Red and White Muscle Activity of the Jack Mackerel Trachurus Japonicus During Swimming

Total Page:16

File Type:pdf, Size:1020Kb

Red and White Muscle Activity of the Jack Mackerel Trachurus Japonicus During Swimming Nippon Suisan Gakkaishi 59(5), 745-751 (1993) Red and White Muscle Activity of the Jack Mackerel Trachurus japonicus During Swimming Gang Xu,*1,2 Takafumi Arimoto,*1 and Makoto Inoue*1 (Received June 26, 1992) In order to examine the functions of the red and white muscle of jack mackerel Trachurus japonicus during swimming locomotion, the fish was dissected to observe muscle distribution along the body. The electrical activity of the lateral muscle was analyzed using an electrophysiological technique. The ratio of red muscle to total muscle in a transverse section of the fish body reached a maximum at a position between 55% and 65% of fork length from the snout. The red and white muscles accounted for 5.1% and 61% of the body weight respectively. The white muscle was 12 times as heavy as the red muscle. In the electromyographic observations, the red muscle was active in sustained swimming at low speeds, whereas there was no electrical activity from the white muscle at speeds below 108cm/s for fish of 17.8cm in fork length. The bursts of discharge ap pearing in the electromyograph were measured for three components: frequency, amplitude, and duration. The frequency increased in proportion to swimming speed in both muscles. The tendency for the amplitude to increase with swimming speed was much more re markable in the red muscle than in the white muscle. The duration in the red muscle decreased, whereas in the white muscle it rose with the swimming speed. The results indicate that for jack mackerel only the red muscle is used in sustained swimming, while the white muscle is used during burst swimming above a threshold speed of 6.4BL/s, together with red muscle. In most fishes the mytomal Iocomotor mus than in the white muscle.3-6) There are only culature is made up of two main fibre types, a few research works with respect to the functions i.s. red and white muscle fibres.1) The red of the red and white muscles and how fish use them muscle is commonly found as a thin superficial relative to swimming speed.3,7-8) In this report, layer below the skin in some species such as the jack mackerel Trachurus japonicus, an im the sardine and the herring, whereas Scombridae portant commercial species in Japan, was utilized such as the skipjack Katsuwonus pelamis have as a experimental species. The relationship a large amount of deep red muscle.2) The ratio between muscle activity and swimming speed was of red muscle to white muscle has been con examined using electrophysiological techniques. sidered to be one of the factors related to the Muscle distribution along the fish body was ecological and locomotor properties of fish. also investigated in relation to swimming locomo There is general agreement that at low sustained tion. swimming speeds only the red muscle is employed and that the white muscle is active only during Materials and Methods burst of high speed, which cannot be sustained for longer periods.1) Histochemical studies in One group of jack mackerel Trachurusjaponicus dicate that the red and white muscles are different 17.4 to 22.0cm in fork length were caught in from each other with regard to innervation and Tomiura Bay., Chiba Prefecture by angling, biochemical characteristics. Observations with while another group 27.8 to 30.8cm in fork an electromicroscope show that more vasa and length were purchased from a fish farm. The mitochondria ara distributed in the red muscle fish used were held at the Banda Marine Labora- *1 Faculty of Fisheries, Tokyo University of Fisheries, Konan, Minato, Tokyo 108, Japan (•™•@•„,—LŒ³‹M•¶,ˆä•ã•@ŽÀ:“Œ‹ž•…ŽY‘åŠw•…ŽYŠw•”). *2 Present address: Fisheries and Marine Institute of Memorial University of Newfoundland, St. John's, Newfoundland, Canada AIC 5R3 (Œ»•Z•Š:ƒJƒiƒ_ƒjƒ…•[ƒtƒ@ƒ“ƒhƒ‰ƒ“ƒh‹L”O‘åŠw). tory of Tokyo University of Fisheries in a 2•~1•~ of six specimens were calculated using Obatake & 1m tank with circulated water at about 18•Ž for Heya's method. That is, at first the muscle volume a week before the experiments from April to July was calculated by integrating the areas, and then 1989. the specific gravity of 1.05 was multiplied by the In order to investigate the distribution of red volume. One specimen of 21.8cm was immersed and white muscles, ten specimens of 18.5 to 30.8 in hot water at 60•Ž for 5 minutes and then cm were used. Each was cut into eight round skinned so that the myotomes could be observed slices such that the transverse sectional area of from the lateral view. each round slice could be measured. The meas The bipolar electrode shown in Fig. I was made uring procedure was as follows: the specimens of enamel-insulated stainless steel wires (MT were killed by anaesthetizing with solution MS222 Giken) of 10mm in length and 0.2mm in diameter. and then frozen at -15•Ž for 3 hours. The The insulation was removed 1mm from its two specimens which were frozen into a moderate tips, which were separated by 1mm. The in hardness and a straight body shape were cut at sulated copper wires of an XBT probe were used seven points 25, 35, 45, 55, 65, 75, 85% of fork as leads to connect with the ends of the electrode, l ength (L) starting from the snout. All the trans which was cemented with a syrup of perspex in verse sections were recorded using a still camer chloroform and had dimensions of 10mm in (Canon, AE-1; Microlens, 50mm). The areas l ength and 1mm in diameter, weighing 0.5g. of red and white muscles in each transverse Under anaesthesia with MS222 solution (100 section were read by digitizing the photograph ppm), the implantation of electrods was carried using a digitizer (Graphtec, KD4300) and analyzed out. A pair of electrodes were implanted into and calculated by a microcomputer (NEC, the lateral muscle of either the same or of different PC9801). Obatake and Heya9) estimated the weight types. To prevent the electrodes from vibrating of both red and white muscles, based on the as a result of fish body movements, the leads were measurements of muscle area in the transverse sewn and fixed on the base of the second dorsal section along the fish body. The specific gravities fin. of the red and white muscles for the jack mackerel A small flume tank (Fig. 2) was designed to were obtained and found to be similar at 1.05. 9) allow fish to swim stably in its test section of The muscle weight and proportion for a total 70•~ 30•~20 can against the flow at differentFig. 1. Bipolar electrode used for the electromyographic measurements. Fig. 2. Diagram of the electrophysiological apparatus and a small scale flume tank. Fig. 3. Lateral and transverse section views of a fish body, showing the distribution of red and white muscles. velocities up to 185cm/s. This flume tank Results provided a constant flow in the most portions of the test section, except areas within 2.5cm Muscle Distribution of each wall. After the implantation, the fish The muscle distribution could be observed were moved into the flume tank for recovery and clearly as shown in Fig. 3. In lateral views, the then acclimated at 20cm/s for 15 minutes. The superficial red muscle began at a position just electrophysiological apparatus consisted of a posterior to the operculum extending towards 2-channel high sensitivity amplifier (Nippon the tail along the lateral line and ended in the last Koden, AB-632J) with a filter and a 2-channel caudal spine. The myotomes were M-shaped digital storage oscilloscope (Iwatsu, DS-6612C), and locked into each other. The red muscle with a memory card (128KB) for recording and became thinner towards both dorsal and ventral analyzing data. In addition, two video cameras sides where it overlaid the white muscle much (Sony, CCD-V90) were used to simultaneously more thinly than in the vicinity of horizontal record the fish body movements and electro septum. The maximum width of the red muscle myographs from an oscilloscope. occurred at a position of 48%L from the snout. The amplifier was set at a sensitivity range of In the transverse section, most of the red muscle 0.1mv and the filter at a band width of 43 to was observed to be distributed in the superficial 1000Hz. Altogether ten specimens of 17.4 to layer. Some red muscle which was different from 20.7cm, weighing 70 to 122g, were examined. the deep red muscle found in the skipjack pene The flow velocity was set at several levels increas trated a deep layer near the vertebra. The areas ing from an initial level of 47cm/s to a maximum of red and white muscles in each transverse section of 154.3cm/s. Electromyographic recording was were obtained from specimens of 18.5 to 18.6 done at each flow velocity where steady swimming cm (Fig. 4). The maximum area of red muscle was maintained for more than 5 minutes. Here, was found between 55%L and 65%L, whereas the swimming speed of the fish was considered that of white muscle was between 35%L and to be equal to the flow velocity of the flume tank. 45%L. The area of white muscle decreased After each trial, the fish was dissected to determine quickly behind the 55%L position. However, the exact position of the electrode in the muscle. in the vertical direction along the fish body there Table 1.
Recommended publications
  • Diet of Wahoo, Acanthocybium Solandri, from the Northcentral Gulf of Mexico
    Diet of Wahoo, Acanthocybium solandri, from the Northcentral Gulf of Mexico JAMES S. FRANKS, ERIC R. HOFFMAYER, JAMES R. BALLARD1, NIKOLA M. GARBER2, and AMBER F. GARBER3 Center for Fisheries Research and Development, Gulf Coast Research Laboratory, The University of Southern Mississippi, P.O. Box 7000, Ocean Springs, Mississippi 39566 USA 1Department of Coastal Sciences, The University of Southern Mississippi, P.O. Box 7000, Ocean Springs, Mississippi 39566 USA 2U.S. Department of Commerce, NOAA Sea Grant, 1315 East-West Highway, Silver Spring, Maryland 20910 USA 3Huntsman Marine Science Centre, 1Lower Campus Road, St. Andrews, New Brunswick, Canada E5B 2L7 ABSTRACT Stomach contents analysis was used to quantitatively describe the diet of wahoo, Acanthocybium solandri, from the northcen- tral Gulf of Mexico. Stomachs were collected opportunistically from wahoo (n = 321) that were weighed (TW, kg) and measured (FL, mm) at fishing tournaments during 1997 - 2007. Stomachs were frozen and later thawed for removal and preservation (95% ethanol) of contents to facilitate their examination and identification. Empty stomachs (n = 71) comprised 22% of the total collec- tion. Unfortunately, the preserved, un-examined contents from 123 stomachs collected prior to Hurricane Katrina (August 2005) were destroyed during the hurricane. Consequently, assessments of wahoo stomach contents reported here were based on the con- tents of the 65 ‘pre-Katrina’ stomachs, in addition to the contents of 62 stomachs collected ‘post-Katrina’ during 2006 and 2007, for a total of 127 stomachs. Wahoo with prey in their stomachs ranged 859 - 1,773 mm FL and 4.4 - 50.4 kg TW and were sexed as: 31 males, 91 females and 5 sex unknown.
    [Show full text]
  • Assessment of Indian Ocean Narrow-Barred Spanish Mackerel (Scomberomorus Commerson) Using Data
    IOTC–2017–WPNT07–17 Rev_1 Assessment of Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) using data limited catch-based methods June 2017 IOTC Secretariat1 Introduction ......................................................................................................................................... 2 Basic biology .................................................................................................................................. 2 Fisheries and Catch Trends ............................................................................................................. 2 Methods .............................................................................................................................................. 6 1) C-MSY method ....................................................................................................................... 6 2) Optimised Catch Only Method (OCOM) ................................................................................ 8 Results ................................................................................................................................................. 9 Catch-MSY method ........................................................................................................................ 9 OCOM method .............................................................................................................................. 14 Discussion ........................................................................................................................................
    [Show full text]
  • Chub Mackerel, Scomber Japonicus (Perciformes: Scombridae), a New Host Record for Nerocila Phaiopleura (Isopoda: Cymothoidae)
    生物圏科学 Biosphere Sci. 56:7-11 (2017) Chub mackerel, Scomber japonicus (Perciformes: Scombridae), a new host record for Nerocila phaiopleura (Isopoda: Cymothoidae) 1) 2) Kazuya NAGASAWA * and Hiroki NAKAO 1) Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan 2) Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Kamiura, Saeki, Oita 879-2602, Japan Abstract An ovigerous female of Nerocila phaiopleura Bleeker, 1857 was collected from the caudal peduncle of a chub mackerel, Scomber japonicus Houttuyn, 1782 (Perciformes: Scombridae), at the Hōyo Strait located between the western Seto Inland Sea and the Bungo Channell in western Japan. This represents a new host record for N. phaioplueura and its fourth record from the Seto Inland Sea and adjacent region. Key words: Cymothoidae, fish parasite, Isopoda, Nerocila phaiopleura, new host record, Scomber japonicus INTRODUCTION The Hōyo Strait is located between the western Seto Inland Sea and the Bungo Channell in western Japan. This strait is famous as a fishing ground of two perciform fishes of high quality, viz., chub mackerel, Scomber japonicus Houttuyn, 1782 (Scombridae), and Japanese jack mackerel, Trachurus japonicus (Temminck and Schlegel, 1844) (Carangidae), both of which are currently called“ Seki-saba” and“ Seki-aji”, respectively, as registered brands (e.g., Ishida and Fukushige, 2010). The brand names are well known nationwide, and the price of the fishes is very high (up to 5,000 yen per kg). Under these situations, the fishermen working in the strait pay much attention to the parasites of the fishes they catch because those fishes are almost exclusively eaten raw as“ sashimi.” Recently, a chub mackerel infected by a large parasite on the body surface (Fig.
    [Show full text]
  • Assessment of Indian Ocean Narrow-Barred Spanish Mackerel (Scomberomorus Commerson) Using Data- Limited Methods
    IOTC–2020–WPNT10–14 Assessment of Indian Ocean narrow-barred Spanish mackerel (Scomberomorus commerson) using data- limited methods 30th June 2020 Dan, Fu1 1. Introduction ................................................................................................................................. 2 2. Basic Biology .............................................................................................................................. 2 3. Catch, CPUE and Fishery trends................................................................................................. 2 4. Methods....................................................................................................................................... 5 4.1. C-MSY method ....................................................................................................................... 6 4.2. Bayesian Schaefer production model (BSM) .......................................................................... 7 5. Results ......................................................................................................................................... 8 5.1. C-MSY method ................................................................................................................... 8 5.2. Bayesian Schaefer production model (BSM) .................................................................... 11 6. Discussion ............................................................................................................................. 17 References ........................................................................................................................................
    [Show full text]
  • Blue Jack Mackerel (Trachurus Picturatus) in Subdivision 10.A.2 (Azores Grounds)
    ICES Advice on fishing opportunities, catch, and effort Bay of Biscay and the Iberian Coast ecoregion Published 18 December 2020 Blue jack mackerel (Trachurus picturatus) in Subdivision 10.a.2 (Azores grounds) ICES advice on fishing opportunities ICES advises that when the precautionary approach is applied, catches should be no more than 878 tonnes in each of the years 2021 and 2022. Note: This advice sheet is abbreviated due to the COVID-19 disruption. The previous advice issued for 2019 and 2020 is attached as Annex 1. Stock development over time Figure 1 Blue jack mackerel in Subdivision 10.a.2. Landings and other catches. Landings include purse-seine catches for human consumption – PS (HC) – purse-seine catches for bait – PS (Bait) – and include unsold purse-seine landings withdrawn at the port as well as longline and handline catches (LL and HL). Other catches include longline bait, tuna live bait, and recreational catches (incomplete in 2017–2019). Stock and exploitation status Table 1 Blue jack mackerel in Subdivision 10.a.2. State of the stock and fishery relative to reference points. ICES Advice 2020 – jaa.27..10a2 – https://doi.org/10.17895/ices.advice.7650 ICES advice, as adopted by its advisory committee (ACOM), is developed upon request by ICES clients (European Union, NASCO, NEAFC, Iceland, and Norway). 1 ICES Advice on fishing opportunities, catch, and effort Published 18 December 2020 jaa.27.10a2 Catch scenarios ICES framework for category 5 stocks was applied (ICES, 2012). For stocks without information on abundance or exploitation, ICES considers that a precautionary reduction of catches should be implemented unless there is ancillary information clearly indicating that the current level of exploitation is appropriate for the stock.
    [Show full text]
  • Biological Aspects of Spotted Seerfish Scomberomorus Guttatus
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CMFRI Digital Repository Indian J. Fish., 65(2): 42-49, 2018 42 DOI: 10.21077/ijf.2018.65.2.65436-05 Biological aspects of spotted seerfish Scomberomorus guttatus (Bloch & Schneider, 1801) (Scombridae) from north-eastern Arabian Sea C. ANULEKSHMI*, J. D. SARANG, S. D. KAMBLE, K. V. AKHILESH, V. D. DESHMUKH AND V. V. SINGH ICAR-Central Marine Fisheries Research Institute, Mumbai Research Centre, Fisheries University Road Versova, Andheri (W), Mumbai - 400 061, Maharashtra, India e-mail: [email protected] ABSTRACT Spotted seerfishScomberomorus guttatus (Bloch & Schneider, 1801) is one of the highly priced table fishes in India, which contributed 4.7% of all India scombrid fishery with 17,684 t landed in 2014. Its fishery is dominant in the Arabian Sea and northern Arabian Sea contributed 62% to India’s spotted seerfish fishery. Biological information on S. guttatus is scarce and the same was studied during the period 2010-2014 from Maharashtra coast, north-eastern Arabian Sea. A total of 930 specimens (185-550 mm FL) collected from commercial landings were used for the study. Length-weight relation of pooled sexes was estimated as log (W) = -3.1988+2.66074 log (L) (r2 = 0.93). Fishery was dominated by males with the sex ratio -1 of 0.76:1. Relative fecundity ranged from 105-343 eggs g of bodyweight. The length at first maturity (Lm) was estimated to be 410 mm TL for females. Mature and gravid females were dominant in May and August-November. Dietary studies (% IRI) showed dominance of Acetes spp.
    [Show full text]
  • Spanish Mackerel J
    2.1.10.6 SSM CHAPTER 2.1.10.6 AUTHORS: LAST UPDATE: ATLANTIC SPANISH MACKEREL J. VALEIRAS and E. ABAD Sept. 2006 2.1.10.6 Description of Atlantic Spanish Mackerel (SSM) 1. Names 1.a Classification and taxonomy Species name: Scomberomorus maculatus (Mitchill 1815) ICCAT species code: SSM ICCAT names: Atlantic Spanish mackerel (English), Maquereau espagnol (French), Carita del Atlántico (Spanish) According to Collette and Nauen (1983), the Atlantic Spanish mackerel is classified as follows: • Phylum: Chordata • Subphylum: Vertebrata • Superclass: Gnathostomata • Class: Osteichthyes • Subclass: Actinopterygii • Order: Perciformes • Suborder: Scombroidei • Family: Scombridae 1.b Common names List of vernacular names used according to ICCAT, FAO and Fishbase (www.fishbase.org). The list is not exhaustive and some local names might not be included. Barbados: Spanish mackerel. Brazil: Sororoca. China: ᶷᩬ㤿㩪. Colombia: Sierra. Cuba: Sierra. Denmark: Plettet kongemakrel. Former USSR: Ispanskaya makrel, Korolevskaya pyatnistaya makrel, Pyatnistaya makrel. France: Thazard Atlantique, Thazard blanc. Germany: Gefleckte Königsmakrele. Guinea: Makréni. Italy: Sgombro macchiato. Martinique: Taza doré, Thazard tacheté du sud. Mexico: Carite, Pintada, Sierra, Sierra común. Poland: Makrela hiszpanska. Portugal: Serra-espanhola. Russian Federation: Ispanskaya makrel, Korolevskaya pyatnistaya makrel, Pyatnistaya makrel; ɦɚɤɪɟɥɶ ɢɫɩɚɧɫɤɚɹ. South Africa: Spaanse makriel, Spanish mackerel. Spain: Carita Atlántico. 241 ICCAT MANUAL, 1st Edition (January 2010) Sweden: Fläckig kungsmakrill. United Kingdom: Atlantic spanish mackerel. United States of America: Spanish mackerel. Venezuela: Carite, Sierra pintada. 2. Identification Figure 1. Drawing of an adult Atlantic Spanish mackerel (by A. López, ‘Tokio’). Characteristics of Scomberomorus maculatus (see Figure 1 and Figure 2) Atlantic Spanish mackerel is a small tuna species. Maximum size is 91 cm fork length and 5.8 kg weight (IGFA 2001).
    [Show full text]
  • Gill Specializations in High-Performance Pelagic Teleosts, with Reference to Striped Marlin (Tetrapturus Audax) and Wahoo (Acanthocybium Solandri)
    BULLETIN OF MARINE SCIENCE, 79(3): 747–759, 2006 Gill SPecialiZations in HigH-Performance Pelagic teleosts, WitH reference to striPED marlin (TETRAPTURUS AUDAX) anD WAHoo (ACANTHOCYBIUM SOLANDRI) Nicholas C. Wegner, Chugey A. Sepulveda, and Jeffrey B. Graham Abstract Analysis of the gill structure of striped marlin, Tetrapturus audax (Philippi, 1887), and wahoo, Acanthocybium solandri (Cuvier, 1832), demonstrates similari- ties to tunas (family Scombridae) in the presence of gill specializations to maintain rigidity during fast, sustainable swimming and to permit the O2 uptake required by high aerobic performance. For ram-gill ventilators such as tunas, wahoo, and striped marlin, a rigid gill structure prevents lamellar deformation during fast wa- ter flow. In tunas, lamellar fusions bind adjacent lamellae on the same filament to opposing lamellae of the neighboring filament. Examination of striped marlin and wahoo gill structure demonstrates a previously undescribed inter-lamellar fusion which binds juxtaposed lamellae on the same filament, but does not connect to op- posing lamellae of the adjacent filament. Lamellar thicknesses and the water-blood barrier distances in striped marlin and wahoo are comparable to those of tunas and among the smallest recorded. Vascular replica casts reveal that striped marlin lamellar vascular channels are similar to tunas in having a diagonal progression that reduces lamellar vascular resistance. Wahoo lamellar channels, however, have a linear pattern similar to most other teleosts. Tunas, bonitos, mackerels (family Scombridae), and billfishes (families Istiophori- dae, Xiphiidae) are highly specialized for fast, continuous swimming. Both groups are ram ventilators [i.e., their nonstop movement forces water over the gills thus replacing active gill ventilation (Jones and Randall, 1978; Roberts and Rowell, 1988)] which, at faster swimming speeds, reduces drag associated with cyclic jaw move- ments for respiration (Brown and Muir, 1970; Freadman, 1981).
    [Show full text]
  • Chub Mackerel
    species specifics BY CHUGEY SEPULVEDA, Ph.D., AND SCOTT AALBERS, M.S. CHUB MACKEREL (Scomber japonicus) Photo by Bob Hoose hub mackerel, also known as Pacific mackerel, is a prolific coastal pelagic species that occurs throughout temperate regions around the globe. Belonging to the C tuna family (Scombridae), a group of fishes with several adaptations for increased swimming performance (i.e., high deg- ree of streamlining, deeply forked caudal fin, finlets), this species is a valuable resource for several nations, including the U.S., and plays a key role in Southern California as an important forage species for higher trophic levels. BIOLOGY a highly varied diet that includes cope- In the eastern Pacific, chub mackerel pods, euphausids (krill), small fishes, range from Chile to the Gulf of Alaska, and squid. where they provide an important link To defend against the wide variety of in marine food webs between plank- predators that rely on mackerel as part tonic organisms and predatory fishes, of their diet, juvenile mackerel begin to marine mammals, and sea birds. They form structured schools at just over one are opportunistic feeders, particularly inch in size. In southern California many during the larval and juvenile stages, of our coastal game fishes, such as white when they feed upon a wide variety of seabass, yellowtail, giant seabass, tunas, zooplankton. Juvenile chub mackerel dorado, striped marlin, and pelagic are voracious feeders and grow rapidly, sharks, rely heavily on the chub mack- particularly during the spring and sum- erel resource. As juveniles, chub mack- mer months. Adult mackerel also have erel often develop multi-species schools 84 | PCSportfishing.com | THINK CONSERVATION | SEPTEMBER 2011 with other coastal pelagic species, such erel supported one of California’s most as Pacific sardines, jack mackerel, and lucrative fisheries during the 1930s and sometimes eastern Pacific bonito.
    [Show full text]
  • Small-Scale Patterns in Distribution and Feeding of Atlantic Mackerel (Scomber Scombrus L.) Larvae in the Celtic Sea with Special Regard to Intra-Cohort Cannibalism
    Helgol Mar Res (2001) 55:135–149 DOI 10.1007/s101520000068 ORIGINAL ARTICLE Nicola Hillgruber · Matthias Kloppmann Small-scale patterns in distribution and feeding of Atlantic mackerel (Scomber scombrus L.) larvae in the Celtic Sea with special regard to intra-cohort cannibalism Received: 9 August 2000 / Received in revised form: 31 October 2000 / Accepted: 12 November 2000 / Published online: 10 March 2001 © Springer-Verlag and AWI 2001 Abstract Short-term variability in vertical distribution cannibalism, reaching >50% body dry weight in larva and feeding of Atlantic mackerel (Scomber scombrus L.) ≥8.0 mm SL. larvae was investigated while tracking a larval patch over a 48-h period. The patch was repeatedly sampled Keywords Mackerel larvae · Vertical distribution · Diet · and a total of 12,462 mackerel larvae were caught within Diel patterns · Cannibalism the upper 100 m of the water column. Physical parame- ters were monitored at the same time. Larval length dis- tribution showed a mode in the 3.0 mm standard length Introduction (SL) class (mean abundance of 3.0 mm larvae x¯ =75.34 per 100 m3, s=34.37). Highest densities occurred at In the eastern Atlantic, the highest densities of Atlantic 20–40 m depth. Larvae <5.0 mm SL were highly aggre- mackerel (Scomber scombrus) larvae appear in the Celtic gated above the thermocline, while larvae ≥5.0 mm SL Sea and above the Celtic Shelf in May/June (O’Brien were more dispersed and tended to migrate below the and Fives 1995), where the larvae hatch at the onset of thermocline. Gut contents of 1,177 mackerel larvae the secondary productivity maximum (Colebrook 1986) (2.9–9.7 mm SL) were analyzed.
    [Show full text]
  • Investigations on the Biology of Indian Mackerel Rastrelliger Kanagurta
    Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics Thesis submitted to Cochin University of Science and Technology in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY FACULTY OF MARINE SCIENCES GANGA .U. Reg. No. 2763 DEPARTMENT OF MARINE BIOLOGY, MICROBIOLOGY AND BIOCHEMISTRY SCHOOL OF MARINE SCIENCES COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY KOCHI – 682 016, INDIA September 2010 DECLARATION I, Ganga. U., do hereby declare that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics “ is a genuine record of research work carried out by me under the guidance of Prof. (Dr.) C.K. Radhakrishnan, Emeritus Professor, Cochin University of Science and Technology, and no part of the work has previously formed the basis for the award of any Degree, Associateship and Fellowship or any other similar title or recognition of any University or Institution. Ganga.U Kochi – 16 September-2010 CERTIFICATE This is to certify that the thesis entitled “Investigations on the biology of Indian Mackerel Rastrelliger kanagurta (Cuvier) along the Central Kerala coast with special reference to maturation, feeding and lipid dynamics” to be submitted by Smt. Ganga. U., is an authentic record of research work carried out by her under my guidance and supervision in partial fulfilment of the requirement for the degree of Doctor of Philosophy of Cochin University of Science and Technology, under the faculty of Marine Sciences.
    [Show full text]
  • Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus Picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea
    diversity Article Biometry, Distribution and Genetic Characterization of Blue Jack Mackerel Trachurus picturatus (Bowdich, 1825), a Rare Pelagic Fish Species in the Adriatic Sea Barbara Zorica , Ivana Bušeli´c* , Vanja Cikešˇ Keˇc,Vedran Vuletin, Ivana Lepen Plei´c, Igor Isajlovi´c,Ivana Radoni´cand Nedo Vrgoˇc Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovi´ca63, 21000 Split, Croatia; [email protected] (B.Z.); [email protected] (V.C.K.);ˇ [email protected] (V.V.); [email protected] (I.L.P.); [email protected] (I.I.); [email protected] (I.R.); [email protected] (N.V.) * Correspondence: [email protected]; Tel.: +385-21-408009 Received: 26 October 2020; Accepted: 1 December 2020; Published: 3 December 2020 Abstract: The blue jack mackerel Trachurus picturatus (Bowdich, 1825) specimens (N = 155) were collected during the MEDITS survey, done along the eastern side, precisely, of the Croatian fishing ground in July 2018. Biometrical analysis of ten morphometric and five meristic characters, as well as genetic analysis proved that the collected specimens were blue jack mackerel. The total length (TL) and weight (W) of all observed specimens ranged from 9.2 to 33.7 cm (12.15 2.95 cm) and from 5.79 to ± 384.94 g (17.64 39.42 g), respectively. All calculated length–length relationships were linear (r > 0.923). ± Sex was determined only on two larger specimens (28 cm < TL < 32.8 cm), which were females. In the length–weight relationship, positive allometry was established (b = 3.1789). Based on 37 partial cytochrome b sequences, the overall haplotype diversity (h) of 0.812 0.048 and nucleotide diversity ± (π) of 0.0064 0.0007 indicated high levels of haplotype and low nucleotide diversity.
    [Show full text]