Orbits of Automorphism Groups of Fields
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Theory Pete L. Clark
Field Theory Pete L. Clark Thanks to Asvin Gothandaraman and David Krumm for pointing out errors in these notes. Contents About These Notes 7 Some Conventions 9 Chapter 1. Introduction to Fields 11 Chapter 2. Some Examples of Fields 13 1. Examples From Undergraduate Mathematics 13 2. Fields of Fractions 14 3. Fields of Functions 17 4. Completion 18 Chapter 3. Field Extensions 23 1. Introduction 23 2. Some Impossible Constructions 26 3. Subfields of Algebraic Numbers 27 4. Distinguished Classes 29 Chapter 4. Normal Extensions 31 1. Algebraically closed fields 31 2. Existence of algebraic closures 32 3. The Magic Mapping Theorem 35 4. Conjugates 36 5. Splitting Fields 37 6. Normal Extensions 37 7. The Extension Theorem 40 8. Isaacs' Theorem 40 Chapter 5. Separable Algebraic Extensions 41 1. Separable Polynomials 41 2. Separable Algebraic Field Extensions 44 3. Purely Inseparable Extensions 46 4. Structural Results on Algebraic Extensions 47 Chapter 6. Norms, Traces and Discriminants 51 1. Dedekind's Lemma on Linear Independence of Characters 51 2. The Characteristic Polynomial, the Trace and the Norm 51 3. The Trace Form and the Discriminant 54 Chapter 7. The Primitive Element Theorem 57 1. The Alon-Tarsi Lemma 57 2. The Primitive Element Theorem and its Corollary 57 3 4 CONTENTS Chapter 8. Galois Extensions 61 1. Introduction 61 2. Finite Galois Extensions 63 3. An Abstract Galois Correspondence 65 4. The Finite Galois Correspondence 68 5. The Normal Basis Theorem 70 6. Hilbert's Theorem 90 72 7. Infinite Algebraic Galois Theory 74 8. A Characterization of Normal Extensions 75 Chapter 9. -
The Pure Symmetric Automorphisms of a Free Group Form a Duality Group
THE PURE SYMMETRIC AUTOMORPHISMS OF A FREE GROUP FORM A DUALITY GROUP NOEL BRADY, JON MCCAMMOND, JOHN MEIER, AND ANDY MILLER Abstract. The pure symmetric automorphism group of a finitely generated free group consists of those automorphisms which send each standard generator to a conjugate of itself. We prove that these groups are duality groups. 1. Introduction Let Fn be a finite rank free group with fixed free basis X = fx1; : : : ; xng. The symmetric automorphism group of Fn, hereafter denoted Σn, consists of those au- tomorphisms that send each xi 2 X to a conjugate of some xj 2 X. The pure symmetric automorphism group, denoted PΣn, is the index n! subgroup of Σn of symmetric automorphisms that send each xi 2 X to a conjugate of itself. The quotient of PΣn by the inner automorphisms of Fn will be denoted OPΣn. In this note we prove: Theorem 1.1. The group OPΣn is a duality group of dimension n − 2. Corollary 1.2. The group PΣn is a duality group of dimension n − 1, hence Σn is a virtual duality group of dimension n − 1. (In fact we establish slightly more: the dualizing module in both cases is -free.) Corollary 1.2 follows immediately from Theorem 1.1 since Fn is a 1-dimensional duality group, there is a short exact sequence 1 ! Fn ! PΣn ! OPΣn ! 1 and any duality-by-duality group is a duality group whose dimension is the sum of the dimensions of its constituents (see Theorem 9.10 in [2]). That the virtual cohomological dimension of Σn is n − 1 was previously estab- lished by Collins in [9]. -
Generalized Quaternions
GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8. -
On the Group-Theoretic Properties of the Automorphism Groups of Various Graphs
ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS CHARLES HOMANS Abstract. In this paper we provide an introduction to the properties of one important connection between the theories of groups and graphs, that of the group formed by the automorphisms of a given graph. We provide examples of important results in graph theory that can be understood through group theory and vice versa, and conclude with a treatment of Frucht's theorem. Contents 1. Introduction 1 2. Fundamental Definitions, Concepts, and Theorems 2 3. Example 1: The Orbit-Stabilizer Theorem and its Application to Graph Automorphisms 4 4. Example 2: On the Automorphism Groups of the Platonic Solid Skeleton Graphs 4 5. Example 3: A Tight Bound on the Product of the Chromatic Number and Independence Number of Vertex-Transitive Graphs 6 6. Frucht's Theorem 7 7. Acknowledgements 9 8. References 9 1. Introduction Groups and graphs are two highly important kinds of structures studied in math- ematics. Interestingly, the theory of groups and the theory of graphs are deeply connected. In this paper, we examine one particular such connection: that which emerges from the observation that the automorphisms of any given graph form a group under composition. In section 2, we provide a framework for understanding the material discussed in the paper. In sections 3, 4, and 5, we demonstrate how important results in group theory illuminate some properties of automorphism groups, how the geo- metric properties of particular embeddings of graphs can be used to determine the structure of the automorphism groups of all embeddings of those graphs, and how the automorphism group can be used to determine fundamental truths about the structure of the graph. -
The Centralizer of a Group Automorphism
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 54, 27-41 (1978) The Centralizer of a Group Automorphism CARLTON J. MAXSON AND KIRBY C. SWTH Texas A& M University, College Station, Texas 77843 Communicated by A. Fr6hlich Received May 31, 1971 Let G be a finite group. The structure of the near-ring C(A) of identity preserving functionsf : G + G, which commute with a given automorphism A of G, is investigated. The results are then applied to the case in which G is a finite vector space and A is an invertible linear transformation. Let A be a linear transformation on a finite-dimensional vector space V over a field F. The problem of determining the structure of the ring of linear trans- formations on V which commute with A has been studied extensively (e.g., [3, 5, 81). In this paper we consider a nonlinear analogue to this well-known problem which arises naturally in the study of automorphisms of a linear auto- maton [6]. Specifically let G be a finite group, written additively, and let A be an auto- morphism of G. If C(A) = {f: G + G j fA = Af and f (0) = 0 where 0 is the identity of G), then C(A) forms a near ring under the operations of pointwise addition and function composition. That is (C(A), +) is a group, (C(A), .) is a monoid, (f+-g)h=fh+gh for all f, g, hcC(A) and f.O=O.f=O, f~ C(A). -
Homomorphisms and Isomorphisms
Lecture 4.1: Homomorphisms and isomorphisms Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 4.1: Homomorphisms and isomorphisms Math 4120, Modern Algebra 1 / 13 Motivation Throughout the course, we've said things like: \This group has the same structure as that group." \This group is isomorphic to that group." However, we've never really spelled out the details about what this means. We will study a special type of function between groups, called a homomorphism. An isomorphism is a special type of homomorphism. The Greek roots \homo" and \morph" together mean \same shape." There are two situations where homomorphisms arise: when one group is a subgroup of another; when one group is a quotient of another. The corresponding homomorphisms are called embeddings and quotient maps. Also in this chapter, we will completely classify all finite abelian groups, and get a taste of a few more advanced topics, such as the the four \isomorphism theorems," commutators subgroups, and automorphisms. M. Macauley (Clemson) Lecture 4.1: Homomorphisms and isomorphisms Math 4120, Modern Algebra 2 / 13 A motivating example Consider the statement: Z3 < D3. Here is a visual: 0 e 0 7! e f 1 7! r 2 2 1 2 7! r r2f rf r2 r The group D3 contains a size-3 cyclic subgroup hri, which is identical to Z3 in structure only. None of the elements of Z3 (namely 0, 1, 2) are actually in D3. When we say Z3 < D3, we really mean is that the structure of Z3 shows up in D3. -
Model-Complete Theories of Pseudo-Algebraically Closed Fields
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Annals of Mathematical Logic 17 (1979) 205-226 © North-Holland Publishing Company MODEL-COMPLETE THEORIES OF PSEUDO-ALGEBRAICALLY CLOSED FIELDS William H. WHEELER* Department of Mathematics, Indiana University, Bloomington, IN 47405, U. S.A. Received 14 June 1978; revised version received 4 January 1979 The model-complete, complete theories of pseudo-algebraically closed fields are characterized in this paper. For example, the theory of algebraically closed fields of a specified characteristic is a model-complete, complete theory of pseudo-algebraically closed fields. The characterization is based upon algebraic properties of the theories' associated number fields and is the first step towards a classification of all the model-complete, complete theories of fields. A field F is pseudo-algebraically closed if whenever I is a prime ideal in a F[xt, ] F[xl F is in polynomial ring ..., x, = and algebraically closed the quotient field of F[x]/I, then there is a homorphism from F[x]/I into F which is the identity on F. The field F can be pseudo-algebraically closed but not perfect; indeed, the non-perfect case is one of the interesting aspects of this paper. Heretofore, this concept has been considered only for a perfect field F, in which case it is equivalent to each nonvoid, absolutely irreducible F-variety's having an F-rational point. The perfect, pseudo-algebraically closed fields have been promi- nent in recent metamathematical investigations of fields [1,2,3,11,12,13,14, 15,28]. -
Automorphism Groups of Free Groups, Surface Groups and Free Abelian Groups
Automorphism groups of free groups, surface groups and free abelian groups Martin R. Bridson and Karen Vogtmann The group of 2 × 2 matrices with integer entries and determinant ±1 can be identified either with the group of outer automorphisms of a rank two free group or with the group of isotopy classes of homeomorphisms of a 2-dimensional torus. Thus this group is the beginning of three natural sequences of groups, namely the general linear groups GL(n, Z), the groups Out(Fn) of outer automorphisms of free groups of rank n ≥ 2, and the map- ± ping class groups Mod (Sg) of orientable surfaces of genus g ≥ 1. Much of the work on mapping class groups and automorphisms of free groups is motivated by the idea that these sequences of groups are strongly analogous, and should have many properties in common. This program is occasionally derailed by uncooperative facts but has in general proved to be a success- ful strategy, leading to fundamental discoveries about the structure of these groups. In this article we will highlight a few of the most striking similar- ities and differences between these series of groups and present some open problems motivated by this philosophy. ± Similarities among the groups Out(Fn), GL(n, Z) and Mod (Sg) begin with the fact that these are the outer automorphism groups of the most prim- itive types of torsion-free discrete groups, namely free groups, free abelian groups and the fundamental groups of closed orientable surfaces π1Sg. In the ± case of Out(Fn) and GL(n, Z) this is obvious, in the case of Mod (Sg) it is a classical theorem of Nielsen. -
A Note on the Non-Existence of Prime Models of Theories of Pseudo-Finite
A note on the non-existence of prime models of theories of pseudo-finite fields Zo´eChatzidakis∗ DMA (UMR 8553), Ecole Normale Sup´erieure CNRS, PSL Research University September 23, 2020 Abstract We show that if a field A is not pseudo-finite, then there is no prime model of the theory of pseudo-finite fields over A. Assuming GCH, we generalise this result to κ-prime models, for κ a regular uncountable cardinal or . ℵε Introduction In this short note, we show that prime models of the theory of pseudo-finite fields do not exist. More precisely, we consider the following theory T (A): F is a pseudo-finite field, A a relatively algebraically closed subfield of F, and T (A) is the theory of the field F in the language of rings augmented by constant symbols for the elements of A. Our first result is: Theorem 2.5. Let T (A) be as above. If A is not pseudo-finite, then T (A) has no prime model. The proof is done by constructing 2|A|+ℵ0 non-isomorphic models of T (A), of transcendence degree 1 over A (Proposition 2.4). Next we address the question of existence of κ-prime models of T (A), where κ is a regular uncountable cardinal or ε. We assume GCH, and again show non-existence of κ-prime models arXiv:2004.05593v2 [math.LO] 22 Sep 2020 ℵ of T (A), unless A < κ or A is κ-saturated when κ 1, and when the transcendence degree of A is infinite when| | κ = (Theorem 3.4). -
Isomorphisms and Automorphisms
Isomorphisms and Automorphisms Definition As usual an isomorphism is defined as a map between objects that preserves structure, for general designs this means: Suppose (X,A) and (Y,B) are two designs. They are said to be isomorphic if there exists a bijection α: X → Y such that if we apply α to the elements of any block of A we obtain a block of B and all blocks of B are obtained this way. Symbolically we can write this as: B = [ {α(x) | x ϵ A} : A ϵ A ]. The bijection α is called an isomorphism. Example We've seen two versions of a (7,4,2) symmetric design: k = 4: {3,5,6,7} {4,6,7,1} {5,7,1,2} {6,1,2,3} {7,2,3,4} {1,3,4,5} {2,4,5,6} Blocks: y = [1,2,3,4] {1,2} = [1,2,5,6] {1,3} = [1,3,6,7] {1,4} = [1,4,5,7] {2,3} = [2,3,5,7] {2,4} = [2,4,6,7] {3,4} = [3,4,5,6] α:= (2576) [1,2,3,4] → {1,5,3,4} [1,2,5,6] → {1,5,7,2} [1,3,6,7] → {1,3,2,6} [1,4,5,7] → {1,4,7,2} [2,3,5,7] → {5,3,7,6} [2,4,6,7] → {5,4,2,6} [3,4,5,6] → {3,4,7,2} Incidence Matrices Since the incidence matrix is equivalent to the design there should be a relationship between matrices of isomorphic designs. -
F-Isocrystals on the Line
F -isocrystals on the line Richard Crew The University of Florida December 16, 2012 I V is a complete discrete valuation with perfect residue field k of characteristic p and fraction field K. Let π be a uniformizer of V and e the absolute ramification index, so that (πe ) = (p). I A is a smooth V-algebra of finite type, and X = Spec(A). n+1 I A1 is the p-adic completion of A, and An = A/π , so that A = lim A . 1 −n n I We then set Xn = Spec(An) and X1 = Spf(A1). th I φ : A1 ! A1 is a ring homomorphism lifting the q -power Frobenius of A0. We denote by the restriction of φ to V, and by σ : K ! K its extension to K. I If X has relative dimension d over V, t1;:::; td will usually denote local parameters at an (unspecified) point of X , so 1 that ΩX =V has dt1;:::; dtd at that point. Same for local parameters on the completion X1. The Setup We fix the following notation: f I p > 0 is a prime, and q = p . I A is a smooth V-algebra of finite type, and X = Spec(A). n+1 I A1 is the p-adic completion of A, and An = A/π , so that A = lim A . 1 −n n I We then set Xn = Spec(An) and X1 = Spf(A1). th I φ : A1 ! A1 is a ring homomorphism lifting the q -power Frobenius of A0. We denote by the restriction of φ to V, and by σ : K ! K its extension to K. -
Graph Automorphism Groups
Graph Automorphism Groups Robert A. Beeler, Ph.D. East Tennessee State University February 23, 2018 Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 1 / 1 What is a graph? A graph G =(V , E) is a set of vertices, V , together with as set of edges, E. For our purposes, each edge will be an unordered pair of distinct vertices. a e b d c V (G)= {a, b, c, d, e} E(G)= {ab, ae, bc, be, cd, de} Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 2 / 1 Graph Automorphisms A graph automorphism is simply an isomorphism from a graph to itself. In other words, an automorphism on a graph G is a bijection φ : V (G) → V (G) such that uv ∈ E(G) if and only if φ(u)φ(v) ∈ E(G). Note that graph automorphisms preserve adjacency. In layman terms, a graph automorphism is a symmetry of the graph. Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 3 / 1 An Example Consider the following graph: a d b c Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 4 / 1 An Example (Part 2) One automorphism simply maps every vertex to itself. This is the identity automorphism. a a d b d b c 7→ c e =(a)(b)(c)(d) Robert A. Beeler, Ph.D. (East Tennessee State University)Graph Automorphism Groups February 23, 2018 5 / 1 An Example (Part 3) One automorphism switches vertices a and c.