Gas Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Gas Dynamics Appendix A Gas Dynamics The nature of stars is complex and involves almost every aspect of modern physics. In this respect the historical fact that it took mankind about half a century to understand stellar structure and evolution (see Sect. 2.2.3) seems quite a compliment to researchers. Though this statement reflects the advances in the first half of the 20th century it has to be admitted that much of stellar physics still needs to be understood, even now in the first years of the 21st century. For example, many definitions and principles important to the physics of mature stars (i.e., stars that are already engaged in their own nuclear energy production) are also relevant to the understanding of stellar formation. Though not designed as a substitute for a textbook about stellar physics, the following sections may introduce or remind the reader of some of the very basic but most useful physical concepts. It is also noted that these concepts are merely reviewed, not presented in a consistent pedagogic manner. The physics of clouds and stars is ruled by the laws of thermodynamics and follows principles of ideal, adiabatic, and polytropic gases. Derivatives in gas laws are in many ways critical in order to express stability conditions for contracting and expanding gas clouds. It is crucial to properly define gaseous matter. In the strictest sense a monatomic ideal gas is an ensemble of the same type of particles confined to a specific volume. The only particle–particle interactions are fully elastic collisions. In this configuration it is the number of particles and the available number of degrees of freedom that are relevant. An ensemble of molecules of the same type can thus be treated as a monatomic gas with all its internal degrees of freedom due to modes of excitation. Ionized gases or plasmas have electrostatic interactions and are discussed later. N.S. Schulz, The Formation and Early Evolution of Stars, Astronomy and Astrophysics 371 Library, DOI 10.1007/978-3-642-23926-7, © Springer-Verlag Berlin Heidelberg 2012 372 A Gas Dynamics A.1 Temperature Scales One might think that a temperature is straightforward to define as it is an everyday experience. For example, temperature is felt outside the house, inside at the fireplace or by drinking a cup of hot chocolate. However, most of what is experienced is actually a temperature difference and commonly applied scales are relative. In order to obtain an absolute temperature one needs to invoke statistical physics. Temperature cannot be assigned as a property of isolated particles as it always depends on an entire ensemble of particles in a specific configuration described by its equation of state. In an ideal gas, for example, temperature T is defined in conjunction with an ensemble of non-interacting particles exerting pressure P in a well-defined volume V . Kinetic temperature is a statistical quantity and a measure for internal energy U . In a monatomic gas with Ntot particles the temperature relates to the internal energy as: D 3 U 2 NtotkT (A.1) where k D 1:381 1016 erg K1. The Celsius scale defines its zero point at the freezing point of water and its scale by assigning the boiling point to 100. Lord Kelvin in the mid-1800s developed a temperature scale which sets the zero point to the point at which the pressure of all dilute gases extrapolates to zero from the triple point of water. This scale defines a thermodynamic temperature and relates to the Celsius scale as: o T D TK D TC C 273:15 (A.2) It is important to realize that it is impossible to cool a gas down to the zero point (Nernst Theorem, 1926) of Kelvin’s scale. In fact, given the presence of the 3 K background radiation that exists throughout the Universe, the lowest temperatures of the order of nano-Kelvins are only achieved in the laboratory. The coldest known places in the Universe are within our Galaxy, deeply embedded in molecular clouds – the very places where stars are born. Cores of Bok Globules can be as cold as a few K. On the other hand, temperatures in other regions within the Galaxymayevenriseto1014 K. Objects this hot are associated with very late evolutionary stages such as pulsars and -ray sources. Fig. A.1 illustrates examples of various temperature regimes as we know them today. The scale in the form of a thermometer highlights the range specifically related to early stellar evolution: from 1 K to 100 MK. The conversion relations between the scales are: T E D kT D 8:61712 108 keV ŒK 12:3985 E D keV (A.3) ŒA˚ A.1 Temperature Scales 373 100 billion 10 million 0.001 Gamma– rays 10 billion 1 million 0.01 1 billion 100,000 0.1 X–rays Radio 100 million 10,000 1 10 million 1,000 10 Ultra voilet 1 million 100 100 – 100,000 10 1,000 Optical 10,000 1 10,000 Infra– 1,000 0.1 100,000 red mm Sub 100 0.01 1 Million – 10 0.001 10 Million 1 0.0001 100 Million Kelvin eV Angstrom Fig. A.1 The temperature scale in the Universe spans over ten orders of magnitude ranging from the coldest cores of molecular clouds to hot vicinities of black holes. The scale highlights the range to be found in early stellar evolution, which roughly spans from 10 K (e.g., Barnard 68) to 100 MK (i.e. outburst and jet in XZ Tauri and HH30, respectively). Examples of temperatures in- between are ionized hydrogen clouds (e.g., NGC 5146, Cocoon Nebula), the surface temperatures of stars (e.g., our Sun in visible light), plasma temperatures in stellar coronal loops (e.g., our Sun in UV light), magnetized stars (i.e., hot massive stars at the core of the Orion Nebula). The hottest temperatures are usually found at later stages of stellar evolution in supernovas or the vicinity of degenerate matter (e.g., magnetars). Credits for insets: NASA/ESA/ISAS; R. Mallozzi, Burrows et al. [387], Bally et al. [1159], Schulz et al. [532] For young stars the highest temperatures (of the order of 100 MK) observed occur during giant X-ray flares that usually last for hours or sometimes a few days, and jets. The coolest places (with 1 to 100 K) are molecular clouds. Ionized giant hydrogen clouds usually have temperatures around 1,000 K. The temperatures of stellar photospheres range between 3,000 and 50,000 K. In stellar coronae the plasma reaches 10 MK, almost as high as in stellar cores where nuclear fusion requires temperatures of about 15 MK. The temperature range involved in stellar formation and evolution thus spans many orders of magnitudes. In stellar physics the high temperature is only topped by temperatures of shocks in the early phases of a supernova, the death of a massive star, or when in the vicinity of gravitational powerhouses like neutron stars and black holes. 374 A Gas Dynamics A.2 The Adiabatic Index The first relation one wants to know about a gaseous cloud is its equation of state, which is solely based on the first law of thermodynamics and represents conservation of energy: dQ D dU C dW (A.4) where the total amount of energy absorbed or produced dQ is the sum of the change in internal energy dU and the work done by the system dW: In an ideal gas where work dW D P dV directly relates to expansion or compression and thus a change in volume dV against a uniform pressure P , the equation of state is: PV D NmRT D nkT (A.5) 7 1 1 where R D 8:3143435 10 erg mole K , Nm is the number of moles, and n is the number of particles per cm3. The physics behind this equation of state, however, is better perceived by looking at various derivatives under constant conditions of involved quantities. For example, the amount of heat necessary to raise the temperature by one degree is expressed by the heat capacities: Â Ã Â Ã dQ dQ Cv D and Cp D (A.6) dT V dT P where d=dT denotes the differentiation with respect to temperature and the indices P and V indicate constant pressure or volume. The ratio of the two heat capacities: D CP =CV (A.7) is called the adiabatic index and has a value of 5/3 or 7/5 depending on whether the gas is monatomic or diatomic. For polyatomic gases the ratio would be near 4/3 (i.e., if the gas contains significant amounts of elements other than H and He or a mix of atoms, molecules, and ions). The more internal degrees of freedom to store energy that exist, the more CP is reduced, allowing the index to approach unity. A mix of neutral hydrogen with a fraction of ionized hydrogen is in this respect no longer strictly monatomic, because energy exchange between neutrals and ions is different. Similarly, mixes of H and He and their ions are to be treated as polyatomic if the ionization fractions are large. Deviations from the ideal gas assumption scale with n2=V 2, which, however, in all phases of stellar formation is a very small number. Thus the ideal gas assumption is quite valid throughout stellar evolution. A very important aspect with respect to idealized gas clouds is the case in which the radiated heat is small. For many gas clouds it is a good approximation to assume that no heat is exchanged with its surroundings.
Recommended publications
  • High-Resolution Spectroscopy of Fu Orionis Stars G
    The Astrophysical Journal, 595:384–411, 2003 September 20 # 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A. HIGH-RESOLUTION SPECTROSCOPY OF FU ORIONIS STARS G. H. Herbig Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 P. P. Petrov Crimean Astrophysical Observatory, p/o Nauchny, Crimea 98409, Ukraine1 and R. Duemmler2 Astronomy Division, University of Oulu, P.O. Box 3000, Oulu FIN-90014, Finland Received 2003 February 28; accepted 2003 May 29 ABSTRACT High-resolution spectroscopy was obtained of the FU orionis stars FU Ori and V1057 Cyg between 1995 and 2002 with the SOFIN spectrograph at the Nordic Optical Telescope and with HIRES at Keck I. During these years FU Ori remained about 1 mag (in B) below its 1938–39 maximum brightness, but V1057 Cyg (B 10:5 at peak in 1970–1971) faded from about 13.5 to 14.9 and then recovered slightly. Their photo- spheric spectra resemble that of a rotationally broadened, slightly veiled supergiant of about type G0 Ib, with À1 À1 veq sin i ¼ 70 km s for FU Ori, and 55 km s for V1057 Cyg. As V1057 Cyg faded, P Cyg structure in H and the IR Ca ii lines strengthened and a complex shortward-displaced shell spectrum of low-excitation lines of the neutral metals (including Li i and Rb i) increased in strength, disappeared in 1999, and reappeared in 2001. Several SOFIN runs extended over a number of successive nights so that a search for rapid and cyclic changes in the spectra was possible.
    [Show full text]
  • Multi-Generation Massive Star-Formation in NGC 3576
    A&A 504, 139–159 (2009) Astronomy DOI: 10.1051/0004-6361/200811358 & c ESO 2009 Astrophysics Multi-generation massive star-formation in NGC 3576 C. R. Purcell1,2, V. Minier3,4, S. N. Longmore2,5,6, Ph. André3,4,A.J.Walsh2,7,P.Jones2,8,F.Herpin9,10, T. Hill2,11,12, M. R. Cunningham2, and M. G. Burton2 1 Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester M13 9PL, UK e-mail: [email protected] 2 School of Physics, University of New South Wales, Sydney, NSW 2052, Australia 3 CEA, DSM, IRFU, Service d’Astrophysique, 91191 Gif-sur-Yvette, France 4 Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, IRFU/Service d’Astrophysique, CEA-Saclay, 91191 Gif-sur-Yvette, France 5 Harvard-Smithsonian Centre For Astrophysics, 60 Garden Street, Cambridge, MA, 02138, USA 6 CSIRO Australia Telescope National Facillity, PO Box 76, Epping, NSW 1710, Australia 7 Centre for Astronomy, James Cook University, Townsville, QLD 4811, Australia 8 Departmento de Astronoma, Universidad de Chile, Casilla 36-D, Santiago, Chile 9 Université de Bordeaux, Laboratoire d’Astrophysique de Bordeaux, 33000 Bordeaux, France 10 CNRS/INSU, UMR 5804, BP 89, 33271 Floirac Cedex, France 11 School of Physics, University of Exeter, Stocker Road, EX4 4QL, Exeter, UK 12 Leiden Observatory, Leiden University, PO BOX 9513, 2300 RA Leiden, the Netherlands Received 16 November 2008 / Accepted 3 July 2009 ABSTRACT Context. Recent 1.2-mm continuum observations have shown the giant H II region NGC 3576 to be embedded in the centre of an extended filamentary dust-cloud.
    [Show full text]
  • [CII] Emission Properties of the Massive Star-Forming Region
    March 2, 2021 [CII] emission properties of the massive star-forming region RCW 36 in a filamentary molecular cloud T. Suzuki1, S. Oyabu1, S. K. Ghosh2, D. K. Ojha2, H. Kaneda1, H. Maeda1, T. Nakagawa3, J. P. Ninan4, S. Vig5, M. Hanaoka1, F. Saito1, S. Fujiwara1, and T. Kanayama1 1 Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan 2 Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India 3 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa, 252-5210, Japan 4 The Pennsylvania State University, University Park, State College, PA, USA 5 Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547, India Received / Accepted ABSTRACT Aims. To investigate properties of [C ii] 158 µm emission of RCW 36 in a dense filamentary cloud. Methods. [C ii] observations of RCW 36 covering an area of ∼ 30′ ×30′ were carried out with a Fabry-Pérot spectrometer aboard a 100-cm balloon-borne far-infrared (IR) telescope with an angular resolution of 90′′. By using AKARI and Herschel images, the spatial distribution of the [C ii] intensity was compared with those of emission from the large grains and polycyclic aromatic hydrocarbon (PAH). Results. The [C ii] emission is spatially in good agreement with shell-like structures of a bipolar lobe observed in IR images, which extend along the direction perpendicular to the direction of a cold dense filament. We found that the [C ii]–160 µm relation for RCW 36 shows higher brightness ratio of [C ii]/160 µm than that for RCW 38, while the [C ii]–9 µm relation for RCW 36 is in good agreement with that for RCW 38.
    [Show full text]
  • Formation of the Active Star Forming Region LHA 120-N 44 Triggered By
    Draft version December 24, 2018 Typeset using LATEX twocolumn style in AASTeX61 FORMATION OF THE ACTIVE STAR FORMING REGION LHA 120-N 44 TRIGGERED BY TIDALLY-DRIVEN COLLIDING HI FLOWS Kisetsu Tsuge,1 Hidetoshi Sano,1,2 Kengo Tachihara,1 Cameron Yozin,3 Kenji Bekki,3 Tsuyoshi Inoue,1 Norikazu Mizuno,4 Akiko Kawamura,4 Toshikazu Onishi,5 and Yasuo Fukui1,2 1Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan; [email protected] 2Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan 3ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley Western Australia 6009, Australia 4National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588, Japan 5Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan (Accepted November 30, 2018) ABSTRACT N44 is the second active site of high mass star formation next to R136 in the Large Magellanic Cloud (LMC). We carried out a detailed analysis of Hi at 60 arcsec resolution by using the ATCA & Parkes data. We presented decomposition of the Hi emission into two velocity components (the L- and D-components) with the velocity separation of ∼60 km s−1. In addition, we newly defined the I-component whose velocity is intermediate between the L- and D-components. The D-component was used to derive the rotation curve of the LMC disk, which is consistent with the stellar rotation curve (Alves & Nelson 2000). Toward the active cluster forming region of LHA 120-N 44, the three velocity components of Hi gas show signatures of dynamical interaction including bridges and complementary spatial distributions.
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • LIST of PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute
    LIST OF PUBLICATIONS Aryabhatta Research Institute of Observational Sciences ARIES (An Autonomous Scientific Research Institute of Department of Science and Technology, Govt. of India) Manora Peak, Naini Tal - 263 129, India (1955−2020) ABBREVIATIONS AA: Astronomy and Astrophysics AASS: Astronomy and Astrophysics Supplement Series ACTA: Acta Astronomica AJ: Astronomical Journal ANG: Annals de Geophysique Ap. J.: Astrophysical Journal ASP: Astronomical Society of Pacific ASR: Advances in Space Research ASS: Astrophysics and Space Science AE: Atmospheric Environment ASL: Atmospheric Science Letters BA: Baltic Astronomy BAC: Bulletin Astronomical Institute of Czechoslovakia BASI: Bulletin of the Astronomical Society of India BIVS: Bulletin of the Indian Vacuum Society BNIS: Bulletin of National Institute of Sciences CJAA: Chinese Journal of Astronomy and Astrophysics CS: Current Science EPS: Earth Planets Space GRL : Geophysical Research Letters IAU: International Astronomical Union IBVS: Information Bulletin on Variable Stars IJHS: Indian Journal of History of Science IJPAP: Indian Journal of Pure and Applied Physics IJRSP: Indian Journal of Radio and Space Physics INSA: Indian National Science Academy JAA: Journal of Astrophysics and Astronomy JAMC: Journal of Applied Meterology and Climatology JATP: Journal of Atmospheric and Terrestrial Physics JBAA: Journal of British Astronomical Association JCAP: Journal of Cosmology and Astroparticle Physics JESS : Jr. of Earth System Science JGR : Journal of Geophysical Research JIGR: Journal of Indian
    [Show full text]
  • Information Bulletin on Variable Stars
    COMMISSIONS AND OF THE I A U INFORMATION BULLETIN ON VARIABLE STARS Nos November July EDITORS L SZABADOS K OLAH TECHNICAL EDITOR A HOLL TYPESETTING K ORI ADMINISTRATION Zs KOVARI EDITORIAL BOARD L A BALONA M BREGER E BUDDING M deGROOT E GUINAN D S HALL P HARMANEC M JERZYKIEWICZ K C LEUNG M RODONO N N SAMUS J SMAK C STERKEN Chair H BUDAPEST XI I Box HUNGARY URL httpwwwkonkolyhuIBVSIBVShtml HU ISSN COPYRIGHT NOTICE IBVS is published on b ehalf of the th and nd Commissions of the IAU by the Konkoly Observatory Budap est Hungary Individual issues could b e downloaded for scientic and educational purp oses free of charge Bibliographic information of the recent issues could b e entered to indexing sys tems No IBVS issues may b e stored in a public retrieval system in any form or by any means electronic or otherwise without the prior written p ermission of the publishers Prior written p ermission of the publishers is required for entering IBVS issues to an electronic indexing or bibliographic system to o CONTENTS C STERKEN A JONES B VOS I ZEGELAAR AM van GENDEREN M de GROOT On the Cyclicity of the S Dor Phases in AG Carinae ::::::::::::::::::::::::::::::::::::::::::::::::::: : J BOROVICKA L SAROUNOVA The Period and Lightcurve of NSV ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::: W LILLER AF JONES A New Very Long Period Variable Star in Norma ::::::::::::::::::::::::::::::::::::::::::::::::::: :::::::::::::::: EA KARITSKAYA VP GORANSKIJ Unusual Fading of V Cygni Cyg X in Early November :::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • ŞAR Shao SPECIAL ISSUE 2013 CİLD 8 № 2 AZERBAIJANI ASTRONOMICAL JOURNAL
    ISSN: 2078-4163 XÜSUSİ BURAXILIŞ ŞAR ShAO SPECIAL ISSUE 2013 CİLD 8 № 2 AZERBAIJANI ASTRONOMICAL JOURNAL ISSN: 2078-4163 Azәrbaycan Milli Elmlәr Akademiyası AZӘRBAYCAN ASTRONOMİYA JURNALI Cild 8 – № 2 – 2013 | XÜSUSİ BURAXILIŞ ŞAR - ShAO - ШАО - 60 Azerbaijan National Academy of Sciences Национальная Академия Наук Азербайджана AZERBAIJANI АСТРОНОМИЧЕСКИЙ ASTRONOMICAL ЖУРНАЛ JOURNAL АЗЕРБАЙДЖАНА Volume 8 – No 2 – 2013 Том 8 – № 2 – 2013 SPECIAL ISSUE СПЕЦИАЛЬНЫЙ ВЫПУСК Azәrbaycan Milli Elmlәr Akademiyasının “AZӘRBAYCAN ASTRONOMIYA JURNALI” Azәrbaycan Milli Elmlәr Akademiyası (AMEA) Rәyasәt Heyәtinin 28 aprel 2006-cı il tarixli 50-saylı Sәrәncamı ilә tәsis edilmişdir. Baş Redaktor: Ә.S. Quliyev Baş Redaktorun Müavini: E.S. Babayev Mәsul Katib: P.N. Şustarev REDAKSIYA HEYӘTİ: Cәlilov N.S. AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası Hüseynov R.Ә. Baki Dövlәt Universiteti İsmayılov N.Z. AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası Qasımov F. Q. AMEA Fizika İnsitutu Quluzadә C.M. Baki Dövlәt Universiteti Texniki redaktor: A.B. Әsgәrov İnternet sәhifәsi: http://www.shao.az/AAJ Ünvan: Azәrbaycan, Bakı, AZ-1001, İstiqlaliyyәt küç. 10, AMEA Rәyasәt Heyәti Jurnal AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanasında (www.shao.az) nәşr olunur. Мәktublar üçün: ŞAR, Azәrbaycan, Bakı, AZ-1000, Mәrkәzi Poçtamt, a/q №153 e-mail: [email protected] tel.: (+99412) 439 82 48 faкs: (+99412) 497 52 68 2013 Azәrbaycan Milli Elmlәr Akademiyası. 2013 AMEA N.Tusi adına Şamaxı Astrofizika Rәsәdxanası. Bütün hüquqlar qorunmuşdur. Bakı – 2013 ____________________________________________________________________________________________________________ “Астрономический Журнал Азербайджана” Национальной Azerbaijani Astronomical Journal of the Azerbaijan National Академии Наук Азербайджана (НАНА). Academy of Sciences (ANAS) is founded in 28 Aprel 2006. Основан 28 апреля 2006 г. Web- адрес: http://www.shao.az/AAJ Online version: http://www.shao.az/AAJ Главный редактор: А.С.Гулиев Editor-in-Chief: A.S.
    [Show full text]
  • An X-Ray Tour of Massive Star-Forming Regions with Chandra
    An X-ray Tour of Massive Star-forming Regions with Chandra By LEISA K. TOWNSLEY1 1 Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802, USA The Chandra X-ray Observatory is providing fascinating new views of massive star-forming re- gions, revealing all stages in the life cycles of massive stars and their effects on their surroundings. I present a Chandra tour of some of the most famous of these regions: M17, NGC 3576, W3, Tr14 in Carina, and 30 Doradus. Chandra highlights the physical processes that characterize the lives of these clusters, from the ionizing sources of ultracompact HII regions (W3) to superbubbles so large that they shape our views of galaxies (30 Dor). X-ray observations usually reveal hundreds of pre-main sequence (lower-mass) stars accompanying the OB stars that power these great HII region complexes, although in one case (W3 North) this population is mysteriously absent. The most massive stars themselves are often anomalously hard X-ray emitters; this may be a new indicator of close binarity. These complexes are sometimes suffused by soft diffuse X-rays (M17, NGC 3576), signatures of multi-million-degree plasmas created by fast O-star winds. In older regions we see the X-ray remains of the deaths of massive stars that stayed close to their birthplaces (Tr14, 30 Dor), exploding as cavity supernovae within the superbubbles that these clusters created. 1. Revealing the Life Cycle of a Massive Stellar Cluster High-resolution X-ray images from the Chandra X-ray Observatory and XMM-Newton elucidate all stages in the life cycles of massive stars – from ultracompact HII (UCHII) regions to supernova remnants – and the effects that those massive stars have on their surroundings.
    [Show full text]
  • 29 Jan 2020 11Department of Physics, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-Ku, Sapporo, Hokkaido 060-0810, Japan
    Publ. Astron. Soc. Japan (2014) 00(0), 1–42 1 doi: 10.1093/pasj/xxx000 FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45 m telescope (FUGIN). VI. Dense gas and mini-starbursts in the W43 giant molecular cloud complex Mikito KOHNO1∗, Kengo TACHIHARA1∗, Kazufumi TORII2∗, Shinji FUJITA1∗, Atsushi NISHIMURA1,3, Nario KUNO4,5, Tomofumi UMEMOTO2,6, Tetsuhiro MINAMIDANI2,6,7, Mitsuhiro MATSUO2, Ryosuke KIRIDOSHI3, Kazuki TOKUDA3,7, Misaki HANAOKA1, Yuya TSUDA8, Mika KURIKI4, Akio OHAMA1, Hidetoshi SANO1,9, Tetsuo HASEGAWA7, Yoshiaki SOFUE10, Asao HABE11, Toshikazu ONISHI3 and Yasuo FUKUI1,9 1Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 2Nobeyama Radio Observatory, National Astronomical Observatory of Japan (NAOJ), National Institutes of Natural Sciences (NINS), 462-2, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305, Japan 3Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan 4Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8577, Japan 5Tomonaga Center for the History of the Universe, University of Tsukuba, Ten-nodai 1-1-1, Tsukuba, Ibaraki 305-8571, Japan 6Department of Astronomical Science, School of Physical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1, Osawa, Mitaka, Tokyo 181-8588, Japan 7National Astronomical Observatory of Japan (NAOJ), National
    [Show full text]
  • New Infrared Star Clusters and Candidates in the Galaxy Detected with 2MASS
    Astronomy & Astrophysics manuscript no. (will be inserted by hand later) New infrared star clusters and candidates in the Galaxy detected with 2MASS C.M. Dutra1,2 and E. Bica1 1 Universidade Federal do Rio Grande do Sul, IF, CP 15051, Porto Alegre 91501–970, RS, Brazil 2 Instituto Astronomico e Geofisico da USP, CP 3386, S˜ao Paulo 01060-970, SP, Brazil Received ; accepted Abstract. A sample of 42 new infrared star clusters, stellar groups and candidates was found throughout the Galaxy in the 2MASS J, H and especially KS Atlases. In the Cygnus X region 19 new clusters, stellar groups and candidates were found as compared to 6 such objects in the previous literature. Colour-Magnitude Diagrams using the 2MASS Point Source Catalogue provided preliminary distance estimates in the range 1.0 < d⊙ < 1.8 kpc for 7 Cygnus X clusters. Towards the central parts of the Galaxy 7 new IR clusters and candidates were found as compared to 61 previous objects. A search for prominent dark nebulae in KS was also carried out in the central bulge area. We report 5 dark nebulae, 2 of them are candidates for molecular clouds able to generate massive star clusters near the Nucleus, such as the Arches and Quintuplet clusters. Key words. (Galaxy): open clusters and associations: individual 1. Introduction objects. Despite a systematic search for faint clusters on the Palomar plates like that generating the Berkeley clus- The digital Two Micron All Sky Survey (2MASS) ters (Setteducati & Weaver 1962), or the individual lists infrared atlas (Skrutskie et al. 1997 – web inter- which generated the ESO catalogue (Lauberts 1982 and face http://www.ipac.caltech.edu/2mass/) can provide a references therein), until quite recently new star clusters wealth of new objects for future studies with large tele- and candidates both on the Palomar and ESO/SERC scopes, a role similar to that played in the optical by the Schmidt plates could still be found (e.g.
    [Show full text]
  • ESO Annual Report 2004 ESO Annual Report 2004 Presented to the Council by the Director General Dr
    ESO Annual Report 2004 ESO Annual Report 2004 presented to the Council by the Director General Dr. Catherine Cesarsky View of La Silla from the 3.6-m telescope. ESO is the foremost intergovernmental European Science and Technology organi- sation in the field of ground-based as- trophysics. It is supported by eleven coun- tries: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kingdom. Created in 1962, ESO provides state-of- the-art research facilities to European astronomers and astrophysicists. In pur- suit of this task, ESO’s activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member- state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced techno- logies, furthering European co-operation and carrying out European educational programmes. ESO operates at three sites in the Ataca- ma desert region of Chile. The first site The VLT is a most unusual telescope, is at La Silla, a mountain 600 km north of based on the latest technology. It is not Santiago de Chile, at 2 400 m altitude. just one, but an array of 4 telescopes, It is equipped with several optical tele- each with a main mirror of 8.2-m diame- scopes with mirror diameters of up to ter. With one such telescope, images 3.6-metres. The 3.5-m New Technology of celestial objects as faint as magnitude Telescope (NTT) was the first in the 30 have been obtained in a one-hour ex- world to have a computer-controlled main posure.
    [Show full text]