficiency, we included 30 studies enrolling 1209 adults and 228 children. High- and low-dose ACTH stimulation tests had similar diagnostic accuracy in adults and children using different peak serum cortisol cutoffs. In general, both tests had low sensitivity and high specificity resulting in reasonable likelihood ratios for a positive test (adults: high dose, 9.1; low dose, 5.9; children: high dose, 43.5; low dose, 7.7), but a fairly suboptimal likelihood ratio for a negative test (adults: high dose, 0.39; low dose, 0.19; children: high dose, 0.65; low dose, 0.34).
    [Show full text]
  • Clinical Research Protocol
    CLINICAL RESEARCH PROTOCOL NCT02399475 The Thyroid Axis in Older Individuals with Persistent Subclinical Hypothyroidism: a Mechanistic, Randomized, Double-Blind, Cross-Over Study of Levothyroxine and Liothyronine Administration Regulatory Sponsor: Anne R. Cappola, MD, ScM Division of Endocrinology, Diabetes, and Metabolism 12-136 Translational Research Center 3400 Civic Center Blvd, Bldg 421 Philadelphia, PA 19104-5160 (215) 573 5359 Funding Sponsor: National Institute on Aging, NIH Medications Used: Thyrotropin Releasing Hormone (TRH) Levothyroxine (LT4) Liothyronine (LT3) Protocol Number: 821564 IND Number: 125167 Initial version:[11/26/2014] Amended [7/22/2015] Amended: [12/18/2014] Amended [9/9/2015] Amended: [1/2/2015] Amended [8/25/2016] Amended: [3/26/2015] Amended [12/23/2016] Amended: [5/13/2015] Amended [3/24/2017] Amended: [06/04/2015] Amended [9/26/2017] Amended: [6/10/2015] Amended [12/18/2017] (additional next page) Amended [12/18/18] CONFIDENTIAL This material is the property of the University of Pennsylvania. Do not disclose or use except as authorized in writing by the study sponsor LT4 and LT3 in Subclinical Hypothyroidism Page ii Version 12/18/2018 Table of Contents STUDY SUMMARY ......................................................................................................... 1 1 INTRODUCTION ...................................................................................................... 3 1.1 BACKGROUND ....................................................................................................
    [Show full text]
  • Kaplan & Sadock's Study Guide and Self Examination Review In
    Kaplan & Sadock’s Study Guide and Self Examination Review in Psychiatry 8th Edition ← ↑ → © 2007 Lippincott Williams & Wilkins Philadelphia 530 Walnut Street, Philadelphia, PA 19106 USA, LWW.com 978-0-7817-8043-8 © 2007 by LIPPINCOTT WILLIAMS & WILKINS, a WOLTERS KLUWER BUSINESS 530 Walnut Street, Philadelphia, PA 19106 USA, LWW.com “Kaplan Sadock Psychiatry” with the pyramid logo is a trademark of Lippincott Williams & Wilkins. All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. Printed in the USA Library of Congress Cataloging-in-Publication Data Sadock, Benjamin J., 1933– Kaplan & Sadock’s study guide and self-examination review in psychiatry / Benjamin James Sadock, Virginia Alcott Sadock. —8th ed. p. cm. Includes bibliographical references and index. ISBN 978-0-7817-8043-8 (alk. paper) 1. Psychiatry—Examinations—Study guides. 2. Psychiatry—Examinations, questions, etc. I. Sadock, Virginia A. II. Title. III. Title: Kaplan and Sadock’s study guide and self-examination review in psychiatry. IV. Title: Study guide and self-examination review in psychiatry. RC454.K36 2007 616.890076—dc22 2007010764 Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the authors, editors, and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, expressed or implied, with respect to the currency, completeness, or accuracy of the contents of the publication.
    [Show full text]
  • SNAP Cortisol Testing Guide
    SNAP® Cortisol Testing Guide Diagnosing and Treating Cases of Suspected Canine Hyperadrenocorticism or Addison’s Disease IMPORTANT: Review history of any administration of corticosteroids as these may influence the reported results. Diagnose ACTH Stimulation Test Diagnostic Protocol for Cases of Suspected Canine Hyperadrenocorticism or Addison’s Disease History, physical exam, CBC, chemistry panel, electrolytes and urinalysis consistent with Canine Hyperadrenocorticism or Addison’s disease Draw baseline cortisol sample. Perform an ACTH stimulation test with Cortrosyn® 5 µg/kg IV or ACTH gel 2.2 U/kg IM. Draw 1-hour cortisol (Cortrosyn®) or 1 and 2-hour cortisol (ACTH gel). Pre-ACTH: 2–6 µg/dL Pre- and Post-ACTH Post-ACTH Post-ACTH Post-ACTH 2 6 µg/dL >22 µg/dL <2 µg/dL – Post-ACTH: 6–18 µg/dL 18–22 µg/dL If both results are <2 µg/dL, results are Equivocal, Consistent Inconclusive consistent with Normal Cushing’s possible with Cushing’s hypoadrenocorticism Perform high-dose dexamethasone* Begin treatment with suppression to mineralocorticoid discriminate between and/or glucocorticoid PDH and ATH, as appropriate. ACTH level and/or abdominal ultrasound. * Do not exceed 0.1 mg/kg of dexamethasone. Diagnose Low-Dose Dexamethasone Suppression Protocol For Cases of Suspected Canine Hyperadrenocorticism History, physical exam, CBC, chemistry panel, electrolytes and urinalysis consistent with Canine Hyperadrenocorticism Draw baseline cortisol sample. Perform a low-dose dexamethasone suppression test with 0.01 mg/kg of dexamethasone IV. Draw 4-hour
    [Show full text]
  • Adrenal Incidentalomas with Supraphysiologic Response to ACTH Stimulus: a Case Report
    Hindawi Publishing Corporation Case Reports in Endocrinology Volume 2012, Article ID 503290, 4 pages doi:10.1155/2012/503290 Case Report Adrenal Incidentalomas with Supraphysiologic Response to ACTH Stimulus: A Case Report Marianna Antonopoulou1 and Asya Perelstein2 1 SUNY Downstate Medical Center, 450 Clarkson Avenue, Box 1205, Brooklyn, NY 11203, USA 2 VA Medical Center, 800 Poly Place, New York, NY 11209, USA Correspondence should be addressed to Marianna Antonopoulou, [email protected] Received 7 August 2012; Accepted 20 September 2012 Academic Editors: I. Broom, C. Capella, and T. Konrad Copyright © 2012 M. Antonopoulou and A. Perelstein. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present the diagnostic approach of a patient with adrenal incidentalomas. A 72-year-old African American male had a CT scan of the abdomen showing right and left adrenal masses measuring 5 × 3.5 cm and 3.7 × 2.9 cm, respectively. The patient had negative hormonal workup. The radiologist insisted that the CT findings are consistent with adrenal hyperplasia, and therefore he underwent ACTH stimulation to rule out late-onset congenital adrenal hyperplasia (CAH). The stimulation test revealed that 17-hydroxyprogesterone and 11-deoxycortisol increased to levels high enough to confirm CAH, but cortisol had exaggerated response as well, thus making the diagnosis of CAH unlikely where metabolism is shifted to precursors. Subsequently, the patient underwent screening for Cushing’s syndrome (CS) with a dexamethasone suppression test. Patient failed the suppresion test, raising the issue for subclinical CS (SCS), likely due to ACTH-independent macronodular adrenal hyperplasia.
    [Show full text]
  • Chapter 1. Epidemiology of Hypertension
    Hypertension Research (2009) 32, 6–10 & 2009 The Japanese Society of Hypertension All rights reserved 0916-9636/09 $32.00 www.nature.com/hr GUIDELINES (JSH 2009) Chapter 1. Epidemiology of hypertension Hypertension Research (2009) 32, 6–10; doi:10.1038/hr.2008.9 POINT 1 Similar values were also reported in the quick report of the National Health and Nutrition Survey in 2006. The number of hypertensive 1. The number of hypertensive people in Japan has reached Japanese is expected to increase further with the growth in the elderly approx 40 million. population. 2. The average blood pressure levels of the Japanese decreased markedly following a peak in 1965–1990. This decrease 2) CHANGES IN AVERAGE BLOOD PRESSURE LEVELS OF THE closely coincided with the decrease in mortality rate due to JAPANESE stroke in Japan. In Japan, with the successful management of infections following 3. Morbidity and mortality rates due to diseases such as stroke, World War II, the age-adjusted mortality rate due to stroke increased myocardial infarction, heart disease and chronic renal dis- rapidly and reached a peak in 1965. It then decreased rapidly until ease increase with elevating blood pressure. The effects of 1990, and the life expectancy of the Japanese became the longest in the hypertension are more specific to stroke than to myocardial world.1 During this period, the morbidity rate from stroke decreased, infarction, and, in Japan, the morbidity rate due to stroke is contributing greatly to the reduction in mortality rate due to stroke, still higher than that due to myocardial infarction.
    [Show full text]
  • Chapter 13. Secondary Hypertension
    Hypertension Research (2014) 37, 349–361 & 2014 The Japanese Society of Hypertension All rights reserved 0916-9636/14 www.nature.com/hr GUIDELINES (JSH 2014) Chapter 13. Secondary hypertension Hypertension Research (2014) 37, 349–361; doi:10.1038/hr.2014.16 OVERVIEW AND SCREENING approximately 5–10% of hypertensive patients,984,985 and it is the most Hypertension related to a specific etiology is termed secondary frequent in endocrine hypertension. In addition, frequent etiological hypertension, markedly differing from essential hypertension, of factors for secondary hypertension include renal parenchymal hyper- which the etiology cannot be identified, in the condition and tension and renovascular hypertension. A study reported that sleep therapeutic strategies. Secondary hypertension is often resistant hyper- apnea syndrome was the most frequent factor for secondary hyper- tension, for which a target blood pressure is difficult to achieve by tension.517 The number of patients with secondary hypertension standard treatment. However, blood pressure can be effectively may further increase with the widespread diagnosis of sleep apnea reduced by identifying its etiology and treating the condition. There- syndrome. fore, it is important to suspect secondary hypertension and reach an Generally, the presence of severe or resistant hypertension, juvenile appropriate diagnosis. hypertension and the rapid onset of hypertension suggest the possi- Frequent etiological factors for secondary hypertension include bility of secondary hypertension. In such hypertensive patients, a close renal parenchymal hypertension, primary aldosteronism (PA), reno- inquiry on medical history, medical examination and adequate vascular hypertension and sleep apnea syndrome. Renal parenchymal examinations must be performed, considering the possibility of hypertension is caused by glomerular diseases, such as chronic secondary hypertension.
    [Show full text]
  • Society for Endocrinology National Clinical Cases 2021
    Endocrine Abstracts June 2021 Volume 74 ISSN 1479-6848 (online) Society for Endocrinology National Clinical Cases 2021 22 June 2021, Online published by Online version available at bioscientifica www.endocrine-abstracts.org Volume 74 Endocrine Abstracts June 2021 Society for Endocrinology National Clinical Cases 2021 Tuesday 22 June 2021 Online Meeting Chairs Dr Anna Crown (Brighton) Dr Miles Levy (Leicester) Dr Annice Mukherjee (Manchester) Dr Michael O’Reilly (Dublin) Abstract Marking Panel Dr Kristien Boelart (Birmingham) Dr Karin Bradley (Bristol) Dr Simon Howell (Preston) Dr Andrew Lansdown (Cardiff) Dr Miles Levy (Leicester) Dr Daniel Morganstein (London) Dr Michael O’Reilly (Dublin) Professor Robert Semple (Edinburgh) Dr Peter Taylor (Cardiff) Dr Helen Turner (Oxford) Professor Bijay Vaidya (Exeter) Dr Nicola Zammitt (Edinburgh) Society for Endocrinology National Clinical Cases 2021 CONTENTS Society for Endocrinology National Clinical Cases 2021 Oral Communications ................................................. OC1–OC10 Highlighted Cases ................................................. NCC1–NCC71 AUTHOR INDEX Endocrine Abstracts (2021) Vol 74 Society for Endocrinology National Clinical Cases 2021 Oral Communications Endocrine Abstracts (2021) Vol 74 Society for Endocrinology National Clinical Cases 2021 OC1 lupus-anticoagulant. 5 days post-admission, in view of sudden onset lower A rare heterozygous IGFI variant causing postnatal growth failure and backache & worsening infection markers, repeat CT CAP was done which offering novel insights into IGF-I physiology revealed new bilateral adrenal haemorrhages. MRI adrenals revealed B/l adrenal 1 1 2 1 haemorrhages with fat stranding ,no underlying adrenal mass noted. Her 9am Emily Cottrell , Sumana Chatterjee , Vivian Hwa & Helen L. Storr ! 1 cortisol was 25, therefore she was started on IV hydrocortisone for acute Centre for Endocrinology, William Harvey Research Institute, Barts and adrenal insufficiency.
    [Show full text]
  • Poster Presentations
    ______________________________________ P1-d1-164 Adrenals and HPA Axis 1 Arterial hypertension in children: alterations in mineralocorticoid and glucocorticoid axis and their impact on pro-inflammatory, endothelial damage, and oxidative stress parameters Carmen Campino1; Rodrigo Bancalari2; Alejandro Martinez-Aguayo2; Poster Presentations Marlene Aglony2; Hernan Garcia2; Carolina Avalos2; Lilian Bolte2; Carolina Loureiro2; Cristian Carvajal1; Lorena Garcia3; Sergio Lavanderos3; Carlos Fardella1 1Pontificia Universidad Catolica, Endocrinology, and Millennium Institute of Immunology and Immunotherapy, Santiago, Chile; 2Pontificia Universidad Catolica, pediatrics, Santiago, Chile; 3Universidad de Chile, School of Chemical Sciences, Santiago, Chile Background and aims: The pathogenesis of arterial hypertension and its impact and determining factors with respect to cardiovascular damage in chil- dren is poorly understood. We evaluated the prevalence of alterations in the mineralocorticoid and glucocorticoid axes and their impact on pro-inflam- matory, endothelial damage and oxidative stress parameters in hypertensive children. Methods: 306 children (5-16 years old); Group 1: Hypertensives (n=111); Group 2: normotensives with hypertensive parents (n=101); Group 3: normotensives with normotensives parents (n= 95). Fasting blood samples were drawn for hormone measurements (aldosterone, plasma renin activity (PRA), cortisol (F), cortisone (E)); inflammation vari- ______________________________________ ables (hsRCP, adiponectin, IL-6, IL-8, TNF-α); endothelial damage (PAI-I, P1-d1-163 Adrenals and HPA Axis 1 MMP9 and MMP2 activities) and oxidative stress (malondialdehyde). Famil- The role of S-palmitoylation of human ial hyperaldosteronism type 1 (FH-1) was diagnosed when aldosterone/PRA ratio >10 was associated with the chimeric CYP11B1/CYP11B2 gene. The glucocorticoid receptor in mediating the non- 11β-HSD2 activity was considered altered when the F/E ratio exceeded the genomic actions of glucocorticoids mean + 2 SD with respect to group 3.
    [Show full text]
  • California Breast Cancer Research Program Special Research Initiatives
    Identifying Gaps in Breast Cancer Research California Breast Cancer Research Program Special Research Initiatives Identifying gaps in breast cancer research: Addressing disparities and the roles of the physical and social environment Editors Julia G. Brody, PhD Executive Director Silent Spring Institute Marion (Mhel) H.E. Kavanaugh-Lynch, MD, MPH Director California Breast Cancer Research Program Olufunmilayo I (Funmi) Olopade, MD Walter L. Palmer Distinguished Service Professor of Medicine University of Chicago Medical Center Susan Matsuko Shinagawa Breast Cancer and Chronic Pain Survivor/Advocate, Intercultural Cancer Council; Asian and Pacific Islander National Cancer Survivors Network Sandra Steingraber, PhD Author and Distinguished Visiting Scholar Ithaca College David R. Williams, PhD Department of Society, Human Development and Health Harvard School of Public Health Front Matter DRAFT 8/11/07 Page 1 California Breast Cancer Research Program Table of Contents Preface Introduction Section I: Exposures from the Physical Environment and Breast Cancer Overarching Issues A. Secondhand Smoke B. Environmental Chemicals/Pollutants 1. Air Pollutants, Fuels and Additives 2. Persistent Organic Pollutants 3. Polybrominated Flame Retardants 4. Pesticides 5. Solvents and industrial chemicals 6. Water Contaminants 7. Hormones in Food 8. Metals 9. Exposures from Polyvinyl Chloride 10.Bisphenol A C. Compounds in Personal Care Products D. Pharmaceuticals E. Infectious agents F. Ionizing Radiation G. Electric and Magnetic Fields H. Light at night I. Vitamin D/Sunlight Section II: Disparities in Breast Cancer: Domains of Individual-level Social Inequality A. Race/Ethnicity B. Sexual Minority Women C. Disability Status D. Culture E. Health Insurance Section III: Neighborhood Context and Breast Cancer Front Matter DRAFT 8/11/07 Page 2 Identifying Gaps in Breast Cancer Research Acknowledgements The California Breast Cancer Research Program would like to acknowledge the assistance from the following individuals who participated in the development of these chapters.
    [Show full text]