Isomorphisms, Automorphisms, Homomorphisms, Kernels

Total Page:16

File Type:pdf, Size:1020Kb

Isomorphisms, Automorphisms, Homomorphisms, Kernels Isomorphisms, Automorphisms, Homomorphisms, Kernels September 10, 2009 Definition 1 Let G; G0 be groups and let f : G ! G0 be a mapping (of the underlying sets). We say that f is a (group) homomorphism if f(x · y) = f(x) · f(y) for all x; y 2 G. The composition f G−!G0−!h G" of two homomorphisms (as displayed) is again a homomorphism. For any two groups G, G0 by the trivial homomorphism from G to G0 we mean the mapping G ! G0 sending all elements to the identity element in G0. Recall: Definition 2 A group homomorphism f : G ! G0 is called a group isomorphism|or, for short, an isomorphism|if f is bijective. An isomorphism from a group G to itself is called an automorphism. Exercise 1 Let f : G ! G0 be a homomorphism of groups. The image under the homomorphism 0 f of any subgroup of G is a subgroup of G ; if H ⊂ G is generated by elements fx1; x2; : : : ; xng then its image f(H) is generated by the images ff(x1); f(x2); : : : ; f(xn)g; the image of any cyclic subgroup is cyclic; If f is an isomorphism from G to G0 and x 2 G then the order of x (which|by definition—is the order of the cyclic subgroup generated by x) is equal to the order of f(x). For G a group, let Aut(G) be the set of all automorphisms of G, with `composition of automorphisms" as its `composition law' (denoted by a center-dot (·). As noted in class, Proposition 1 If G is a group then Aut(G) is also a group. 1 Exercise 2 1. Let G be a group. For any g 2 G consider the mapping from G to itself: cg : G ! G defined by the rule: if x 2 G then −1 cg(x) := g · x · g : Show that cg : G ! G is an automorphism of the group G. (It is called conjugation by g). 2. Show that the assignment g 7! cg defines a homomorphism of groups, c : G ! Aut(G): Note that G is commutative if and only if c is the trivial homomorphism. Exercise 3 1. Let G be a group of order three. Show that G is cyclic. Show that Aut(G) is of order two. 2. Let G be a group of order 5. Show that G is cyclic. Show that Aut(G) is cyclic of order 4. Exercise 4 Let G be the set with composition law denoted by center-dot (·) consisting of four elements f1; x; y; x · yg where every element is its own inverse. Show that the previous sentence does indeed describe a group. Now give a complete description of Aut(G). Definition 3 Let f : G ! G0 be a group homomorphism. By the kernel of f we mean the subset of G consisting of the set of elements fx 2 G j f(x) = 1g Exercise 5 1. Let f : G ! G0 be a group homomorphism. Show that the kernel of f is a subgroup of G. 2. Let G be a group. Show that the kernel of the homomorphism c : G ! Aut(G) defined in the previous exercise consists of the set of all elements g 2 G that commute with every element x 2 G. It is called the center of G. 3. Let f : G ! G0 be a group homomorphism, and let K ⊂ G be the kernel of f. Show that K is preserved under conjugation by any element g 2 G. Equivalently, if k 2 K then g ·k ·g−1 2 K for all g 2 G. 2 Definition 4 We will say that a subgroup H ⊂ G is normal in G if it has the property you have just proved holds for \kernels" in the previous exercise; that is: H ⊂ G is normal in G if for all g 2 G and all h 2 H, we have that g · h · g−1 2 H; or equivalently, g · H · g−1 = H. We will see later that this property of normality characterizes kernels: any normal subgroup of G is the kernel of some homomorphism|but that will be for later. Exercise 6 1. Show|really just note| that the center of any group is normal in that group. 2. If N ⊂ G is a normal subgroup in G and H ⊂ G is a subgroup, is N \ H a normal subgroup of H? 3. Consider the subsets in GL2(R) given by a a B := all matrices of the form 11 12 0 a22 (for a11; a12; a22 2 R) and 1 a12 B1 := all matrices of the form 0 a22 (for a12; a22 2 R) so that B1 ⊂ B ⊂ GL2(R): Show that B1 is a normal subgroup of B, but neither B1 nor B are normal in GL2(R). Exercise 7 Let G = D6 be the group of symmetries of the equilateral triangle. Find the center of G, describe all normal subgroups of G, compute Aut(G) and give a complete description of the homomorphism c : G ! Aut(G) of the previous exercise. Exercise 8 Do the same as above for Let G = D10, the group of symmetries of the regular pentagon. Find the center of G, describe all normal subgroups of G, compute Aut(G) and give a complete description of the homomorphism c : G ! Aut(G) of the previous exercise. 3.
Recommended publications
  • Chapter 4. Homomorphisms and Isomorphisms of Groups
    Chapter 4. Homomorphisms and Isomorphisms of Groups 4.1 Note: We recall the following terminology. Let X and Y be sets. When we say that f is a function or a map from X to Y , written f : X ! Y , we mean that for every x 2 X there exists a unique corresponding element y = f(x) 2 Y . The set X is called the domain of f and the range or image of f is the set Image(f) = f(X) = f(x) x 2 X . For a set A ⊆ X, the image of A under f is the set f(A) = f(a) a 2 A and for a set −1 B ⊆ Y , the inverse image of B under f is the set f (B) = x 2 X f(x) 2 B . For a function f : X ! Y , we say f is one-to-one (written 1 : 1) or injective when for every y 2 Y there exists at most one x 2 X such that y = f(x), we say f is onto or surjective when for every y 2 Y there exists at least one x 2 X such that y = f(x), and we say f is invertible or bijective when f is 1:1 and onto, that is for every y 2 Y there exists a unique x 2 X such that y = f(x). When f is invertible, the inverse of f is the function f −1 : Y ! X defined by f −1(y) = x () y = f(x). For f : X ! Y and g : Y ! Z, the composite g ◦ f : X ! Z is given by (g ◦ f)(x) = g(f(x)).
    [Show full text]
  • Group Homomorphisms
    1-17-2018 Group Homomorphisms Here are the operation tables for two groups of order 4: · 1 a a2 + 0 1 2 1 1 a a2 0 0 1 2 a a a2 1 1 1 2 0 a2 a2 1 a 2 2 0 1 There is an obvious sense in which these two groups are “the same”: You can get the second table from the first by replacing 0 with 1, 1 with a, and 2 with a2. When are two groups the same? You might think of saying that two groups are the same if you can get one group’s table from the other by substitution, as above. However, there are problems with this. In the first place, it might be very difficult to check — imagine having to write down a multiplication table for a group of order 256! In the second place, it’s not clear what a “multiplication table” is if a group is infinite. One way to implement a substitution is to use a function. In a sense, a function is a thing which “substitutes” its output for its input. I’ll define what it means for two groups to be “the same” by using certain kinds of functions between groups. These functions are called group homomorphisms; a special kind of homomorphism, called an isomorphism, will be used to define “sameness” for groups. Definition. Let G and H be groups. A homomorphism from G to H is a function f : G → H such that f(x · y)= f(x) · f(y) forall x,y ∈ G.
    [Show full text]
  • Orbits of Automorphism Groups of Fields
    ORBITS OF AUTOMORPHISM GROUPS OF FIELDS KIRAN S. KEDLAYA AND BJORN POONEN Abstract. We address several specific aspects of the following general question: can a field K have so many automorphisms that the action of the automorphism group on the elements of K has relatively few orbits? We prove that any field which has only finitely many orbits under its automorphism group is finite. We extend the techniques of that proof to approach a broader conjecture, which asks whether the automorphism group of one field over a subfield can have only finitely many orbits on the complement of the subfield. Finally, we apply similar methods to analyze the field of Mal'cev-Neumann \generalized power series" over a base field; these form near-counterexamples to our conjecture when the base field has characteristic zero, but often fall surprisingly far short in positive characteristic. Can an infinite field K have so many automorphisms that the action of the automorphism group on the elements of K has only finitely many orbits? In Section 1, we prove that the answer is \no" (Theorem 1.1), even though the corresponding answer for division rings is \yes" (see Remark 1.2). Our proof constructs a \trace map" from the given field to a finite field, and exploits the peculiar combination of additive and multiplicative properties of this map. Section 2 attempts to prove a relative version of Theorem 1.1, by considering, for a non- trivial extension of fields k ⊂ K, the action of Aut(K=k) on K. In this situation each element of k forms an orbit, so we study only the orbits of Aut(K=k) on K − k.
    [Show full text]
  • The General Linear Group
    18.704 Gabe Cunningham 2/18/05 [email protected] The General Linear Group Definition: Let F be a field. Then the general linear group GLn(F ) is the group of invert- ible n × n matrices with entries in F under matrix multiplication. It is easy to see that GLn(F ) is, in fact, a group: matrix multiplication is associative; the identity element is In, the n × n matrix with 1’s along the main diagonal and 0’s everywhere else; and the matrices are invertible by choice. It’s not immediately clear whether GLn(F ) has infinitely many elements when F does. However, such is the case. Let a ∈ F , a 6= 0. −1 Then a · In is an invertible n × n matrix with inverse a · In. In fact, the set of all such × matrices forms a subgroup of GLn(F ) that is isomorphic to F = F \{0}. It is clear that if F is a finite field, then GLn(F ) has only finitely many elements. An interesting question to ask is how many elements it has. Before addressing that question fully, let’s look at some examples. ∼ × Example 1: Let n = 1. Then GLn(Fq) = Fq , which has q − 1 elements. a b Example 2: Let n = 2; let M = ( c d ). Then for M to be invertible, it is necessary and sufficient that ad 6= bc. If a, b, c, and d are all nonzero, then we can fix a, b, and c arbitrarily, and d can be anything but a−1bc. This gives us (q − 1)3(q − 2) matrices.
    [Show full text]
  • The Pure Symmetric Automorphisms of a Free Group Form a Duality Group
    THE PURE SYMMETRIC AUTOMORPHISMS OF A FREE GROUP FORM A DUALITY GROUP NOEL BRADY, JON MCCAMMOND, JOHN MEIER, AND ANDY MILLER Abstract. The pure symmetric automorphism group of a finitely generated free group consists of those automorphisms which send each standard generator to a conjugate of itself. We prove that these groups are duality groups. 1. Introduction Let Fn be a finite rank free group with fixed free basis X = fx1; : : : ; xng. The symmetric automorphism group of Fn, hereafter denoted Σn, consists of those au- tomorphisms that send each xi 2 X to a conjugate of some xj 2 X. The pure symmetric automorphism group, denoted PΣn, is the index n! subgroup of Σn of symmetric automorphisms that send each xi 2 X to a conjugate of itself. The quotient of PΣn by the inner automorphisms of Fn will be denoted OPΣn. In this note we prove: Theorem 1.1. The group OPΣn is a duality group of dimension n − 2. Corollary 1.2. The group PΣn is a duality group of dimension n − 1, hence Σn is a virtual duality group of dimension n − 1. (In fact we establish slightly more: the dualizing module in both cases is -free.) Corollary 1.2 follows immediately from Theorem 1.1 since Fn is a 1-dimensional duality group, there is a short exact sequence 1 ! Fn ! PΣn ! OPΣn ! 1 and any duality-by-duality group is a duality group whose dimension is the sum of the dimensions of its constituents (see Theorem 9.10 in [2]). That the virtual cohomological dimension of Σn is n − 1 was previously estab- lished by Collins in [9].
    [Show full text]
  • Categories, Functors, and Natural Transformations I∗
    Lecture 2: Categories, functors, and natural transformations I∗ Nilay Kumar June 4, 2014 (Meta)categories We begin, for the moment, with rather loose definitions, free from the technicalities of set theory. Definition 1. A metagraph consists of objects a; b; c; : : :, arrows f; g; h; : : :, and two operations, as follows. The first is the domain, which assigns to each arrow f an object a = dom f, and the second is the codomain, which assigns to each arrow f an object b = cod f. This is visually indicated by f : a ! b. Definition 2. A metacategory is a metagraph with two additional operations. The first is the identity, which assigns to each object a an arrow Ida = 1a : a ! a. The second is the composition, which assigns to each pair g; f of arrows with dom g = cod f an arrow g ◦ f called their composition, with g ◦ f : dom f ! cod g. This operation may be pictured as b f g a c g◦f We require further that: composition is associative, k ◦ (g ◦ f) = (k ◦ g) ◦ f; (whenever this composition makese sense) or diagrammatically that the diagram k◦(g◦f)=(k◦g)◦f a d k◦g f k g◦f b g c commutes, and that for all arrows f : a ! b and g : b ! c, we have 1b ◦ f = f and g ◦ 1b = g; or diagrammatically that the diagram f a b f g 1b g b c commutes. ∗This talk follows [1] I.1-4 very closely. 1 Recall that a diagram is commutative when, for each pair of vertices c and c0, any two paths formed from direct edges leading from c to c0 yield, by composition of labels, equal arrows from c to c0.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • Generalized Quaternions
    GENERALIZED QUATERNIONS KEITH CONRAD 1. introduction The quaternion group Q8 is one of the two non-abelian groups of size 8 (up to isomor- phism). The other one, D4, can be constructed as a semi-direct product: ∼ ∼ × ∼ D4 = Aff(Z=(4)) = Z=(4) o (Z=(4)) = Z=(4) o Z=(2); where the elements of Z=(2) act on Z=(4) as the identity and negation. While Q8 is not a semi-direct product, it can be constructed as the quotient group of a semi-direct product. We will see how this is done in Section2 and then jazz up the construction in Section3 to make an infinite family of similar groups with Q8 as the simplest member. In Section4 we will compare this family with the dihedral groups and see how it fits into a bigger picture. 2. The quaternion group from a semi-direct product The group Q8 is built out of its subgroups hii and hji with the overlapping condition i2 = j2 = −1 and the conjugacy relation jij−1 = −i = i−1. More generally, for odd a we have jaij−a = −i = i−1, while for even a we have jaij−a = i. We can combine these into the single formula a (2.1) jaij−a = i(−1) for all a 2 Z. These relations suggest the following way to construct the group Q8. Theorem 2.1. Let H = Z=(4) o Z=(4), where (a; b)(c; d) = (a + (−1)bc; b + d); ∼ The element (2; 2) in H has order 2, lies in the center, and H=h(2; 2)i = Q8.
    [Show full text]
  • On the Group-Theoretic Properties of the Automorphism Groups of Various Graphs
    ON THE GROUP-THEORETIC PROPERTIES OF THE AUTOMORPHISM GROUPS OF VARIOUS GRAPHS CHARLES HOMANS Abstract. In this paper we provide an introduction to the properties of one important connection between the theories of groups and graphs, that of the group formed by the automorphisms of a given graph. We provide examples of important results in graph theory that can be understood through group theory and vice versa, and conclude with a treatment of Frucht's theorem. Contents 1. Introduction 1 2. Fundamental Definitions, Concepts, and Theorems 2 3. Example 1: The Orbit-Stabilizer Theorem and its Application to Graph Automorphisms 4 4. Example 2: On the Automorphism Groups of the Platonic Solid Skeleton Graphs 4 5. Example 3: A Tight Bound on the Product of the Chromatic Number and Independence Number of Vertex-Transitive Graphs 6 6. Frucht's Theorem 7 7. Acknowledgements 9 8. References 9 1. Introduction Groups and graphs are two highly important kinds of structures studied in math- ematics. Interestingly, the theory of groups and the theory of graphs are deeply connected. In this paper, we examine one particular such connection: that which emerges from the observation that the automorphisms of any given graph form a group under composition. In section 2, we provide a framework for understanding the material discussed in the paper. In sections 3, 4, and 5, we demonstrate how important results in group theory illuminate some properties of automorphism groups, how the geo- metric properties of particular embeddings of graphs can be used to determine the structure of the automorphism groups of all embeddings of those graphs, and how the automorphism group can be used to determine fundamental truths about the structure of the graph.
    [Show full text]
  • The Fundamental Homomorphism Theorem
    Lecture 4.3: The fundamental homomorphism theorem Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4120, Modern Algebra M. Macauley (Clemson) Lecture 4.3: The fundamental homomorphism theorem Math 4120, Modern Algebra 1 / 10 Motivating example (from the previous lecture) Define the homomorphism φ : Q4 ! V4 via φ(i) = v and φ(j) = h. Since Q4 = hi; ji: φ(1) = e ; φ(−1) = φ(i 2) = φ(i)2 = v 2 = e ; φ(k) = φ(ij) = φ(i)φ(j) = vh = r ; φ(−k) = φ(ji) = φ(j)φ(i) = hv = r ; φ(−i) = φ(−1)φ(i) = ev = v ; φ(−j) = φ(−1)φ(j) = eh = h : Let's quotient out by Ker φ = {−1; 1g: 1 i K 1 i iK K iK −1 −i −1 −i Q4 Q4 Q4=K −j −k −j −k jK kK j k jK j k kK Q4 organized by the left cosets of K collapse cosets subgroup K = h−1i are near each other into single nodes Key observation Q4= Ker(φ) =∼ Im(φ). M. Macauley (Clemson) Lecture 4.3: The fundamental homomorphism theorem Math 4120, Modern Algebra 2 / 10 The Fundamental Homomorphism Theorem The following result is one of the central results in group theory. Fundamental homomorphism theorem (FHT) If φ: G ! H is a homomorphism, then Im(φ) =∼ G= Ker(φ). The FHT says that every homomorphism can be decomposed into two steps: (i) quotient out by the kernel, and then (ii) relabel the nodes via φ. G φ Im φ (Ker φ C G) any homomorphism q i quotient remaining isomorphism process (\relabeling") G Ker φ group of cosets M.
    [Show full text]
  • Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1
    Limits Commutative Algebra May 11 2020 1. Direct Limits Definition 1: A directed set I is a set with a partial order ≤ such that for every i; j 2 I there is k 2 I such that i ≤ k and j ≤ k. Let R be a ring. A directed system of R-modules indexed by I is a collection of R modules fMi j i 2 Ig with a R module homomorphisms µi;j : Mi ! Mj for each pair i; j 2 I where i ≤ j, such that (i) for any i 2 I, µi;i = IdMi and (ii) for any i ≤ j ≤ k in I, µi;j ◦ µj;k = µi;k. We shall denote a directed system by a tuple (Mi; µi;j). The direct limit of a directed system is defined using a universal property. It exists and is unique up to a unique isomorphism. Theorem 2 (Direct limits). Let fMi j i 2 Ig be a directed system of R modules then there exists an R module M with the following properties: (i) There are R module homomorphisms µi : Mi ! M for each i 2 I, satisfying µi = µj ◦ µi;j whenever i < j. (ii) If there is an R module N such that there are R module homomorphisms νi : Mi ! N for each i and νi = νj ◦µi;j whenever i < j; then there exists a unique R module homomorphism ν : M ! N, such that νi = ν ◦ µi. The module M is unique in the sense that if there is any other R module M 0 satisfying properties (i) and (ii) then there is a unique R module isomorphism µ0 : M ! M 0.
    [Show full text]
  • The Centralizer of a Group Automorphism
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 54, 27-41 (1978) The Centralizer of a Group Automorphism CARLTON J. MAXSON AND KIRBY C. SWTH Texas A& M University, College Station, Texas 77843 Communicated by A. Fr6hlich Received May 31, 1971 Let G be a finite group. The structure of the near-ring C(A) of identity preserving functionsf : G + G, which commute with a given automorphism A of G, is investigated. The results are then applied to the case in which G is a finite vector space and A is an invertible linear transformation. Let A be a linear transformation on a finite-dimensional vector space V over a field F. The problem of determining the structure of the ring of linear trans- formations on V which commute with A has been studied extensively (e.g., [3, 5, 81). In this paper we consider a nonlinear analogue to this well-known problem which arises naturally in the study of automorphisms of a linear auto- maton [6]. Specifically let G be a finite group, written additively, and let A be an auto- morphism of G. If C(A) = {f: G + G j fA = Af and f (0) = 0 where 0 is the identity of G), then C(A) forms a near ring under the operations of pointwise addition and function composition. That is (C(A), +) is a group, (C(A), .) is a monoid, (f+-g)h=fh+gh for all f, g, hcC(A) and f.O=O.f=O, f~ C(A).
    [Show full text]