Field Theory Pete L. Clark
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Orbits of Automorphism Groups of Fields
ORBITS OF AUTOMORPHISM GROUPS OF FIELDS KIRAN S. KEDLAYA AND BJORN POONEN Abstract. We address several specific aspects of the following general question: can a field K have so many automorphisms that the action of the automorphism group on the elements of K has relatively few orbits? We prove that any field which has only finitely many orbits under its automorphism group is finite. We extend the techniques of that proof to approach a broader conjecture, which asks whether the automorphism group of one field over a subfield can have only finitely many orbits on the complement of the subfield. Finally, we apply similar methods to analyze the field of Mal'cev-Neumann \generalized power series" over a base field; these form near-counterexamples to our conjecture when the base field has characteristic zero, but often fall surprisingly far short in positive characteristic. Can an infinite field K have so many automorphisms that the action of the automorphism group on the elements of K has only finitely many orbits? In Section 1, we prove that the answer is \no" (Theorem 1.1), even though the corresponding answer for division rings is \yes" (see Remark 1.2). Our proof constructs a \trace map" from the given field to a finite field, and exploits the peculiar combination of additive and multiplicative properties of this map. Section 2 attempts to prove a relative version of Theorem 1.1, by considering, for a non- trivial extension of fields k ⊂ K, the action of Aut(K=k) on K. In this situation each element of k forms an orbit, so we study only the orbits of Aut(K=k) on K − k. -
Complex Number
Nature and Science, 4(2), 2006, Wikipedia, Complex number Complex Number From Wikipedia, the free encyclopedia, http://en.wikipedia.org/wiki/Complex_number Editor: Ma Hongbao Department of Medicine, Michigan State University, East Lansing, Michigan, USA. [email protected] Abstract: For the recent issues of Nature and Science, there are several articles that discussed the numbers. To offer the references to readers on this discussion, we got the information from the free encyclopedia Wikipedia and introduce it here. Briefly, complex numbers are added, subtracted, and multiplied by formally applying the associative, commutative and distributive laws of algebra. The set of complex numbers forms a field which, in contrast to the real numbers, is algebraically closed. In mathematics, the adjective "complex" means that the field of complex numbers is the underlying number field considered, for example complex analysis, complex matrix, complex polynomial and complex Lie algebra. The formally correct definition using pairs of real numbers was given in the 19th century. A complex number can be viewed as a point or a position vector on a two-dimensional Cartesian coordinate system called the complex plane or Argand diagram. The complex number is expressed in this article. [Nature and Science. 2006;4(2):71-78]. Keywords: add; complex number; multiply; subtract Editor: For the recnet issues of Nature and Science, field considered, for example complex analysis, there are several articles that discussed the numbers. To complex matrix, complex polynomial and complex Lie offer the references to readers on this discussion, we got algebra. the information from the free encyclopedia Wikipedia and introduce it here (Wikimedia Foundation, Inc. -
Geometry on Grassmannians and Applications to Splitting Bundles and Smoothing Cycles
PUBLICATIONS MATHÉMATIQUES DE L’I.H.É.S. STEVEN L. KLEIMAN Geometry on grassmannians and applications to splitting bundles and smoothing cycles Publications mathématiques de l’I.H.É.S., tome 36 (1969), p. 281-297. <http://www.numdam.org/item?id=PMIHES_1969__36__281_0> © Publications mathématiques de l’I.H.É.S., 1969, tous droits réservés. L’accès aux archives de la revue « Publications mathématiques de l’I.H.É.S. » (http://www. ihes.fr/IHES/Publications/Publications.html), implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi- chier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ GEOMETRY ON GRASSMANNIANS AND APPLICATIONS TO SPLITTING BUNDLES AND SMOOTHING CYCLES by STEVEN L. KLEIMAN (1) INTRODUCTION Let k be an algebraically closed field, V a smooth ^-dimensional subscheme of projective space over A:, and consider the following problems: Problem 1 (splitting bundles). — Given a (vector) bundle G on V, find a monoidal transformation f \ V'->V with smooth center CT such thatyG contains a line bundle P. Problem 2 (smoothing cycles). — Given a cycle Z on V, deform Z by rational equivalence into the difference Z^ — Zg of two effective cycles whose prime components are all smooth. Strengthened form. — Given any finite number of irreducible subschemes V, of V, choose a (resp. Z^, Zg) such that for all i, the intersection V^n a (resp. -
Växjö University
School of Mathematics and System Engineering Reports from MSI - Rapporter från MSI Växjö University Geometrical Constructions Tanveer Sabir Aamir Muneer June MSI Report 09021 2009 Växjö University ISSN 1650-2647 SE-351 95 VÄXJÖ ISRN VXU/MSI/MA/E/--09021/--SE Tanveer Sabir Aamir Muneer Trisecting the Angle, Doubling the Cube, Squaring the Circle and Construction of n-gons Master thesis Mathematics 2009 Växjö University Abstract In this thesis, we are dealing with following four problems (i) Trisecting the angle; (ii) Doubling the cube; (iii) Squaring the circle; (iv) Construction of all regular polygons; With the help of field extensions, a part of the theory of abstract algebra, these problems seems to be impossible by using unmarked ruler and compass. First two problems, trisecting the angle and doubling the cube are solved by using marked ruler and compass, because when we use marked ruler more points are possible to con- struct and with the help of these points more figures are possible to construct. The problems, squaring the circle and Construction of all regular polygons are still im- possible to solve. iii Key-words: iv Acknowledgments We are obliged to our supervisor Per-Anders Svensson for accepting and giving us chance to do our thesis under his kind supervision. We are also thankful to our Programme Man- ager Marcus Nilsson for his work that set up a road map for us. We wish to thank Astrid Hilbert for being in Växjö and teaching us, She is really a cool, calm and knowledgeable, as an educator should. We also want to thank of our head of department and teachers who time to time supported in different subjects. -
Model-Complete Theories of Pseudo-Algebraically Closed Fields
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Annals of Mathematical Logic 17 (1979) 205-226 © North-Holland Publishing Company MODEL-COMPLETE THEORIES OF PSEUDO-ALGEBRAICALLY CLOSED FIELDS William H. WHEELER* Department of Mathematics, Indiana University, Bloomington, IN 47405, U. S.A. Received 14 June 1978; revised version received 4 January 1979 The model-complete, complete theories of pseudo-algebraically closed fields are characterized in this paper. For example, the theory of algebraically closed fields of a specified characteristic is a model-complete, complete theory of pseudo-algebraically closed fields. The characterization is based upon algebraic properties of the theories' associated number fields and is the first step towards a classification of all the model-complete, complete theories of fields. A field F is pseudo-algebraically closed if whenever I is a prime ideal in a F[xt, ] F[xl F is in polynomial ring ..., x, = and algebraically closed the quotient field of F[x]/I, then there is a homorphism from F[x]/I into F which is the identity on F. The field F can be pseudo-algebraically closed but not perfect; indeed, the non-perfect case is one of the interesting aspects of this paper. Heretofore, this concept has been considered only for a perfect field F, in which case it is equivalent to each nonvoid, absolutely irreducible F-variety's having an F-rational point. The perfect, pseudo-algebraically closed fields have been promi- nent in recent metamathematical investigations of fields [1,2,3,11,12,13,14, 15,28]. -
Section 1.2 – Mathematical Models: a Catalog of Essential Functions
Section 1-2 © Sandra Nite Math 131 Lecture Notes Section 1.2 – Mathematical Models: A Catalog of Essential Functions A mathematical model is a mathematical description of a real-world situation. Often the model is a function rule or equation of some type. Modeling Process Real-world Formulate Test/Check problem Real-world Mathematical predictions model Interpret Mathematical Solve conclusions Linear Models Characteristics: • The graph is a line. • In the form y = f(x) = mx + b, m is the slope of the line, and b is the y-intercept. • The rate of change (slope) is constant. • When the independent variable ( x) in a table of values is sequential (same differences), the dependent variable has successive differences that are the same. • The linear parent function is f(x) = x, with D = ℜ = (-∞, ∞) and R = ℜ = (-∞, ∞). • The direct variation function is a linear function with b = 0 (goes through the origin). • In a direct variation function, it can be said that f(x) varies directly with x, or f(x) is directly proportional to x. Example: See pp. 26-28 of the text. 1 Section 1-2 © Sandra Nite Polynomial Functions = n + n−1 +⋅⋅⋅+ 2 + + A function P is called a polynomial if P(x) an x an−1 x a2 x a1 x a0 where n is a nonnegative integer and a0 , a1 , a2 ,..., an are constants called the coefficients of the polynomial. If the leading coefficient an ≠ 0, then the degree of the polynomial is n. Characteristics: • The domain is the set of all real numbers D = (-∞, ∞). • If the degree is odd, the range R = (-∞, ∞). -
1 Absolute Values and Valuations
Algebra in positive Characteristic Fr¨uhjahrssemester 08 Lecturer: Prof. R. Pink Organizer: P. Hubschmid Absolute values, valuations and completion F. Crivelli ([email protected]) April 21, 2008 Introduction During this talk I’ll introduce the basic definitions and some results about valuations, absolute values of fields and completions. These notions will give two basic examples: the rational function field Fq(T ) and the field Qp of the p-adic numbers. 1 Absolute values and valuations All along this section, K denote a field. 1.1 Absolute values We begin with a well-known Definition 1. An absolute value of K is a function | | : K → R satisfying these properties, ∀ x, y ∈ K: 1. |x| = 0 ⇔ x = 0, 2. |x| ≥ 0, 3. |xy| = |x| |y|, 4. |x + y| ≤ |x| + |y|. (Triangle inequality) Note that if we set |x| = 1 for all 0 6= x ∈ K and |0| = 0, we have an absolute value on K, called the trivial absolute value. From now on, when we speak about an absolute value | |, we assume that | | is non-trivial. Moreover, if we define d : K × K → R by d(x, y) = |x − y|, x, y ∈ K, d is a metric on K and we have a topological structure on K. We have also some basic properties that we can deduce directly from the definition of an absolute value. 1 Lemma 1. Let | | be an absolute value on K. We have 1. |1| = 1, 2. |ζ| = 1, for all ζ ∈ K with ζd = 1 for some 0 6= d ∈ N (ζ is a root of unity), 3. -
A Note on the Non-Existence of Prime Models of Theories of Pseudo-Finite
A note on the non-existence of prime models of theories of pseudo-finite fields Zo´eChatzidakis∗ DMA (UMR 8553), Ecole Normale Sup´erieure CNRS, PSL Research University September 23, 2020 Abstract We show that if a field A is not pseudo-finite, then there is no prime model of the theory of pseudo-finite fields over A. Assuming GCH, we generalise this result to κ-prime models, for κ a regular uncountable cardinal or . ℵε Introduction In this short note, we show that prime models of the theory of pseudo-finite fields do not exist. More precisely, we consider the following theory T (A): F is a pseudo-finite field, A a relatively algebraically closed subfield of F, and T (A) is the theory of the field F in the language of rings augmented by constant symbols for the elements of A. Our first result is: Theorem 2.5. Let T (A) be as above. If A is not pseudo-finite, then T (A) has no prime model. The proof is done by constructing 2|A|+ℵ0 non-isomorphic models of T (A), of transcendence degree 1 over A (Proposition 2.4). Next we address the question of existence of κ-prime models of T (A), where κ is a regular uncountable cardinal or ε. We assume GCH, and again show non-existence of κ-prime models arXiv:2004.05593v2 [math.LO] 22 Sep 2020 ℵ of T (A), unless A < κ or A is κ-saturated when κ 1, and when the transcendence degree of A is infinite when| | κ = (Theorem 3.4). -
The Art of the Intelligible
JOHN L. BELL Department of Philosophy, University of Western Ontario THE ART OF THE INTELLIGIBLE An Elementary Survey of Mathematics in its Conceptual Development To my dear wife Mimi The purpose of geometry is to draw us away from the sensible and the perishable to the intelligible and eternal. Plutarch TABLE OF CONTENTS FOREWORD page xi ACKNOWLEDGEMENTS xiii CHAPTER 1 NUMERALS AND NOTATION 1 CHAPTER 2 THE MATHEMATICS OF ANCIENT GREECE 9 CHAPTER 3 THE DEVELOPMENT OF THE NUMBER CONCEPT 28 THE THEORY OF NUMBERS Perfect Numbers. Prime Numbers. Sums of Powers. Fermat’s Last Theorem. The Number π . WHAT ARE NUMBERS? CHAPTER 4 THE EVOLUTION OF ALGEBRA, I 53 Greek Algebra Chinese Algebra Hindu Algebra Arabic Algebra Algebra in Europe The Solution of the General Equation of Degrees 3 and 4 The Algebraic Insolubility of the General Equation of Degree Greater than 4 Early Abstract Algebra 70 CHAPTER 5 THE EVOLUTION OF ALGEBRA, II 72 Hamilton and Quaternions. Grassmann’s “Calculus of Extension”. Finite Dimensional Linear Algebras. Matrices. Lie Algebras. CHAPTER 6 THE EVOLUTION OF ALGEBRA, III 89 Algebraic Numbers and Ideals. ABSTRACT ALGEBRA Groups. Rings and Fields. Ordered Sets. Lattices and Boolean Algebras. Category Theory. CHAPTER 7 THE DEVELOPMENT OF GEOMETRY, I 111 COORDINATE/ALGEBRAIC/ANALYTIC GEOMETRY Algebraic Curves. Cubic Curves. Geometric Construction Problems. Higher Dimensional Spaces. NONEUCLIDEAN GEOMETRY CHAPTER 8 THE DEVELOPMENT OF GEOMETRY, II 129 PROJECTIVE GEOMETRY DIFFERENTIAL GEOMETRY The Theory of Surfaces. Riemann’s Conception of Geometry. TOPOLOGY Combinatorial Topology. Point-set topology. CHAPTER 9 THE CALCULUS AND MATHEMATICAL ANALYSIS 151 THE ORIGINS AND BASIC NOTIONS OF THE CALCULUS MATHEMATICAL ANALYSIS Infinite Series. -
F-Isocrystals on the Line
F -isocrystals on the line Richard Crew The University of Florida December 16, 2012 I V is a complete discrete valuation with perfect residue field k of characteristic p and fraction field K. Let π be a uniformizer of V and e the absolute ramification index, so that (πe ) = (p). I A is a smooth V-algebra of finite type, and X = Spec(A). n+1 I A1 is the p-adic completion of A, and An = A/π , so that A = lim A . 1 −n n I We then set Xn = Spec(An) and X1 = Spf(A1). th I φ : A1 ! A1 is a ring homomorphism lifting the q -power Frobenius of A0. We denote by the restriction of φ to V, and by σ : K ! K its extension to K. I If X has relative dimension d over V, t1;:::; td will usually denote local parameters at an (unspecified) point of X , so 1 that ΩX =V has dt1;:::; dtd at that point. Same for local parameters on the completion X1. The Setup We fix the following notation: f I p > 0 is a prime, and q = p . I A is a smooth V-algebra of finite type, and X = Spec(A). n+1 I A1 is the p-adic completion of A, and An = A/π , so that A = lim A . 1 −n n I We then set Xn = Spec(An) and X1 = Spf(A1). th I φ : A1 ! A1 is a ring homomorphism lifting the q -power Frobenius of A0. We denote by the restriction of φ to V, and by σ : K ! K its extension to K. -
Chapter 2 Affine Algebraic Geometry
Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F. -
Lectures on Complete Discrete Valuation Fields
Lectures on Complete Discrete Valuation Fields 1: Discrete Valuation Fields (1.1). Valuations. One can generalize the properties of the -adic valuation ¡£¢ and proceed to the concept of valuation. Let Γ be an additively written totally ordered abelian group. Add Γ ¥§¦ ¤ ¤¨¦ ¤ ¥ ¤ ¤ to a formal element + ¤ with the properties + , + + , + (+ ) = + , Γ Γ Γ ¤ ¤ ¥ © ¤ (+ ¤ ) + (+ ) = + , for each ; denote = + . Γ A map ¡ : with the properties ¤ ¡ ( ) = + = 0 ¡ ¡ ¡ ( ) = ( ) + ( ) ¡ ¡ ¡ ( + ) min( ( ) ( )) ¡ is said to be a valuation on ; in this case is said to be a valuation field. The map induces Γ Γ ¡ a homomorphism of to and its value group ( ) is a totally ordered subgroup of . ¡ ¡ If ¡ ( ) = 0 , then is called the trivial valuation. It is easy to show that ( 1) = 0, and if !¡ ¡ ( ) ( ), then ¡ "¡ # ¡ "¡ ¡ ¡ ( ) min( ( + ) ( )) min( ( ) ( )) = ( ); $ ¡ ¡ ¡ ¡ thus, if ¡ ( ) = ( ) then ( + ) = min( ( ) ( )). %'& £(©) ¡ * £(©+ ¡ , * & (1.2). Basic Objects. Let = : ( ) 0 , & = : ( ) 0 . Then %'& coincides with the set of non-invertible elements of %-& . Therefore, is a local ring with the * % ¡ & unique maximal ideal & ; is called the ring of integers (with respect to ), and the field .& %-&0/1* 2©)%'& = & is called the residue field, or residue class field. The image of an element .& in .& is denoted by , it is called the residue of in . The set of invertible elements of %'& 34& %-&56* is a multiplicative group = & , it is called the group of units. 798;:-:-<= $ , & Assume that char( ) = char( & ). Then char( ) = 0 and char( ) = 0. $ .& Proof. Suppose that char( ) = = 0. Then = 0 in and therefore in . Hence = char( .& ). <A:'BDCE8;FHGAIKJ0<LC£MN<PORQSGATAFU<LTNVWJ0<LC£MN<PORQSGAT+I1QS8;C£VLFE= (1.3). >@? ¡ 1. A valuation ¡ on is said to be discrete if the totally ordered group ( ) is isomorphic to the naturally ordered group X .