Society for Endocrinology National Clinical Cases 2021
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hyperthyroidism with an FSH- and TSH-Secreting Pituitary Adenoma
• Hyperthyroidism with an FSH- and TSH-secreting pituitary adenoma JOHN BERMINGHAM, DO LOUIS C. HAENEL, DO A 34-year-old man was found noma is rare. The combined secretion of follicle- to have elevated thyroxine (T 4 ), triiodothy- stimulating hormone (FSH) and TSH by a pi- ronine (T3 ), calculated free T4 , thyroid- tuitary adenoma is rarer. But with current stimulating hormone (TSH), follicle-stimu- widespread use of TSH assays, plus the future lating hormone (FSH), and alpha subunits clinical availability of more sensitive TSH as- of TSH and FSH. A computed tomography says as well as TSH bioactivity testing, more scan of the head showed a 16-mm mac- patients will have pituitary-induced hyperthy- roadenoma of the pituitary gland. There roidism correctly diagnosed, and the disorder was no evidence of loss or excess secre- will be better understood. tion of other pituitary hormones. The large As illustrated in the following case study, chromophobe adenoma was removed via making the correct diagnosis of primary ver- a transphenoidal approach. The patient sus secondary hyperthyroidism is imperative has been taken off all medication. Thyroid because the treatment and potential conse- function has returned to normal and there quences of each of these diseases are totally has been no loss of pituitary secretory ca- different. pacity of other pituitary hormones. The oc- currence of a combined TSH- and FSH- Report of case secreting pituitary adenoma is rare; to the In August 1985, a 34-year-old man was seen with authors knowledge, only one case has complaints that were initially vague and nonspe- been documented in the literature. -
Volume 93 Number 2
2014 - 2015 VOLUME 93, NUMBER 2 TABLE OF CONTENTS Journal of the PHILIPPINE MEDICAL ASSOCIATION 2014 - 2015 VOLUME 93, NUMBER 1 THE MYSTERY OF SALIVARY GLAND TUMORS 1 Kathleen M. Rodriguez, M.D., Celso V. Ureta, M.D., FPSOHNS, FPCS INFLAMMATORY CONDITION OF THE LARYNX VERSUS A 11 NEOPLASTIC LARYGEAL MASS: A DIAGNOSTIC DILEMMA Jeffrey A. Pangilinan, M.D, Celso V. Ureta, M.D., FPSOHNS, FPCS A CASE OF ACTINOMYCETOMA TREATED WITH CO-TRIMOXAZOLE 22 (TRIMETHOPRIM + SULFAMETHOXAZOLE) Subekcha Karki, M.D., Ma. Luisa Abad-Venida, M.D. EVALUATION OF SUPRACRICOID PARTIAL LANGECTOMY WITH 30 CRICOHYOIDOEPIGLOTTOPEXY IN A TERTIARY HOSPITAL Kathleen M. Rodriquez, M.D., Jeffrey A. Pangilinan, M.D. Celso V. Ureta, M.D., FPSOHNS, FPCS MIDLINE NECK FISTULA: 4TH BRANCHIAL CLEFT FISTULA vs. 48 INFECTED THYROGLOSSAL CYST Kathleen M. Rodriquez, M.D., Celso V. Ureta, M.D., FPSOHNS, FPCS LARGE ERYTHEMATOUS MASS OF THE AURICLE IN A 17-YEAR OLD 61 MALE: AN UNCOMMON PRESENTATION OF ACTURE MYELOGENOUS LEUKEMIA Eleanor P. Bernas, M.D., Natividad Almazan, M.D., FPSOHNS, FPCS Celso V. Ureta, M.D., FPSOHNS, FPCS A RARE CASE OF PARATHYROID CARCINOMA MANIFESTING AS 71 RECURRENT NEPHROLITHIASIS Ma. Melizza S. Villalon, M.D., Celso V. Ureta, M.D., FPSOHNS, FPCS REHABILITATION OF A DIGITAL VIDEOSTROBOSCOPY SYSTEM: 84 A PRACTICAL SOLUTION TO AN INOPERABLE AND UNSERVICEABLE DIGITAL VIDEOSTROBOSCOPY UNIT Jeffrey A. Pangilinan, M.D., Celso V. Ureta, M.D., FPSOHNS, FPCS RANDOMIZED DOUBLE BLIND PLACEBO-CONTROLLED CLINICAL 101 ON THE EFFICACY AND SAFETY OF MORINGA OLEIFERA (MALUNGGAY) 1% CREAM IN THE TREATMENT OF TINEA CORPORIS: A PILOT STUDY Charo Fionna F. -
ICD-9-CM to ICD-10 Common Codes for Endocrinology
Diagnostic Services ICD-9-CM to ICD-10 Common Codes for Endocrinology ICD-9 ICD-10 ICD-9 ICD-10 Diagnoses Diagnoses Code Code Code Code Adrenal Disorders 253.9 Pituitary lesions E23.7 Galactorrhea, not associated with 227.0 Pheochromocytoma of adrenal D35.00 611.6 N64.3 childbirth 255.0 Cushing’s syndrome E24.9 Thyroid Disorders 255.10 Aldosteronism E26.9 193 Thyroid cancer C73 255.10 Primary aldosteronism E26.09 240.0 Simple nontoxic goiter E04.0 Glucocorticoid-remediable 255.11 E26.02 aldosteronism 241.0 Nontoxic uninodular goiter E04.1 255.12 Conn’s syndrome E26.01 241.0 Thyroid nodule E04.1 255.13 Bartter’s syndrome E26.81 241.1 Nontoxic multinodular goiter E04.2 255.14 Secondary aldosteronism E26.1 242.00 Graves’ disease E05.00 255.2 Adrenal virilism E25.9 242.00 Primary thyroid hyperplasia E05.00 255.2 Adrenogenital disorder E25.9 242.00 Toxic diffuse goiter E05.00 255.2 Congenital adrenal hyperplasia E25.0 242.01 Graves’ disease with thyrotoxic crisis E05.01 Uninodular goiter - Thyrotoxic crisis 255.41 Addison’s disease E27.1 242.10 E05.10 (Hyperthyroidism) 255.41 Adrenal insufficiency E27.40 242.80 Drug induced hyperthyroidism E05.80 255.41 Glucocorticoid insufficiency E27.40 242.90 Hyperthyroidism E05.90 255.42 Hypoaldosteronism E27.40 242.91 Hyperthyroidism with thyrotoxic crisis E05.91 255.42 Mineralcorticoid deficiency E27.49 243 Congenital hypothyroidism E03.1 Carbohydrate Metabolism Disorders 244.0 Postsurgical hypothyroidism E89.0 251.0 Hypoglycemic coma E15 Hypothyroidism, secondary to 244.8 E03.8 251.2 Hypoglycemia E16.2 -
A Case of Cushing Syndrome with Both Secondary Hypothyroidism and Hypercalcemia Due to Postoperative Adrenal Insufficiency
Endocrine Journal 2004, 51 (1), 105–113 NOTE A Case of Cushing Syndrome with Both Secondary Hypothyroidism and Hypercalcemia Due to Postoperative Adrenal Insufficiency MASAHITO KATAHIRA, TSUTOMU YAMADA* AND MASAHIKO KAWAI* Department of Internal Medicine, Kyoritsu General Hospital, Nagoya 456-8611, Japan *Division of Endocrinology, Department of Internal Medicine, Okazaki City Hospital, Okazaki 444-8553, Japan Abstract. A 48-year-old woman was referred to our hospital because of secondary hypothyroidism. Upon admission a left adrenal tumor was also detected using computed tomography. Laboratory data and adrenal scintigraphy were compatible with Cushing syndrome due to the left adrenocortical adenoma, although she showed no response to the TRH stimulation test. Hypercortisolism resulting in secondary hypothyroidism was diagnosed. After a left adrenalectomy, hydrocortisone administration was begun and the dose was reduced gradually. After discharge on the 23rd postoperative day, she began to suffer from anorexia. ACTH level remained low, and serum cortisol, free thyroxine and TSH levels were within the normal range. Since her condition became worse, she was re-admitted on the 107th postoperative day at which time serum calcium level was high (15.6 mg/dl). Both ACTH response to the CRH stimulation test and TSH response to the TRH stimulation test were restored to almost normal levels, but there was no response of cortisol to CRH stimulation test. We diagnosed that the hypercalcemia was due to adrenal insufficiency. Although the serum calcium level decreased to normal after hydrocortisone was increased (35 mg/day), secondary hypothyroidism recurred. It was suggested that sufficient glucocorticoids suppressed TSH secretion mainly at the pituitary level, which resulted in secondary (corticogenic) hypothyroidism. -
Surgery Team
Common Neck Swellings With all courtesy to our colleagues, Raslan and his team, a lot of our work is based on their Manual to Surgery Booklet. Important Mentioned by doctors but not in slides Additional notes from Surgical Recall 6th edition or Raslan's booklet Not mentioned by the doctor 431 SURGERY TEAM Done By: Revised By: Fatema Sara Almutairi Abdulkarim Leaders Abeer Al-Suwailem Mohammed Alshammari Surgery Team 431 Primary hyperparathyroidism (Surgical Approach): There is a problem in diagnosis and management of primary hyperthyroidism in KSA, and in 3rd world countries in general. What are parathyroids? General characteristics: We have four parathyroid glands in the posterior aspect of the thyroid gland. They are very small corn-size, yellow with brownish and pinkish color glands. Both the superior and the inferior parathyroid glands receive blood supply from the inferior thyroid artery. Embryology of The parathyroid glands: The upper parathyroid glands originate from the 4th pharyngeal pouch. The lower parathyroid glands originate from the 3rd pharyngeal pouch. Physiology of the Parathyroid: Ca2+ homeostasis: release of Parathormone/Parathyroid hormone (PTH) to raise Ca2+ levels in the blood (PTH is not responsible of the levels of calcium in bones only in the serum). Whenever the serum calcium goes down, immediately PTH will be secreted from the parathyroids to calcium in the serum. Vitamin D regulation: PTH induces Vit.D hydroxylation in the kidney,and this process is necessary for Vit.D activation. Calcitonin: is released from the c-cells of the thyroid gland decrease Ca2+ levels. These are not of physiological significance. Parathermone hormone (PTH) affects three systems: 1) Direct affect on bones to get the calcium into the serum. -
Clinical Research Protocol
CLINICAL RESEARCH PROTOCOL NCT02399475 The Thyroid Axis in Older Individuals with Persistent Subclinical Hypothyroidism: a Mechanistic, Randomized, Double-Blind, Cross-Over Study of Levothyroxine and Liothyronine Administration Regulatory Sponsor: Anne R. Cappola, MD, ScM Division of Endocrinology, Diabetes, and Metabolism 12-136 Translational Research Center 3400 Civic Center Blvd, Bldg 421 Philadelphia, PA 19104-5160 (215) 573 5359 Funding Sponsor: National Institute on Aging, NIH Medications Used: Thyrotropin Releasing Hormone (TRH) Levothyroxine (LT4) Liothyronine (LT3) Protocol Number: 821564 IND Number: 125167 Initial version:[11/26/2014] Amended [7/22/2015] Amended: [12/18/2014] Amended [9/9/2015] Amended: [1/2/2015] Amended [8/25/2016] Amended: [3/26/2015] Amended [12/23/2016] Amended: [5/13/2015] Amended [3/24/2017] Amended: [06/04/2015] Amended [9/26/2017] Amended: [6/10/2015] Amended [12/18/2017] (additional next page) Amended [12/18/18] CONFIDENTIAL This material is the property of the University of Pennsylvania. Do not disclose or use except as authorized in writing by the study sponsor LT4 and LT3 in Subclinical Hypothyroidism Page ii Version 12/18/2018 Table of Contents STUDY SUMMARY ......................................................................................................... 1 1 INTRODUCTION ...................................................................................................... 3 1.1 BACKGROUND .................................................................................................... -
Kaplan & Sadock's Study Guide and Self Examination Review In
Kaplan & Sadock’s Study Guide and Self Examination Review in Psychiatry 8th Edition ← ↑ → © 2007 Lippincott Williams & Wilkins Philadelphia 530 Walnut Street, Philadelphia, PA 19106 USA, LWW.com 978-0-7817-8043-8 © 2007 by LIPPINCOTT WILLIAMS & WILKINS, a WOLTERS KLUWER BUSINESS 530 Walnut Street, Philadelphia, PA 19106 USA, LWW.com “Kaplan Sadock Psychiatry” with the pyramid logo is a trademark of Lippincott Williams & Wilkins. All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. Printed in the USA Library of Congress Cataloging-in-Publication Data Sadock, Benjamin J., 1933– Kaplan & Sadock’s study guide and self-examination review in psychiatry / Benjamin James Sadock, Virginia Alcott Sadock. —8th ed. p. cm. Includes bibliographical references and index. ISBN 978-0-7817-8043-8 (alk. paper) 1. Psychiatry—Examinations—Study guides. 2. Psychiatry—Examinations, questions, etc. I. Sadock, Virginia A. II. Title. III. Title: Kaplan and Sadock’s study guide and self-examination review in psychiatry. IV. Title: Study guide and self-examination review in psychiatry. RC454.K36 2007 616.890076—dc22 2007010764 Care has been taken to confirm the accuracy of the information presented and to describe generally accepted practices. However, the authors, editors, and publisher are not responsible for errors or omissions or for any consequences from application of the information in this book and make no warranty, expressed or implied, with respect to the currency, completeness, or accuracy of the contents of the publication. -
ICD-10-CM Codes for Endocrinology
Diagnostic Services ICD-10-CM Codes for Endocrinology ICD 10 ICD 10 Diagnoses Diagnoses Code Code Adrenal Disorders E23.7 Pituitary lesions D35.00 Pheochromocytoma of adrenal N64.3 Galactorrhea, not associated with childbirth E24.9 Cushing’s syndrome Thyroid Disorders E25.0 Congenital adrenal hyperplasia C73 Thyroid cancer E25.9 Adrenal virilism E03.1 Congenital hypothyroidism E25.9 Adrenogenital disorder E03.8 Hypothyroidism, secondary to pituitary disease E26.01 Conn’s syndrome E03.9 Primary hypothyroidism E26.02 Glucocorticoid-remediable aldosteronism E04.0 Simple nontoxic goiter E26.09 Primary aldosteronism E04.1 Nontoxic uninodular goiter E26.1 Secondary aldosteronism E04.1 Thyroid nodule E26.81 Bartter’s syndrome E04.2 Nontoxic multinodular goiter E26.9 Aldosteronism E05.00 Graves’ disease E27.1 Addison’s disease E05.00 Primary thyroid hyperplasia E27.40 Adrenal insufficiency E05.00 Toxic diffuse goiter E27.40 Glucocorticoid insufficiency E05.01 Graves’ disease with thyrotoxic crisis E27.40 Hypoaldosteronism E05.10 Uninodular goiter - Thyrotoxic crisis (Hyperthyroidism) E27.49 Mineralcorticoid deficiency E05.80 Drug induced hyperthyroidism Carbohydrate Metabolism Disorders E05.90 Hyperthyroidism E15 Hypoglycemic coma E05.91 Hyperthyroidism with thyrotoxic crisis E16.2 Hypoglycemia E06.1 Subacute thyroiditis E87.0 Nonketotic hyperosmolar syndrome E06.3 Autoimmune thyroid disorder E87.2 Alcohol ketoacidosis E06.3 Hashimoto’s thyroiditis Diabetes Mellitus E06.3 Hashimoto’s struma E10.10 Diabetes type 1 with ketoacidosis E06.5 Chronic -
An Unusual Presentation of Thyroglossal Cyst -A Case Report
Case Report An unusual presentation of thyroglossal cyst -A case report Shilpi Agrawal1, Haritosh K. Velankar2,*, Cassandra A. Carvalho3, Yessu Krishna Shetty4, Yogesh G. Dabholkar5 1Junior Resident, 2Ex HOD and present Head of Unit, 3Senior Resident, 4Lecturer, 5HOD, 1-4D.Y. Patil Medical Collage, Nerul, Navi Mumbai, Maharashtra, India *Correspondent Author: Email: [email protected] Abstract Introduction: Although thyroglossal cysts are very common in children and young adults, their presentation in the elderly is very rare and often goes undiagnosed. This may lead to incomplete excision and recurrence of the cyst, thereby increasing the risk for a malignancy. Here we present a case in an elderly patient, who presented to us with a midline neck swelling, whereas the histopathology report confirmed a thyroglossal cyst. Keywords: Thyroglossal cyst, Elderly, Midline neck swelling, Malignancy, Incomplete. Introduction Thyroglossal cyst is a fibrous cyst that forms from a persistent thyroglossal duct. Thyroglossal cysts can be defined as an irregular neck mass or a lump which develops from cells and tissues that are left over after the formation of the thyroid gland during developmental stages. Case Report A 66 years old male patient presented to our hospital, with complaints of midline neck swelling since 1 year. The swelling was insidious in onset and Fig. 2: Surface anatomy of the excised mass gradually progressive in nature. There was no history of difficulty in breathing, change in voice, thyroid disorder or associated medical pathology. On examination, the swelling had a smooth surface, 4x4 cm in size, extending from lower border of thyroid cartilage to 1.5 cm above the jugular notch, with no skin changes, no scars or sinuses, moves with deglutition. -
Large Thyroglossal Duct Cyst: a Case Report Available Online: 2020.04.02 Published: 2020.05.02
e-ISSN 1941-5923 © Am J Case Rep, 2020; 21: e919745 DOI: 10.12659/AJCR.919745 Received: 2019.08.29 Accepted: 2020.02.19 Large Thyroglossal Duct Cyst: A Case Report Available online: 2020.04.02 Published: 2020.05.02 Authors’ Contribution: ACDEF 1 Sarah Mortaja 1 College of Medicine, Alfaisal University, Riyadh, Saudi Arabia Study Design A ABCE 2 Haneen Sebeih 2 Department of Otolaryngology, Head and Neck Surgery, Ohud Hospital, Madinah, Data Collection B Saudi Arabia Statistical Analysis C ABEF 3 Nasser W. Alobida 3 Department of Otolaryngology, Head and Neck Surgery, King Fahad Medical City, Data Interpretation D ACDE 4 Khalid Al-Qahtani Riyadh, Saudi Arabia Manuscript Preparation E 4 Department of Otolaryngology Head and Neck Surgery, College of Medicine, Literature Search F King Saud University, Riyadh, Saudi Arabia Funds Collection G Corresponding Author: Sarah Mortaja, e-mail: [email protected] Conflict of interest: None declared Patient: Female, 36-year-old Final Diagnosis: Thyroglossal duct cyst Symptoms: Dysphagia • neck mass Medication: — Clinical Procedure: Sistrunk’s procedure Specialty: Otolaryngology Objective: Unusual clinical course Background: Thyroglossal duct cysts are the most common congenital neck cysts. They typically present in childhood and early adulthood, and average a size of 2–4 cm, but can also present in later adult life. Case Report: We present a case of a 36-year-old female patient with a very large midline neck mass, reaching the mandible superiorly. Patient history and physical examination, as well as computed tomography scan of her neck, con- firmed the diagnosis of large thyroglossal duct cyst. She underwent Sistrunk procedure for thyroglossal duct cyst excision, and the specimen was sent for histopathological evaluation, which confirmed the diagnosis. -
Minor Surgical Conditions of Childhood Ajw Millar Ra Brown
OPEN ACCESS TEXTBOOK OF GENERAL SURGERY MINOR SURGICAL CONDITIONS OF CHILDHOOD AJW MILLAR RA BROWN STERNOMASTOID `TUMOUR' Management (FIBRO- MATOSIS COLLI) AND A combination of active and postural TORTICOLLIS physiotherapy is successful in the vast majority of cases. Active: the child's Clinical evidence head is taken gently through a full This may present in three different range of movement (chin to shoulder, ways depending upon the age of the ear to shoulder on each side and patient. extension/flexion.) Postural: · In the neonate 2 - 3 weeks old a positioning such that the child is firm swelling is noticed in the neck encouraged to turn the head towards which is localized to the the affected side e.g. cot position, car sternomastoid muscle. Usually seat, etc. Facial asymmetry cannot be detected because of torticollis - expected to correct itself after the age `wry neck'. Occasionally presents of 5 years. In those cases which with facial and cranial asymmetry. present late or where no progress is · In the older infant there may be no obtained, the muscle is surgically history of a swelling but the divided. In the older child the sternomastoid muscle is now firm investing deep cervical fascia on that and foreshortened. `Wry neck' side is also divided. Less than 5% of · The older child may present with all cases diagnosed in infancy require torticollis. The face is rotated away surgery. It is important to continue from the affected side and the with physiotherapy after surgery. head tilted towards the affected side. This is due to the shortening THYROGLOSSAL CYST AND and fibrosis in the muscle with FISTULA facial and cranial asymmetry are usually apparent. -
Central Hypothyroidism in Miniature Schnauzers
J Vet Intern Med 2016;30:85–91 Central Hypothyroidism in Miniature Schnauzers Annemarie M.W.Y. Voorbij, Peter A.J. Leegwater, Jenny J.C.W.M. Buijtels, Sylvie Daminet, and Hans S. Kooistra Background: Primary hypothyroidism is a common endocrinopathy in dogs. In contrast, central hypothyroidism is rare in this species. Objectives: The objective of this article is to describe the occurrence and clinical presentation of central hypothyroidism in Miniature Schnauzers. Additionally, the possible role of the thyroid-stimulating hormone (TSH)-releasing hormone recep- tor (TRHR) gene and the TSHb (TSHB) gene was investigated. Animals: Miniature Schnauzers with proven central hypothyroidism, based on scintigraphy, and the results of a 3-day- TSH-stimulation test, or a TSH-releasing hormone (TRH)-stimulation test or both, presented to the Department of Clinical Sciences of Companion Animals at Utrecht University or the Department of Medicine and Clinical Biology of Small Animals at Ghent University from 2008 to 2012. Methods: Retrospective study. Pituitary function tests, thyroid scintigraphy, and computed tomography (CT) of the pitui- tary area were performed. Gene fragments of affected dogs and controls were amplified by polymerase chain reaction (PCR). Subsequently, the deoxyribonucleic acid (DNA) sequences of the products were analyzed. Results: Central hypothyroidism was diagnosed in 7 Miniature Schnauzers. Three dogs had disproportionate dwarfism and at least one of them had a combined deficiency of TSH and prolactin. No disease-causing mutations were found in the TSHB gene and the exons of the TRHR gene of these Schnauzers. Conclusions and clinical importance: Central hypothyroidism could be underdiagnosed in Miniature Schnauzers with hypothyroidism, especially in those of normal stature.