A Case Study from the Czechoslovak Textile Machine Industry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Textile Industry Needs Christopher D
The Journal of Cotton Science 21:210–219 (2017) 210 http://journal.cotton.org, © The Cotton Foundation 2017 ENGINEERING & GINNING Textile Industry Needs Christopher D. Delhom, Vikki B. Martin, and Martin K. Schreiner ABSTRACT lthough the immediate customer of the gin is Athe cotton producer, the end user of the ginned The immediate customers of cotton gins are lint is the textile mill, retailers, and eventually the the producers; however, the ultimate customers consumer. Thus, it is essential for the ginner to are textile mills and consumers. The ginner has satisfy both the producers and the textile industry. the challenging task to satisfy both producers and Consequently, the ginner needs to be aware of the the textile industry. Classing and grading systems needs of the textile industry. are intended to assign an economic value to the The intent of the cotton classing and grading bales that relates to textile mill demands and the system is to assign an economic value to the bale that quality of the end product. International textile documents its properties as it relates to the quality of mills currently are the primary consumers of U.S. the end product. Since the last edition of the Cotton cotton lint where it must compete against foreign Ginners Handbook in 1994, the customers of U.S. origins. International textile mills manufacture cotton have changed radically, shifting from primar- primarily ring-spun yarns, whereas domestic mills ily domestic to international mills. International mills manufacture predominantly rotor spun yarns. Pro- have been accustomed primarily to hand-harvested ducers and ginners must produce cottons to satisfy cotton that has been processed at slow ginning all segments of the industry, i.e., domestic and in- rates. -
3260 the London Gazette, 19Th March 1968
3260 THE LONDON GAZETTE, 19TH MARCH 1968 William Clowes & Sons Ltd. Caxton Works, Kodak Ltd. Headstone Drive, Wealdstone, Harrow. Newgate, Beccles. Kork-N-Seal' Ltd. Keirfield Works, Bridge of Allan. J. & P. Coats (U.K.) Ltd. Anchor Mills and Kraft Foods Ltd. Moorgate Road, Kirkby, Liver- Ferguslie Thread Works, Paisley. pool. Colorlites, Arthur William Turnill & Herbert John The Lace Web Spring Co. Ltd. Cross Street, Sandi- Pearson, t/a. Senacre Lane, Button Road, Maid- acre, Nottingham. stone. Lancashire County Council, Children's Department. Cooke Sons & Co. (Hillington) Ltd. Watt Road, Holly House Nursery, Aughton, near Ormskirk. Hillington, Glasgow. Robert Lawson & Sons (Dyce) Ltd. Bacon Factory, Courtaulds Ltd. Coppull Ring Mill, Coppull, near Dyce, Aberdeen. Chorley and Dee Mill, Cheetham Street, Shaw. The Leigh Mills Co. Ltd. Stanningley, Pudsey. Crompton Parkinson Ltd. Stephenson Road, New- Lesney Products & Co. Ltd. Lee Conservancy Road, port. Hackney Wick, London E.9. Crosse and Blackwell Ltd. Tay Wharf, Silvertown, Lewis's Ltd. The Headrow, Leeds. London E.I6. Low & Bonar (Textiles & Packaging) Ltd. Morgan John Crowther & Sons (Milnsbridge) Ltd. Union Street, Dundee. Mills, Milnsbridge, Huddersfield. Joseph Lucas (Electrical) Ltd. Northbridge, Elm The Culter Mills Paper Co. Ltd. Cufter Works, Street, Burnley. Peterculter. Macniven & Cameron Ltd. Waverley Works, Blair Danepak.Ltd. Caxton Way, Thetford. Street, Edinburgh. Thomas de la Rue & Co. Ltd. Kingsway South, Main Morley Ltd. Gothic Works, Wyre Street, Team Valley Trading Estate, Gateshead. Padiham. Arthur Dickson & Co. Ltd. Comelybank Mill, Gala- Mansol (Great Britain) Ltd. Hollands Road, Haver- shiels. hill. Dictaphone Co. Ltd. Colvilles Road, Kelvin Estate, Mardon, Son & Hall Ltd. St. Annes Road, Bristol. -
An Approach to Super High-Speed Ring Spinning Frame
An Approach to Super High-speed Ring Spinning Frame By Keishi Fujisawa, Member, TMSJ Nihon Spindle Mfg. Ca., Ltd., Amagasaki, Hyogo Prefecture Basedon the Journalof the TextileMachinery Society of Japan,Proceedings, Vol. 23, No. 11, P773-781(1970) Abstract This articlesummarizes our studymade to obtaina superhigh-speed of 20,000rpm in spindle revolutionsof a ring frame,by improvingthe mechanismsof rotation parts such as spindle and ring, and by developingan advancedspeed controllerand speed regulator. Our study for speedingup the spindlerevolutions up to 20,000rpm is as follows: 1) We havesucceeded in developinga newspindle for ringframe, whichcan attain a speed of 20,000rpm, puttingthe spindlevibration underrestrain of the same level as in the con- ventionaloperation at 15 000 rpm. 2) All the bottlenecksof the ringsand travellersusually encountered during the high-speed operation of spindle have been broken by imporvingtheir mechanisms. 3) We have developeda speedregulators provided with wider rangesof speedand also a speedcontroller with lemientpitches to causeno suddenchanges in speed. The new equip- ment thus developedincreases the efficiencyof spindleand is effectivein eliminatingyarn ends-down. KEY WORDS: RINGFRAMES, OPEN-END SPINNING, SPINDLES, SPINNING RINGS, SPINNING TRAVELERS,SPINDLE VIBRATION, HIGH SPEED, SPINDLE SPEED, TENSION CON- TROL,SPEED CONTROL 1. Introduction (1) The spindle vibration taken place atthe speed of 20,000 Many trials have been carried out in many countries to rpm can be lowered down to that at the speed of 15,000 rpm increase the spindle speed (spindle revolutions) during by aid of the spindles trially developed by us. spinning without increasing ends-down. Now the spindle (2) Though the rings have been supposed to be the most speeds up to 17,000 rpm are available on the ring spinning obstinate opposition to high speed, the spindle speed of system. -
Spinning and Winding Taro Nishimura
The_Textile_Machinery_Society_of_Japan_Textile_College_2-Day_Course_on_Cloth_Making_Introduction_to_Spinning_2014_05_22 Spinning and Winding Taro Nishimura 1. Introduction Since several thousand years ago, humans have been manufacturing linen, wool, cotton, and silk to be used as fibrous materials for clothing. In 繊維 (sen’i ), which is the word for “fiber,” the Chinese character 繊 (sen ) is a unit for decimal fractions of one ten-millionth (equal to approximately 30 Ǻ), while 維 (i) means “long and thin.” Usually, fibers are several dozen µ thick, and can range from around one centimeter long to nigh infinite length. All natural materials, with the exception of raw silk, are between several to several dozen centimeters long and are categorized as staple fibers. Most synthetic fibers are spun into filaments. Figure 1 shows how a variety of textile product forms are interrelated. Short fibers are spun into cotton (spun) yarns, whereas filaments are used just as they are, or as textured yarns by being twisted or stretched. Fabric cloths that are processed into two-dimensional forms using cotton (spun) yarns and filament yarns include woven fabrics, knit fabrics, nets, and laces. Non-woven fabrics are another type of two-dimensional form, in which staple fibers and filaments are directly processed into cloths without being twisted into yarns. Yet another two-dimensional form is that of films, which are not fiber products and are made from synthetic materials. Three-dimensional fabrics and braids are categorized as three-dimensional forms. This paper discusses spinning, or the process of making staple fibers into yarns, and winding, which prepares fibers for weaving. One-dimensional Two-dimensional Three-dimensional Natural Staple fibers Spun yarns Woven fabrics Three-dimensional materials Filaments Filament yarns Knit fabrics fabrics Synthetic Nets Braids materials Laces Non-woven fabrics Films Fig. -
Dynamics of Rotating Superconducting Magnetic Bearings in Ring Spinning
IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), January 2016. EUCAS 2015 preprint 3A-LS-P-07.09. Submitted to IEEE Trans. Appl. Supercond. for possible publication. 3A-LS-P-07.09 1 Dynamics of rotating Superconducting Magnetic Bearings in Ring Spinning M. Sparing, A. Berger, F. Wall, V. Lux, S. Hameister, D. Berger, M. Hossain, A. Abdkader, G. Fuchs, C. Cherif, L. Schultz Abstract — A superconducting magnetic bearing (SMB) during spinning and winding. This procedure twists the fibers consisting of a stationary superconductor in a ring-shaped flow- thereby form sand strengthens the yarn. Details of the spinning through cryostat and a rotating permeant magnetic (PM) ring is process and various concepts to improve or replace the ring- investigated as potential twist element in the textile technological process of ring spinning. Since the dynamic behavior of the traveler system are described in the literature [5], [6]. The rotating PM influences the yarn as well as the stability of replacement of the ring-traveler system by an SMB eliminates spinning process, these factors are studied in this paper the problem of frictional heat in the existing system. A considering the acting forces of the yarn on the PM-ring, its detailed description of this process can be found in references vibration modes and the resulting oscillation amplitudes. [7]-[9]. For the assessment of a safe field cooling distance during the operation of the rotating SMB in a rings spinning machine, a II. RING SPINNING WITH AN SMB TWIST ELEMENT correct calculation of the resonance magnification is particularly important. Therefore, the decay constant δ of the damped A. -
Paper 2: the Woollen Cloth Industry in the Lim Valley © Richard Bull & Lyme Regis Museum Revised with Extra Images July 2015
Industrial Lyme - Paper 2: The Woollen Cloth Industry in the Lim Valley © Richard Bull & Lyme Regis Museum Revised with extra images July 2015 Like all research, this is on-going. If you know more, or are descended from any of the families involved, please get in touch with the author via Lyme Regis Museum. Summary Woollen cloth has been made in the Lim Valley from at least medieval times, but this paper is more about the factories in Lyme Regis and Uplyme that made high-quality West of England coat cloths. The factories in Lyme were bankrupt in 1847, leaving the Uplyme factory to soldier on against Yorkshire competition until it was destroyed by fire in 1866, whilst being modernised. In Lyme the factories were started up again in the 1850s to make silk thread and hemp twine, but only for a short period; these are the subjects of other papers in this series. This paper contains: the background to the trade, the history of the factories and a walking trail to see the mills. Cloth making – the essential process in a nutshell Sheep fleeces are packed on the farm into big canvas bags called woolsacks. At the factory the fleeces are scoured (washed) to remove lanolin (wool- grease), dirt and adhering vegetable material. Then the fleeces are scribbled (torn up into pieces), combed and carded to produce rovings, long strips of wool ready for spinning. Washed and combed fleece being fed into a carding machine at Coldharbour Mill, Uffculme, Devon Industrial Lyme Paper 2 – The Woollen Cloth Industry © R Bull & Lyme Regis Museum 1 Spinning means to draw out and twist - and by this process the scales of the individual wool fibres lock together to produce a thread known as a single. -
The Lancashire Cotton Textile Industry, 1918-1938
This is a repository copy of Ownership, financial strategy and performance: the Lancashire cotton textile industry, 1918-1938. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/90410/ Version: Accepted Version Article: Higgins, D, Toms, JS and Filatotchev, I (2015) Ownership, financial strategy and performance: the Lancashire cotton textile industry, 1918-1938. Business History, 57 (1). 97 - 121. ISSN 0007-6791 https://doi.org/10.1080/00076791.2014.977873 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Ownership, Financial Strategy and Performance: The Lancashire Cotton Textile Industry, 1918-19381 By David Higgins (University of Newcastle) Steven Toms* (University of Leeds) Igor Filatotchev -
Current and Future Trends in Yarn Production1
Volume 2, Issue 2, Spring 2002 CURRENT AND FUTURE TRENDS IN YARN PRODUCTION1 William Oxenham, Ph.D. College of Textiles, North Carolina State University ABSTRACT While developments in yarn manufacturing continue to be promoted by machinery makers, spinners are challenged to produce the best quality yarn at an acceptable price. This often results in a compromise, since improved yarn quality can usually only be achieved at a higher processing cost (including raw material selection). An additional difficulty is that the significance of the various attributes of quality change for different yarn’s end uses. While the solution to lowering yarn costs, that has been adopted in recent years has been to create large, almost fully automated spinning mills, this philosophy is presently being questioned, since this significantly reduces flexibility with respect to the fiber and yarn type that can be processed. This is obviously at odds with the current paradigm of customer driven, quick response manufacturing, since this demands inherent flexibility in the successful supplier. This paper reviews the current state of technological innovation in yarn production and examines the relative merits and disadvantages of each system. Some insight will also be given concerning those factors that limit further development of some of these systems. Historical trends in US yarn production have also been surveyed, and the combined information obtained is used as an indicator of the future directions in this key industry. KEYWORDS: Yarn Production, Spinning, Vortex Spinning, Centrifugal Spinning 1. INTRODUCTION shortcomings in certain aspects of yarn and fabric quality (Figure 2). This aspect Research into new technology for yarn cannot be over stressed since while ring formation peaked in the 60’s & 70’s. -
SOCIAL COUNCIL Mtniiiimhiuhhmtiimiiitniiiimiriiuniiitriiiiiiiftihiu ECONOMIC COMMISSION Î0R LATIN AMERICA
UNITED NATI ONS GENERAL E/CN.I2/9I9 ECONOMIC September 1971 ENGLISH AND ORIGINAL: PORTUGUESE SOCIAL COUNCIL MtniiiimHiuHHmtiimiiitniiiimiriiuniiitriiiiiiiftiHiu ECONOMIC COMMISSION Î0R LATIN AMERICA THE TRAÍAS PER OF TECHNICAL KNOW-HOW IN THE TEXTILE AND CLOTHING INDUSTRIES IN BRAZIL prepared by Luigi Spreafico, Consultant J Note; This report foms part of a study undertaken ty the Economic Commission for Latin America (ECLA), the Interamerican Development Bank (IDB) and the Division of Public Finance and Financial Institutions of the United Nations Department of Economic and Social Affairs on the problems of the transfer of industrial technology in Brazil. I - iii - TABLE OF CONTENTS Page Chapter I. PRODUCTION IN THE TEXTILE INDUSTRY AND THE ACCUMULATION OF TECHNICAL KNOW-HOW OVER TIME 1 A. INTRODUCTION 1 B. THE ACCUMULATION OF TECHNICAL KNOW-HOW IN THE TEXTILE INDUSTRY 5 C. CHARACTERISTICS OF THE PRODUCTION PROCESS IN THE TEXTILE INDUSTRY 10 1. Basic concepts ........................... 10 2. Prospects of a radical change in the production processes of the textile industry 13 3i Classification of processes by type of fibre used 21 Chapter II. DIFFERENT WAYS OF TRANSFERRING KNOW-HOW IN THE TEXTILE INDUSTRY 26 A. BACKGROUND 26 1. The establishment of the textile industry in Latin America 26 2. Current trends 28 B. TRANSFER OF KNOW-HOW NEEDED TO ESTABLISH NEW MILLS 28 C. TRANSFER OF KNOW-HOW NEEDED FOR RE-STRUCTURING AND MODERNIZING OUT-OF-DATE FACTORIES 35 D. THE WAYS OF TRANSFERRING KNOW-HOW ON THE USE OF SPECIAL PROCESSES AND SYNTHETIC RAW MATERIALS 40 A. Use of - iV - Page 1. Use of synthetic raw materials .......... -
Inventions in the Cotton Industry
Inventions in the Cotton Industry Paisley Thread Mill Museum A Family of Threads John Kay: The Flying Shuttle 1733 • For centuries handloom weaving had been carried out by the shuttle with the yarn on being passed slowly and awkwardly from one hand to the other. • In 1733 John Kay patented his flying shuttle which dramatically increased the speed of this process. • Kay placed shuttle boxes at each side of the loom connected by a long board, known as a shuttle race. • With cords, a single weaver, using one hand, could knock the shuttle back and forth across the loom from one shuttle box to the other. • A weaver using Kay's flying shuttle could produce much wider cloth at much faster speeds than before. James Hargreaves: The Spinning Jenny 1764 • In 1764 Hargreaves built what became known as the Spinning- Jenny. • The machine used eight spindles onto which the thread was spun. • By turning a single wheel, the operator could now spin eight threads at once. • Later, improvements were made that enabled the number to be increased to eighty. • However, the thread that the machine produced was coarse and lacked strength. Richard Arkwright: The Water Frame 1771 • Richard Arkwright: The Water Frame 1771 • In 1762 Richard Arkwright met John Kay and Thomas Highs, who were trying to produce a new spinning- machine, to improve on the Spinning-Jenny. • Kay and Highs had run out of money and Arkwright offered to employ John Kay to make the new machine, with other, local craftsman to help. • It was not long before the team produced the Spinning-Frame. -
The Industrial Revolution - Making Cloth: the Start of the Industrial Revolution
The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution The Industrial Revolution - Making Cloth: The Start of the Industrial Revolution by ReadWorks The Industrial Revolution got its start in the textile industry. Before the Industrial Revolution, making cloth was a very slow process. Cotton from cotton plants is puffy and full of seeds. First, the seeds had to be taken out, by hand. Next, the cotton had to be spun and stretched into thread, by hand. Finally, the thread was woven into cloth, by hand. Every step along the way required the full concentration of one person. Making cloth took a long time. In 1764, the process of turning cotton into cloth began to change. The three main steps stayed the same. But people began to use machines instead of doing everything manually. The machines did each step faster and faster. Some of the machines were huge. They couldn't fit into a person's home. The first factories were built to house machines and the workers needed to run them. Look at the timeline below. It describes the most important textile machines that were invented. Use it to answer the questions that follow. 1764: The spinning jenny was invented by James Hargreaves. This machine made it easier to make thread. 1769: Sir Richard Arkwright invented the water frame. Now weavers could keep up with all the thread that was being made. After the invention of the water frame, one weaver could weave the yarn from four spinners! The water frame was too big for homes. It only fit in factories. -
An Overview of Spinning Technologies: Possibilities, Applications and Limitations
Indian Journal of Fibre & Textile Research Vol. 17 , December 1992, pp. 255-262 An overview of spinning technologies: Possibilities, applications and limitations K R Salhotra Department of Textile Technology. Indian Institute of Technology. Hauz Khas. New Delhi 110016. India Received 12 August 1992 The new spinning technologies such as rotor, air jet and friction spinning have tremendous potential for hi gher productivity. However. at present these technologies not o nl y suffer from the problem of imparting some undesirable properties to the fabric but a lso have limited applicability due to the restricted choice of fibres and counts which can be successfully spun on them. Ring-spinning system, though having lower productivity, does not have these drawbacks. This system, therefore, with the incorporation of some recent improvements is likely to occupy the centre stage for the next few years. Keywords: Air jet spinning, Fabric hand, Friction spinning, Jet spin-assembly wind, Open-end spinning, Ring spinning, Rotor spinning, Twin spinner, Wrap spinning, Yarn properties 1 Introduction 'moire' effect in the fabric despite many modifications The ring-spinning system had remained made to the original yarn. This situation was entirely unchallenged since its introduction in the middle of different from the earlier developments from hand last century till the late 1960s. However, the spinners spinning to ring spinning when the product were becoming increasingly aware of the fact that low characteristics did not undergo any basic change in its productivity was inherent to the basic principle of structure. The systems such as hand wheel, flyer ring spinning. The system had reached a plateau in spinning, cap spinning, spinning jenny, mule regard to maximum production speeds.