Comparative Cognition & Behavior Reviews

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Cognition & Behavior Reviews doi: 10.3819/CCBR.2018.130008 Volume 13, 2018 Comparative Cognition & Behavior Reviews Beyond Brain Size: Uncovering the Neural Correlates of Behavioral and Cognitive Specialization Corina J. Logan Sarah Jelbert Department of Zoology, University of Cambridge Department of Psychology, University of Cambridge Shahar Avin Dieter Lukas Center for the Study of Existential Risk, University of Cambridge Department of Zoology, University of Cambridge Neeltje Boogert Rafael Mares Centre for Ecology and Conservation, University of Exeter Department of Anthropology, University of California, Davis and Smithsonian Tropical Research Institute Andrew Buskell Department of History and Philosophy of Science, Ana F. Navarrete University of Cambridge Centre for Biodiversity, University of St Andrews Fiona R. Cross Shuichi Shigeno School of Biological Sciences, University of Canterbury Department of Biology and Evolution of Marine Organisms, and International Centre of Insect Physiology and Ecology Stazione Zoologica Anton Dohrn Adrian Currie Stephen H. Montgomery Center for the Study of Existential Risk, University of Cambridge Department of Zoology, University of Cambridge Despite prolonged interest in comparing brain size and behavioral proxies of “intelligence” across taxa, the adaptive and cognitive significance of brain size variation remains elusive. Central to this problem is the continued focus on hominid cognition as a benchmark and the assumption that behavioral complexity has a simple relationship with brain size. Although comparative studies of brain size have been criticized for not reflecting how evolution actually operates, and for producing spurious, inconsistent results, the causes of these limitations have received little discussion. We show how these issues arise from implicit assumptions about what brain size measures and how it correlates with behavioral and cognitive traits. We explore how inconsistencies can arise through heterogeneity in evolutionary trajectories and selection pressures on neuroanatomy or neurophysiology across taxa. We examine how interference from ecological and life history variables complicates interpretations of brain–behavior correlations and point out how this problem is exacerbated by the limitations of brain and cognitive measures. These considerations, and the diversity of brain morphologies and behavioral capacities, suggest that comparative brain–behavior research can make greater progress by focusing on specific neuroanatomical and behavioral traits within relevant ecological and evolutionary contexts. We suggest that a synergistic combination of the “bottom-up” approach of classical neuroethology and the “top-down” approach of comparative biology/psychology within closely related but behaviorally diverse clades can limit the effects of heterogeneity, interference, and noise. We argue that this shift away from broad-scale analyses of superficial phenotypes will provide deeper, more robust insights into brain evolution. Keywords: brain evolution, cognition, comparative method, neuroethology, intelligence ISSN: 1911-4745 55 56 Logan et al. Motivation socialization. These investigations frequently emphasize One of the central motivations for research into the significance of brain size. Yet we now have a more brain measurement is its potential to reveal links sophisticated brain measurement tool kit available (e.g., between neuroanatomical structures and cognitive capa- data on neuronal density or molecular variables; Mont- bilities. Many debates on the evolution of brains and gomery, 2017). However, even with such a powerful tool complex behavior suggestive of advanced cognitive abil- kit, problems remain in establishing links between brain ities have privileged measures where humans come out size and cognitive abilities because the interpretation of on top. This bias has been built into a number of “mono- the correlated behaviors as more “complex” or “cogni- lithic” general hypotheses (Barton, 2012) claiming links tive” remain poorly elucidated (Healy & Rowe, 2007). between measures of absolute or relative brain size and Here, we argue that a fruitful approach linking a diverse range of proxy measures of complex behavior, brain measures and cognition involves deemphasizing such as “social” intelligence (Dunbar & Shultz, 2007a, coarse-grained notions of “intelligence” and whole-brain 2007b), “cultural” intelligence (Tomasello, 1999; van measurements in favor of (a) taxa-specific measurements Schaik & Burkart, 2011; van Schaik, Isler, & Burkart, of brains and ecologically meaningful behaviors, and 2012), “general” intelligence (Burkart, Schubiger, & (b) “bottom-up” extrapolation of intraspecies measures van Schaik, 2016; Reader, Hager, & Laland, 2011), and based on phylogenetic context. Based on our review of the behavioral drive (Navarrete, Reader, Street, Whalen, & various limitations that have previously been highlighted, Laland, 2016; Wyles, Kunkel, & Wilson, 1983). In each we conclude by developing a framework that incorporates of these cases, Homo sapiens emerge as the presumed bottom-up and top-down approaches to advance the field. pinnacle of a trajectory of brain evolution that correlates Central to this is a movement away from Homo sapiens with increasing behavioral flexibility, intelligence, or as the measuring stick for evaluating the neuroanatomi- cal features and behavioral capabilities of other animals. Author Note: Corina J. Logan, Department of Zoology, Uni- Aims versity of Cambridge, Downing Street, Cambridge, CB2 3EJ, We introduce a wide variety of research that exam- United Kingdom. ines brains and behavior across various phyla and Correspondence concerning this article should be addressed to discuss how lessons learned from disparate taxa can Corina J. Logan at [email protected]. inform the way we interpret brain evolution, even among more familiar taxa such as vertebrates. Our aim Acknowledgments: All authors contributed to the concepts in is to emphasize the advantages and disadvantages of this article at a workshop organized by Logan in March 2017. the different metrics, methods, and assumptions in this Montgomery structured the article. All authors wrote and edited field. Our review is structured to first provide an over- the article. Logan, Montgomery, Boogert, and Mares served view of the issues that limit interpretations of brain size as managing editors. All authors approved the final version for submission. We certify that what we have written represents studies (which readers may already be familiar with; see original scholarship. We are grateful for manuscript feedback the Limitations of Research on Brain Size and Cogni- from Nicky Clayton, Tim Clutton-Brock, Rob Barton, Anna tion section) and explain why the limitations arise in the Wilkinson, Alex DeCasien, James Higham, and two anony- context of two concepts borrowed from philosophy of mous reviewers, and we appreciate Christian Rutz for discus- science: noise and interference (see the sections Why Do sions about New Caledonian crow foraging innovations. We These Limitations of Brain–Behavior Comparative Stud- thank our funders: the Isaac Newton Trust and Leverhulme ies Arise? and Why Do Limitations in Brain–Behavior Trust for a Leverhulme Early Career Fellowship to CJL, which Comparative Studies Arise?). We end with our proposed funded the workshop on which this article is based; NERC for an framework for how to move forward in the study of Independent Research Fellowship to SHM; the European Re- brains and behavior (Beyond Brain Size section). search Council (Grant No. 3399933; SAJ); the Royal Society for a Dorothy Hodgkin Research Fellowship to NJB; the Royal • Limitations of Research on Brain Size and Cogni- Society of New Zealand Marsden Fund (UOC1301; FRC); the tion section: We review criticisms leveled against National Science Foundation (NSF BCS 1440755; RM); the comparative studies of brain size. John Templeton Foundation (AB); and the Templeton World Charity Foundation (AC; Note: The opinions expressed in this • Why Do These Limitations of Brain–Behavior publication are those of the author(s) and do not necessarily Comparative Studies Arise? Noise (p. 62) and Why Do reflect the views of Templeton World Charity Foundation). Limitations in Brain–Behavior Comparative Studies COMPARATIVE COGNITION & BEHAVIOR REVIEWS Beyond Brain Size 57 Arise? Evidence of Interference (p. 65) sections: We behavioral complexity and what we view as a cognitive go further by establishing why the recognized limi- trait (see the Assumptions and Limitations About What tations arise. By doing so, we show why broad-stroke Brains Mean for Cognition section). In each case, the narratives struggle to capture the wide diversity of lack of data supporting the validity of these assumptions neuroanatomical features and behavioral capacities directly limits our capacity to make reliable inferences in animals. on the link between brain size and cognition. • Beyond Brain Size section: We argue that a more targeted bottom-up approach that measures brains Assumptions and Limitations and behaviors at the intraspecies level to investigate of What Brain Size Measures cognitive, neuroanatomical, and behavioral diver- Brain size may seem like an easy neuroanatomical sity is needed to fully understand how behavioral trait to measure, and the ease of obtaining a data point complexity emerges from neural systems, and how for a species, using one to a few specimens, renders it a well, or poorly, brain size reflects this variation. historically
Recommended publications
  • The Elephant Brain in Numbers
    ORIGINAL RESEARCH ARTICLE published: 12 June 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00046 The elephant brain in numbers Suzana Herculano-Houzel 1,2*, Kamilla Avelino-de-Souza 1,2, Kleber Neves 1,2, Jairo Porfírio 1,2, Débora Messeder 1,2, Larissa Mattos Feijó 1,2, José Maldonado 3 and Paul R. Manger 4 1 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 2 Instituto Nacional de Neurociência Translacional, São Paulo, Brazil 3 MBF Bioscience, Inc., Rio de Janeiro, Brazil 4 School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Edited by: What explains the superior cognitive abilities of the human brain compared to other, larger Patrick R. Hof, Mount Sinai School of brains? Here we investigate the possibility that the human brain has a larger number of Medicine, USA neurons than even larger brains by determining the cellular composition of the brain of Reviewed by: the African elephant. We find that the African elephant brain, which is about three times John M. Allman, Caltech, USA 9 Roger Lyons Reep, University of larger than the human brain, contains 257 billion (10 ) neurons, three times more than the Florida, USA average human brain; however, 97.5%of the neurons in the elephant brain (251 billion) are *Correspondence: found in the cerebellum. This makes the elephant an outlier in regard to the number of Suzana Herculano-Houzel, Centro de cerebellar neurons compared to other mammals, which might be related to sensorimotor Ciências da Saúde, Universidade specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the Federal do Rio de Janeiro, Rua Carlos Chagas Filho, 373 – sala human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of F1-009, Ilha do Fundão 21941-902, neurons found in the human cerebral cortex.
    [Show full text]
  • How Welfare Biology and Commonsense May Help to Reduce Animal Suffering
    Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact [email protected]. Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 Cover Page Footnote I am grateful to Dr. Timothy D. Hau of the University of Hong Kong for assistance. This article is available in Animal Sentience: https://www.wellbeingintlstudiesrepository.org/ animsent/vol1/iss7/1 Animal Sentience 2016.007: Ng on Animal Suffering Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html How welfare biology and commonsense may help to reduce animal suffering Yew-Kwang Ng Division of Economics Nanyang Technological University Singapore Abstract: Welfare biology is the study of the welfare of living things. Welfare is net happiness (enjoyment minus suffering). Since this necessarily involves feelings, Dawkins (2014) has suggested that animal welfare science may face a paradox, because feelings are very difficult to study.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • The Evolution of Self-Control PNAS PLUS
    The evolution of self-control PNAS PLUS Evan L. MacLeana,1, Brian Harea,b, Charles L. Nunna, Elsa Addessic, Federica Amicid, Rindy C. Andersone, Filippo Aurelif,g, Joseph M. Bakerh,i, Amanda E. Baniaj, Allison M. Barnardk, Neeltje J. Boogertl, Elizabeth M. Brannonb,m, Emily E. Brayn, Joel Braya, Lauren J. N. Brentb,o, Judith M. Burkartp, Josep Calld, Jessica F. Cantlonk, Lucy G. Chekeq, Nicola S. Claytonq, Mikel M. Delgador, Louis J. DiVincentis, Kazuo Fujitat, Esther Herrmannd, Chihiro Hiramatsut, Lucia F. Jacobsr,u, Kerry E. Jordanv, Jennifer R. Laudew, Kristin L. Leimgruberx, Emily J. E. Messerl, Antonio C. de A. Mouray, Ljerka Ostojicq, Alejandra Picardz, Michael L. Platta,b,o,aa, Joshua M. Plotnikq,bb, Friederike Rangecc,dd, Simon M. Readeree, Rachna B. Reddyff, Aaron A. Sandelff, Laurie R. Santosx, Katrin Schumannd, Amanda M. Seedl, Kendra B. Sewalle, Rachael C. Shawq, Katie E. Slocombez, Yanjie Sugg, Ayaka Takimotot, Jingzhi Tana, Ruoting Taol, Carel P. van Schaikp, Zsófia Virányicc, Elisabetta Visalberghic, Jordan C. Wadew, Arii Watanabeq, Jane Widnessx, Julie K. Younghh, Thomas R. Zentallw, and Yini Zhaogg Departments of aEvolutionary Anthropology, aaNeurobiology, and mPsychology and Neuroscience, and bCenter for Cognitive Neuroscience, oDuke Institute for Brain Sciences, Duke University, Durham, NC 27708; cIstituto di Scienze e Tecnologie della Cognizione Consiglio Nazionale delle Ricerche, 00197 Rome, Italy; dDepartment of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, D-04103
    [Show full text]
  • Seasonality and Brain Size Are Negatively Associated in Frogs
    www.nature.com/scientificreports OPEN Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain Received: 7 July 2017 Accepted: 20 November 2017 framework Published: xx xx xxxx Yi Luo1,2, Mao Jun Zhong1,2, Yan Huang1,2, Feng Li1,2, Wen Bo Liao1,2 & Alexander Kotrschal3 The challenges of seasonal environments are thought to contribute to brain evolution, but in which way is debated. According to the Cognitive Bufer Hypothesis (CBH) brain size should increase with seasonality, as the cognitive benefts of a larger brain should help overcoming periods of food scarcity via, for instance, increased behavioral fexibility. However, in line with the Expensive Brain Framework (EBF) brain size should decrease with seasonality because a smaller brain confers energetic benefts in periods of food scarcity. Empirical evidence is inconclusive and mostly limited to homoeothermic animals. Here we used phylogenetic comparative analyses to test the impact of seasonality on brain evolution across 30 species of anurans (frogs) experiencing a wide range of temperature and precipitation. Our results support the EBF because relative brain size and the size of the optic tectum were negatively correlated with variability in temperature. In contrast, we found no association between the variability in precipitation and the length of the dry season with either brain size or the sizes of other major brain regions. We suggest that seasonality-induced food scarcity resulting from higher variability in temperature constrains brain size evolution in anurans. Less seasonal environments may therefore facilitate the evolution of larger brains in poikilothermic animals. Brain size varies dramatically between species1 and the recent decades have uncovered a variety of factors that drive this evolution2–10.
    [Show full text]
  • The Evolutionary History of Cetacean Brain and Body Size
    WellBeing International WBI Studies Repository 11-2013 The Evolutionary History of Cetacean Brain and Body Size Stephen H. Montgomery University of Cambridge Jonathan H. Geisler New York Institute of Technology - Old Westbury Michael R. McGowen Wayne State University Charlotte Fox University of Cambridge Lori Marino Emory University See next page for additional authors Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_vsm Part of the Animal Structures Commons, Animal Studies Commons, and the Veterinary Anatomy Commons Recommended Citation Montgomery, S. H., Geisler, J. H., McGowen, M. R., Fox, C., Marino, L., & Gatesy, J. (2013). The evolutionary history of cetacean brain and body size. Evolution, 67(11), 3339-3353. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Authors Stephen H. Montgomery, Jonathan H. Geisler, Michael R. McGowen, Charlotte Fox, Lori Marino, and John Gatesy This article is available at WBI Studies Repository: https://www.wellbeingintlstudiesrepository.org/acwp_vsm/14 The Evolutionary History of Cetacean Brain and Body Size Stephen H. Montgomery University of Cambridge Jonathan H. Geisler New York Institute of Technology Michael R. McGowen Wayne State University School of Medicine Charlotte Fox University of Cambridge Lori Marino Emory University John Gatesy University of California – Riverside KEYWORDS brain size, body size, cetaceans, dolphins, encephalization, evolution, macroevolution, whales ABSTRACT Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved.
    [Show full text]
  • A Review of Effects of Environment on Brain Size in Insects
    insects Review A Review of Effects of Environment on Brain Size in Insects Thomas Carle Faculty of Biology, Kyushu University, Fukuoka 819-0395, Japan; [email protected] Simple Summary: What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract: Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision.
    [Show full text]
  • Modi Ed Formulas for Calculation of Encephalization Quotient in Dogs
    Modied Formulas for Calculation of Encephalization Quotient in Dogs Saganuwan Alhaji Saganuwan ( [email protected] ) Federal University of Agriculture Research note Keywords: German Shepherd, Allometry, Encephalization Quotient, Intelligence Posted Date: March 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-322274/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/8 Abstract Objective Dogs are a breed of animals that play important roles, ranging from security passing through companionship to models of research for application in humans. Intelligence is the key factor to success in life, most especially for dogs that are used for security purposes at the airports, seaports, public places, houses, schools and farms. However, it has been reported that there is correlation between intelligence, body weight, height and craniometry in human. In view of this, literatures on body weight, height and body surface areas of ten dogs were assessed with a view to determining their comparative level of intelligence. Results Findings revealed that dogs share brain common allometric relationships with human as shown by Encephalization Quotient (EQ)= Brain Mass/0.14 x Body weight0.528 as compared with Brain Mass /0.12 x Body Weight0.66 and Brain Mass (E)=kpβ, where p is the body weight,k=0.14 and β=0.528 which yielded better results as compared with the other formulas. Dogs with BSA, weight and height similar to that of human are the most intelligent. Doberman Pinscher is the most intelligent followed by German Shepherd, Labrador Retriever, Golden Retriever, respectively.
    [Show full text]
  • Primate Encephalization
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Progress in Brain Research, Vol. 195, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Louis Lefebvre, Primate encephalization. In Michel A. Hofman, Dean Falk, editors: Progress in Brain Research, Vol. 195, Amsterdam: The Netherlands, 2012, pp. 393-412. ISBN: 978-0-444-53860-4 © Copyright 2012 Elsevier B.V. Elsevier Author's personal copy M. A. Hofman and D. Falk (Eds.) Progress in Brain Research, Vol. 195 ISSN: 0079-6123 Copyright Ó 2012 Elsevier B.V. All rights reserved. CHAPTER 19 Primate encephalization Louis Lefebvre* Department of Biology, McGill University, Montréal, QC, Canada Abstract: Encephalization is a concept that implies an increase in brain or neocortex size
    [Show full text]
  • Does Diving Limit Brain Size in Cetaceans?
    WellBeing International WBI Studies Repository 4-2006 Does Diving Limit Brain Size in Cetaceans? Lori Marino Emory University Daniel Sol McGill University Kristen Toren Emory University Louis Lefebvre McGill University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_vsm Part of the Animal Structures Commons, Animal Studies Commons, and the Veterinary Anatomy Commons Recommended Citation Marino, L., Sol, D., Toren, K., & Lefebvre, L. (2006). Does diving limit brain size in cetaceans?. Marine Mammal Science, 22(2), 413-425. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact [email protected]. Does Diving Limit Brain Size in Cetaceans? Lori Marino,1,2 Daniel Sol,3,4 Kristen Toren,1 and Louis Lefebvre3 1 Emory University 2 Yeres Regional Primate Center 3 McGill University 4 Universitat Autònoma de Barcelona KEYWORDS brain size, diving, oxygenation, cetacean ABSTRACT We test the longstanding hypothesis, known as the dive constraint hypothesis, that the oxygenation demands of diving pose a constraint on aquatic mammal brain size.Using a sample of 23 cetacean species we examine the relationship among six different measures of relative brain size, body size, and maximum diving duration. Unlike previous tests we include body size as a covariate and perform independent contrast analyses to control for phylogeny. We show that diving does not limit brain size in cetaceans and therefore provide no support for the dive constraint hypothesis. Instead, body size is the main predictor of maximum diving duration in cetaceans.
    [Show full text]
  • Intelligence N to Date
    Intelligence N to date N = N* fs fGHZ fp nH fl fJ ffEufm 11 •N* = 4 x 10 •fs = 0.2 •fGHZ = 0.1 •fp = 0.8 •nH = 2 •fl = 1.0 •fJ = 0.5 •f = 0.01 •fEu = 0.1 •fm = 0.1 N = 6.4 x 105 Fi The fraction of times that life evolves intelligence What is intelligence? Is there evolutionary pressure for the evolution of intelligence? Costs of Intelligence Intelligence is biologically expensive It requires lots of energy: The human brain requires about 25% of our resting metabolism; the primate brain requires about 8% of resting metabolism; the mammalian brain requires about 4% of resting metabolism. It requires nurturing Does it requires societies? Does Intelligence Equal Success? What is evolutionary success? If intelligence is adaptive, why did it evolve so late? Dinosauria never became intelligent, nor have birds A Pessimistic View Life has been on Earth for 3.8 Gyr Intelligence (self-cognition) evolved only within the past million years or so (1/3800 = .00026 of available time). Earth will become uninhabitable within another 1 Gyr Intelligence has evolved within the last (<)20% of Earth’s habitability. If Earth is typical, in many cases intelligence will not evolve while the planet is habitable. (see http://www.sciencedaily.com/releases/2008/04/080416110124.htm) Encephalization Quotient Larger animals tend to have larger brains. Allometry (the science of the relation between size and shape) can be used to sketch general trends. The predicted brain mass for an animal of mass W is BM = 1.77 * W0.76 The Encephalization Quotient EQ is the actual brain mass relative to the predicted brain mass Encephalization Quotient Encephalization Quotients Species EQ Man 7.44 Dolphin 5.31 Chimpanzee 2.49 Rhesus Monkey 2.09 Elephant 1.87 Whale 1.76 Dog 1.17 Cat 1.00 Horse 0.86 Sheep 0.81 Mouse 0.50 Mouse 0.50 Rabbit 0.40 fi fi = 1? On a random sample of planets, maybe fi = 0.1 Covergent Evolution •Evolutionarily useful traits evolve among unrelated animals.
    [Show full text]
  • 1 Marino, Lori. (2013). "Humans, Dolphins, and Moral Inclusivity." In
    Marino, Lori. (2013). "Humans, dolphins, and moral inclusivity." In: R. Corbey & A. Lanjouw (eds.), The politics of species: Reshaping our relationships with other animals. Cambridge University Press, 95 - 105. Humans, Dolphins and Moral Inclusivity Lori Marino, Ph.D. The Kimmela Center for Animal Advocacy, Inc. There is abundant scientific evidence for complex intelligence, self-awareness, and emotional complexity in dolphins. Dolphins possess large complex brains second in relative size only to those of modern humans. They have demonstrated prodigious cognitive abilities in such areas as language understanding, abstract thinking, and problem solving. They recognize themselves in mirrors, understand the relationship between their own body and that of others, and can reflect on their own thoughts, showing that their sense of self is not unlike our own. Moreover, their complex sociality and cultural traditions are well documented from ongoing field studies. These findings provide strong support for recognizing their status as individuals with basic rights comparable to those of humans. Yet, dolphins (and whales) continue to be treated as non-sentient objects, commodities, and resources. Egregious examples of this are the many dolphin and whale slaughters that occur around the world and the exploitation of dolphins in entertainment parks, research facilities, and the “dolphin therapy” industry. I will discuss the consequences of mistreatment for suffering in dolphins, the reasons for their continued abuse and exploitation, and new efforts to recognize dolphin personhood and its implications. I will argue that dolphins present an extreme challenge to our ability to consider similarity and difference simultaneously (a prerequisite for inclusivity) in our moral stance towards other animals.
    [Show full text]