D-finite Numbers∗ Hui Huang† David R. Cheriton School of Computer Science, University of Waterloo 200 University Avenue West, Waterloo, Ontario, N2L 3G1,Canada
[email protected] Manuel Kauers‡ Institute for Algebra, Johannes Kepler University Altenberger Strasse 69, 4040 Linz, Austria
[email protected] Abstract D-finite functions and P-recursive sequences are defined in terms of linear differential and recurrence equations with polynomial coefficients. In this paper, we introduce a class of numbers closely related to D-finite functions and P-recursive sequences. It consists of the limits of convergent P-recursive sequences. Typically, this class contains many well-known mathematical constants in addition to the algebraic numbers. Our definition of the class of D-finite numbers depends on two subrings of the field of complex numbers. We investigate how different choices of these two subrings affect the class. Moreover, we show that D- finite numbers are essentially limits of D-finite functions at the point one, and evaluating D-finite functions at non-singular algebraic points typically yields D-finite numbers. This result makes it easier to recognize certain numbers to be D-finite. Keywords: Complex numbers; D-finite functions; P-recursive sequences; algebraic numbers; evaluation of special functions. Mathematics Subject Classification 2010: 11Y35, 33E30, 33F05, 33F10 1 Introduction D-finite functions have been recognized long ago [23, 15, 30, 19, 16, 24] as an especially attractive class of functions. They are interesting on the one hand because each of them can arXiv:1611.05901v3 [math.NT] 26 May 2018 be easily described by a finite amount of data, and efficient algorithms are available to do exact as well as approximate computations with them.