Contingency Checking and Self-Directed Behaviors in Giant Manta Rays: Do Elasmobranchs Have Self-Awareness?

Total Page:16

File Type:pdf, Size:1020Kb

Contingency Checking and Self-Directed Behaviors in Giant Manta Rays: Do Elasmobranchs Have Self-Awareness? See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/297913466 Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness? Article in Journal of Ethology · March 2016 DOI: 10.1007/s10164-016-0462-z CITATIONS READS 25 833 2 authors: Csilla Ari Dominic P D'Agostino University of South Florida University of South Florida 55 PUBLICATIONS 735 CITATIONS 106 PUBLICATIONS 2,118 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Effect of ketone supplementation on CNS diseases View project Non-adenosine nucleosides, LPS and WAG/Rij rats View project All content following this page was uploaded by Csilla Ari on 11 February 2019. The user has requested enhancement of the downloaded file. Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness? Csilla Ari & Dominic P. D’Agostino Journal of Ethology ISSN 0289-0771 J Ethol DOI 10.1007/s10164-016-0462-z 1 23 Your article is protected by copyright and all rights are held exclusively by Japan Ethological Society and Springer Japan. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Ethol DOI 10.1007/s10164-016-0462-z ARTICLE Contingency checking and self-directed behaviors in giant manta rays: Do elasmobranchs have self-awareness? 1,2,3 1,2,3 Csilla Ari • Dominic P. D’Agostino Received: 30 November 2015 / Accepted: 20 February 2016 Ó Japan Ethological Society and Springer Japan 2016 Abstract Elaborate cognitive skills arose independently in Introduction different taxonomic groups. Self-recognition is conven- tionally identified by the understanding that one’s own Animal cognition is the process by which animals acquire, mirror reflection does not represent another individual but process, store and act on information gathered from the oneself, which has never been proven in any elasmobranch environment (Shettleworth 2010; Brown 2014). Con- species to date. Manta rays have a high encephalization sciousness includes sentience, intelligence and self- quotient, similar to those species that have passed the mirror awareness (Brown 2014), or, in other words, awareness of self-recognition test, and possess the largest brain of all fish internal and external stimuli, having a sense of self and species. In this study, mirror exposure experiments were some understanding of one’s place in the world (Chandroo conducted on two captive giant manta rays to document their et al. 2004; Bekoff and Sherman 2004; Brown 2014). response to their mirror image. The manta rays did not show Animal consciousness has been a long-time interest and signs of social interaction with their mirror image. However, a debated field among cognitive ethologists (Heyes 1994, frequent unusual and repetitive movements in front of the 1998; Povinelli et al. 1997). The mirror self-recognition mirror suggested contingency checking; in addition, unusual (MSR) test initially developed by Gallup (1970) is con- self-directed behaviors could be identified when the manta sidered to be a reliable behavioral index to show an ani- rays were exposed to the mirror. The present study shows mal’s ability for self-recognition/self-awareness (SA; evidence for behavioral responses to a mirror that are pre- Platek and Levin 2004; Prior et al. 2008). Recognizing requisite of self-awareness and which has been used to oneself in a mirror is a rare capacity among animals (Reiss confirm self-recognition in apes. and Marino 2001), while no species of fish has so far passed this test. There has been only one report on self- Keywords Self-recognition Á Mirror test Á Comparative recognition in fish using chemosensory recognition cognition Á Mobulidae Á Cognition (Thu¨nken et al. 2009). However, studies conducted on other fish species reported that the response to their mirror images differed from responses to conspecifics (Verbeek Electronic supplementary material The online version of this et al. 2007; Desjardins and Fernald 2010; Suddendorf and article (doi:10.1007/s10164-016-0462-z) contains supplementary material, which is available to authorized users. Butler 2013; Balzarini et al. 2014). The only nonhuman species which demonstrated MSR are the great apes (i.e., & Csilla Ari chimpanzees, Pan troglodytes, Pan paniscus; orangutans, csari2000@yahoo.com Pongo pygmaeus; gorilla, Gorilla gorilla), asian elephants 1 Hyperbaric Biomedical Research Laboratory, Department of (Elephas maximus), bottlenose dolphins (Tursiops trunca- Molecular Pharmacology and Physiology, Morsani College tus) and a non-mammal species, the magpie (Pica pica) of Medicine, University of South Florida, 12901 Bruce B. (Gallup 1970; Amsterdam 1972; Lethmate and Ducker Downs Blvd., MDC 8, Tampa, FL 33612, USA 1973; Povinelli et al. 1993; Miles 1994; Patterson and 2 Foundation for the Oceans of the Future, Budapest, Hungary Cohn 1994; Walraven et al. 1995; Prior et al. 2008). 3 Manta Pacific Research Foundation, Kona, HI, USA 123 Author's personal copy J Ethol Those species that passed the MSR test to date share Manta birostris (estimated disc width 4.2 m) which had common characteristics, such as large, complex and highly been living in the exhibit for over 2 years, while the second foliated brain, complex social behavior, cooperative and subject (M2) was a female (estimated disc width 3.3 m) empathic behavior. The largest brain of all fish species is that had been at the Aquarium for 1 year. This individual’s possessed by manta rays with high encephalization quotient taxonomical classification is uncertain to date, because her and highly foliated cerebellum (Ari 2009, 2011), they often characteristics almost completely fulfill the criteria for M. form large feeding aggregations suggesting complex social birostris, except for a white mouth region, brownish back system, and are often referred to as being intelligent; therefore, coloration and the lack of large white shoulder bars. manta rays may be considered the most likely candidates from The two manta rays showed similar responses through- any fish species to pass the MSR test. The universal use of this out the study, and therefore their data were merged in most test has attracted controversy, because it is biased for vision, cases during the representation of the results, unless there but not other sensory modalities. Although it has been sug- was significant difference between their behaviors, in gested that olfactory recognition using chemical cues is more which case their data are presented separately. appropriate for fish (Thu¨nken et al. 2009;Brown2014), this might not be the case for Mobulids. Manta rays have excep- Apparatus and procedure tionally large optic tectum and telencephalon among elas- mobranchs, and the high importance of vision during their The observation area (OA) was selected to be the widest foraging activity has also been recently described (Ari 2009, area in the tank that was free of underwater decoration 2011;AriandCorreia2008), which further supports the obstacles, where the animals were able to turn and possibility that evaluating their self-awareness based on the maneuver comfortably when necessary (Fig. 1). The two MSR test is likely a suitable technique. manta rays’ behavior was documented in a rectangular area The definitive test of MSR is the mark test focusing the of the tank (OA) that was approximately 10 m wide, 15 m animal’s behaviors on the newly marked area of their body long and 5.5 m deep, where the mirror was considered when exposed to a mirror (Sarko et al. 2002). However, visible to the manta rays (Fig. 1). similarly to marine mammals, fish species also have the Three experimental conditions were tested: (1) mirror disadvantage that they are not able to touch the marked placed in the water (MI); (2) control conditions when the area of their body; therefore, it is more challenging to mirror was either removed completely (MO), or (3) a evaluate their behavioral response. Exploratory and social mirror-sized, non-reflective white board was placed in the behavior can be observed at first when animals are exposed water (WB). Seven trials were performed in each experi- to a mirror, which stage is followed by contingency mental condition during 16 days. Each trial was conducted checking when the animals engage in highly repetitive or between feeding times and lasted for 10 min. The test was unusual movements to understand their own image. In the performed with a 0.9 m 9 1.5 m mirror which was tem- next stage, the animals might show self-directed behavior porarily installed in a horizontal orientation on the side of (e.g., dolphins blowing bubbles, chimpanzee picking teeth; Gallup 1970; Reiss 2012; Sarko et al. 2002; de Veer and van den Bos 1999), before the mark test would be initiated. Mirror exposure experiments were conducted on two captive giant manta rays to document their responses to their mirror image in order to predict whether they would be a candidate for the mark test and whether they use a mirror to understand their own image. The present study shows evidence for manta rays’ contingency checking and self-directed behavior when exposed to a mirror, which are the prerequisites of self-awareness. Materials and methods Subjects Fig. 1 The observation area (OA, rectangle) of the tank is presented, Two giant manta ray specimens were exposed to a mirror at where the mirror was considered visible to the manta rays, from dorsal view.
Recommended publications
  • The Elephant Brain in Numbers
    ORIGINAL RESEARCH ARTICLE published: 12 June 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00046 The elephant brain in numbers Suzana Herculano-Houzel 1,2*, Kamilla Avelino-de-Souza 1,2, Kleber Neves 1,2, Jairo Porfírio 1,2, Débora Messeder 1,2, Larissa Mattos Feijó 1,2, José Maldonado 3 and Paul R. Manger 4 1 Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 2 Instituto Nacional de Neurociência Translacional, São Paulo, Brazil 3 MBF Bioscience, Inc., Rio de Janeiro, Brazil 4 School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa Edited by: What explains the superior cognitive abilities of the human brain compared to other, larger Patrick R. Hof, Mount Sinai School of brains? Here we investigate the possibility that the human brain has a larger number of Medicine, USA neurons than even larger brains by determining the cellular composition of the brain of Reviewed by: the African elephant. We find that the African elephant brain, which is about three times John M. Allman, Caltech, USA 9 Roger Lyons Reep, University of larger than the human brain, contains 257 billion (10 ) neurons, three times more than the Florida, USA average human brain; however, 97.5%of the neurons in the elephant brain (251 billion) are *Correspondence: found in the cerebellum. This makes the elephant an outlier in regard to the number of Suzana Herculano-Houzel, Centro de cerebellar neurons compared to other mammals, which might be related to sensorimotor Ciências da Saúde, Universidade specializations. In contrast, the elephant cerebral cortex, which has twice the mass of the Federal do Rio de Janeiro, Rua Carlos Chagas Filho, 373 – sala human cerebral cortex, holds only 5.6 billion neurons, about one third of the number of F1-009, Ilha do Fundão 21941-902, neurons found in the human cerebral cortex.
    [Show full text]
  • How Welfare Biology and Commonsense May Help to Reduce Animal Suffering
    Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org. Ng, Yew-Kwang (2016) How welfare biology and commonsense may help to reduce animal suffering. Animal Sentience 7(1) DOI: 10.51291/2377-7478.1012 Cover Page Footnote I am grateful to Dr. Timothy D. Hau of the University of Hong Kong for assistance. This article is available in Animal Sentience: https://www.wellbeingintlstudiesrepository.org/ animsent/vol1/iss7/1 Animal Sentience 2016.007: Ng on Animal Suffering Call for Commentary: Animal Sentience publishes Open Peer Commentary on all accepted target articles. Target articles are peer-reviewed. Commentaries are editorially reviewed. There are submitted commentaries as well as invited commentaries. Commentaries appear as soon as they have been revised and accepted. Target article authors may respond to their commentaries individually or in a joint response to multiple commentaries. Instructions: http://animalstudiesrepository.org/animsent/guidelines.html How welfare biology and commonsense may help to reduce animal suffering Yew-Kwang Ng Division of Economics Nanyang Technological University Singapore Abstract: Welfare biology is the study of the welfare of living things. Welfare is net happiness (enjoyment minus suffering). Since this necessarily involves feelings, Dawkins (2014) has suggested that animal welfare science may face a paradox, because feelings are very difficult to study.
    [Show full text]
  • Preference and Motivation Tests for Body Tactile Stimulation in Fish
    animals Article Preference and Motivation Tests for Body Tactile Stimulation in Fish Ana Carolina dos Santos Gauy 1,2, Marcela Cesar Bolognesi 1,2, Guilherme Delgado Martins 1 and Eliane Gonçalves-de-Freitas 1,2,* 1 Departamento de Ciências Biológicas, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto 15054-000, SP, Brazil; ana.gauy@unesp.br (A.C.d.S.G.); marcela.bolognesi@unesp.br (M.C.B.); gui_hernan@yahoo.com.br (G.D.M.) 2 CAUNESP—Centro de Aquicultura da UNESP, Jaboticabal 14884-900, SP, Brazil * Correspondence: eliane.g.freitas@unesp.br Simple Summary: Body tactile stimulation, such as human massage therapy, is a way to relieve stress in humans and other animals, therefore it could improve animal health and welfare. This physical stimulation can also be done through artificial devices, as a sensory enrichment. However, before using it in an artificial environment, it is imperative to test whether animals perceive such enrichment as positive (searching for it spontaneously) or negative (avoiding it). Here, we tested whether the Nile tilapia fish search for or avoid tactile stimulation. We used a rectangular PVC frame, filled with vertical plastic sticks sided with silicone bristles that provided tactile stimulation when fish passed through them. We carried out preference and motivation tests, in which fish could choose to cross through the device with and without tactile stimulus. The same procedure was repeated after fish were exposed to either isolation or social stress. We found that fish crossed less by tactile device than by open areas.
    [Show full text]
  • THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A
    s l a m m a y t T i M S N v I i A e G t A n i p E S r a A C a C E H n T M i THE CASE AGAINST Marine Mammals in Captivity The Humane Society of the United State s/ World Society for the Protection of Animals 2009 1 1 1 2 0 A M , n o t s o g B r o . 1 a 0 s 2 u - e a t i p s u S w , t e e r t S h t u o S 9 8 THE CASE AGAINST Marine Mammals in Captivity Authors: Naomi A. Rose, E.C.M. Parsons, and Richard Farinato, 4th edition Editors: Naomi A. Rose and Debra Firmani, 4th edition ©2009 The Humane Society of the United States and the World Society for the Protection of Animals. All rights reserved. ©2008 The HSUS. All rights reserved. Printed on recycled paper, acid free and elemental chlorine free, with soy-based ink. Cover: ©iStockphoto.com/Ying Ying Wong Overview n the debate over marine mammals in captivity, the of the natural environment. The truth is that marine mammals have evolved physically and behaviorally to survive these rigors. public display industry maintains that marine mammal For example, nearly every kind of marine mammal, from sea lion Iexhibits serve a valuable conservation function, people to dolphin, travels large distances daily in a search for food. In learn important information from seeing live animals, and captivity, natural feeding and foraging patterns are completely lost.
    [Show full text]
  • Comparative Evolutionary Approach to Pain Perception in Fishes
    Brown, Culum (2016) Comparative evolutionary approach to pain perception in fishes. Animal Sentience 3(5) DOI: 10.51291/2377-7478.1029 This article has appeared in the journal Animal Sentience, a peer-reviewed journal on animal cognition and feeling. It has been made open access, free for all, by WellBeing International and deposited in the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org. Animal Sentience 2016.011: Brown Commentary on Key on Fish Pain Comparative evolutionary approach to pain perception in fishes Commentary on Key on Fish Pain Culum Brown Biological Sciences Macquarie University Abstract: Arguments against the fact that fish feel pain repeatedly appear even in the face of growing evidence that they do. The standards used to judge pain perception keep moving as the hurdles are repeatedly cleared by novel research findings. There is undoubtedly a vested commercial interest in proving that fish do not feel pain, so the topic has a half-life well past its due date. Key (2016) reiterates previous perspectives on this topic characterised by a black-or-white view that is based on the proposed role of the human cortex in pain perception. I argue that this is incongruent with our understanding of evolutionary processes. Keywords: pain, fishes, behaviour, physiology, nociception Culum Brown CulumBrown@yahoo.com studies the behavioural ecology of fishes with a special interest in learning and memory. He is Associate Professor of vertebrate evolution at Macquarie University, Co-Editor of the volume Fish Cognition and Behavior, and Editor for Animal Behaviour of the Journal of Fish Biology.
    [Show full text]
  • The Evolution of Self-Control PNAS PLUS
    The evolution of self-control PNAS PLUS Evan L. MacLeana,1, Brian Harea,b, Charles L. Nunna, Elsa Addessic, Federica Amicid, Rindy C. Andersone, Filippo Aurelif,g, Joseph M. Bakerh,i, Amanda E. Baniaj, Allison M. Barnardk, Neeltje J. Boogertl, Elizabeth M. Brannonb,m, Emily E. Brayn, Joel Braya, Lauren J. N. Brentb,o, Judith M. Burkartp, Josep Calld, Jessica F. Cantlonk, Lucy G. Chekeq, Nicola S. Claytonq, Mikel M. Delgador, Louis J. DiVincentis, Kazuo Fujitat, Esther Herrmannd, Chihiro Hiramatsut, Lucia F. Jacobsr,u, Kerry E. Jordanv, Jennifer R. Laudew, Kristin L. Leimgruberx, Emily J. E. Messerl, Antonio C. de A. Mouray, Ljerka Ostojicq, Alejandra Picardz, Michael L. Platta,b,o,aa, Joshua M. Plotnikq,bb, Friederike Rangecc,dd, Simon M. Readeree, Rachna B. Reddyff, Aaron A. Sandelff, Laurie R. Santosx, Katrin Schumannd, Amanda M. Seedl, Kendra B. Sewalle, Rachael C. Shawq, Katie E. Slocombez, Yanjie Sugg, Ayaka Takimotot, Jingzhi Tana, Ruoting Taol, Carel P. van Schaikp, Zsófia Virányicc, Elisabetta Visalberghic, Jordan C. Wadew, Arii Watanabeq, Jane Widnessx, Julie K. Younghh, Thomas R. Zentallw, and Yini Zhaogg Departments of aEvolutionary Anthropology, aaNeurobiology, and mPsychology and Neuroscience, and bCenter for Cognitive Neuroscience, oDuke Institute for Brain Sciences, Duke University, Durham, NC 27708; cIstituto di Scienze e Tecnologie della Cognizione Consiglio Nazionale delle Ricerche, 00197 Rome, Italy; dDepartment of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, D-04103
    [Show full text]
  • Seasonality and Brain Size Are Negatively Associated in Frogs
    www.nature.com/scientificreports OPEN Seasonality and brain size are negatively associated in frogs: evidence for the expensive brain Received: 7 July 2017 Accepted: 20 November 2017 framework Published: xx xx xxxx Yi Luo1,2, Mao Jun Zhong1,2, Yan Huang1,2, Feng Li1,2, Wen Bo Liao1,2 & Alexander Kotrschal3 The challenges of seasonal environments are thought to contribute to brain evolution, but in which way is debated. According to the Cognitive Bufer Hypothesis (CBH) brain size should increase with seasonality, as the cognitive benefts of a larger brain should help overcoming periods of food scarcity via, for instance, increased behavioral fexibility. However, in line with the Expensive Brain Framework (EBF) brain size should decrease with seasonality because a smaller brain confers energetic benefts in periods of food scarcity. Empirical evidence is inconclusive and mostly limited to homoeothermic animals. Here we used phylogenetic comparative analyses to test the impact of seasonality on brain evolution across 30 species of anurans (frogs) experiencing a wide range of temperature and precipitation. Our results support the EBF because relative brain size and the size of the optic tectum were negatively correlated with variability in temperature. In contrast, we found no association between the variability in precipitation and the length of the dry season with either brain size or the sizes of other major brain regions. We suggest that seasonality-induced food scarcity resulting from higher variability in temperature constrains brain size evolution in anurans. Less seasonal environments may therefore facilitate the evolution of larger brains in poikilothermic animals. Brain size varies dramatically between species1 and the recent decades have uncovered a variety of factors that drive this evolution2–10.
    [Show full text]
  • The Evolutionary History of Cetacean Brain and Body Size
    WellBeing International WBI Studies Repository 11-2013 The Evolutionary History of Cetacean Brain and Body Size Stephen H. Montgomery University of Cambridge Jonathan H. Geisler New York Institute of Technology - Old Westbury Michael R. McGowen Wayne State University Charlotte Fox University of Cambridge Lori Marino Emory University See next page for additional authors Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_vsm Part of the Animal Structures Commons, Animal Studies Commons, and the Veterinary Anatomy Commons Recommended Citation Montgomery, S. H., Geisler, J. H., McGowen, M. R., Fox, C., Marino, L., & Gatesy, J. (2013). The evolutionary history of cetacean brain and body size. Evolution, 67(11), 3339-3353. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org. Authors Stephen H. Montgomery, Jonathan H. Geisler, Michael R. McGowen, Charlotte Fox, Lori Marino, and John Gatesy This article is available at WBI Studies Repository: https://www.wellbeingintlstudiesrepository.org/acwp_vsm/14 The Evolutionary History of Cetacean Brain and Body Size Stephen H. Montgomery University of Cambridge Jonathan H. Geisler New York Institute of Technology Michael R. McGowen Wayne State University School of Medicine Charlotte Fox University of Cambridge Lori Marino Emory University John Gatesy University of California – Riverside KEYWORDS brain size, body size, cetaceans, dolphins, encephalization, evolution, macroevolution, whales ABSTRACT Cetaceans rival primates in brain size relative to body size and include species with the largest brains and biggest bodies to have ever evolved.
    [Show full text]
  • A Review of Effects of Environment on Brain Size in Insects
    insects Review A Review of Effects of Environment on Brain Size in Insects Thomas Carle Faculty of Biology, Kyushu University, Fukuoka 819-0395, Japan; th.carle@gmail.com Simple Summary: What makes a big brain is fascinating since it is considered as a measure of intelligence. Above all, brain size is associated with body size. If species that have evolved with complex social behaviours possess relatively bigger brains than those deprived of such behaviours, this does not constitute the only factor affecting brain size. Other factors such as individual experience or surrounding environment also play roles in the size of the brain. In this review, I summarize the recent findings about the effects of environment on brain size in insects. I also discuss evidence about how the environment has an impact on sensory systems and influences brain size. Abstract: Brain size fascinates society as well as researchers since it is a measure often associated with intelligence and was used to define species with high “intellectual capabilities”. In general, brain size is correlated with body size. However, there are disparities in terms of relative brain size between species that may be explained by several factors such as the complexity of social behaviour, the ‘social brain hypothesis’, or learning and memory capabilities. These disparities are used to classify species according to an ‘encephalization quotient’. However, environment also has an important role on the development and evolution of brain size. In this review, I summarise the recent studies looking at the effects of environment on brain size in insects, and introduce the idea that the role of environment might be mediated through the relationship between olfaction and vision.
    [Show full text]
  • Modi Ed Formulas for Calculation of Encephalization Quotient in Dogs
    Modied Formulas for Calculation of Encephalization Quotient in Dogs Saganuwan Alhaji Saganuwan ( pharn_saga2006@yahoo.com ) Federal University of Agriculture Research note Keywords: German Shepherd, Allometry, Encephalization Quotient, Intelligence Posted Date: March 18th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-322274/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/8 Abstract Objective Dogs are a breed of animals that play important roles, ranging from security passing through companionship to models of research for application in humans. Intelligence is the key factor to success in life, most especially for dogs that are used for security purposes at the airports, seaports, public places, houses, schools and farms. However, it has been reported that there is correlation between intelligence, body weight, height and craniometry in human. In view of this, literatures on body weight, height and body surface areas of ten dogs were assessed with a view to determining their comparative level of intelligence. Results Findings revealed that dogs share brain common allometric relationships with human as shown by Encephalization Quotient (EQ)= Brain Mass/0.14 x Body weight0.528 as compared with Brain Mass /0.12 x Body Weight0.66 and Brain Mass (E)=kpβ, where p is the body weight,k=0.14 and β=0.528 which yielded better results as compared with the other formulas. Dogs with BSA, weight and height similar to that of human are the most intelligent. Doberman Pinscher is the most intelligent followed by German Shepherd, Labrador Retriever, Golden Retriever, respectively.
    [Show full text]
  • Primate Encephalization
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Progress in Brain Research, Vol. 195, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From: Louis Lefebvre, Primate encephalization. In Michel A. Hofman, Dean Falk, editors: Progress in Brain Research, Vol. 195, Amsterdam: The Netherlands, 2012, pp. 393-412. ISBN: 978-0-444-53860-4 © Copyright 2012 Elsevier B.V. Elsevier Author's personal copy M. A. Hofman and D. Falk (Eds.) Progress in Brain Research, Vol. 195 ISSN: 0079-6123 Copyright Ó 2012 Elsevier B.V. All rights reserved. CHAPTER 19 Primate encephalization Louis Lefebvre* Department of Biology, McGill University, Montréal, QC, Canada Abstract: Encephalization is a concept that implies an increase in brain or neocortex size
    [Show full text]
  • Does Diving Limit Brain Size in Cetaceans?
    WellBeing International WBI Studies Repository 4-2006 Does Diving Limit Brain Size in Cetaceans? Lori Marino Emory University Daniel Sol McGill University Kristen Toren Emory University Louis Lefebvre McGill University Follow this and additional works at: https://www.wellbeingintlstudiesrepository.org/acwp_vsm Part of the Animal Structures Commons, Animal Studies Commons, and the Veterinary Anatomy Commons Recommended Citation Marino, L., Sol, D., Toren, K., & Lefebvre, L. (2006). Does diving limit brain size in cetaceans?. Marine Mammal Science, 22(2), 413-425. This material is brought to you for free and open access by WellBeing International. It has been accepted for inclusion by an authorized administrator of the WBI Studies Repository. For more information, please contact wbisr-info@wellbeingintl.org. Does Diving Limit Brain Size in Cetaceans? Lori Marino,1,2 Daniel Sol,3,4 Kristen Toren,1 and Louis Lefebvre3 1 Emory University 2 Yeres Regional Primate Center 3 McGill University 4 Universitat Autònoma de Barcelona KEYWORDS brain size, diving, oxygenation, cetacean ABSTRACT We test the longstanding hypothesis, known as the dive constraint hypothesis, that the oxygenation demands of diving pose a constraint on aquatic mammal brain size.Using a sample of 23 cetacean species we examine the relationship among six different measures of relative brain size, body size, and maximum diving duration. Unlike previous tests we include body size as a covariate and perform independent contrast analyses to control for phylogeny. We show that diving does not limit brain size in cetaceans and therefore provide no support for the dive constraint hypothesis. Instead, body size is the main predictor of maximum diving duration in cetaceans.
    [Show full text]