Mathematical Studies of Pattern Formation and Cooperative Organization in Bacterial Colonies

Total Page:16

File Type:pdf, Size:1020Kb

Mathematical Studies of Pattern Formation and Cooperative Organization in Bacterial Colonies Mathematical Studies of Pattern Formation and Cooperative Organization in Bacterial Colonies Thesis Submitted for the Degree ”Doctor of Philosophy” by Inon Cohen Submitted to the Senate of Tel-Aviv University 2006 The research work for this thesis has been carried out at Tel-Aviv University under the supervision of Professor Zeev Schuss and Professor Eshel Ben-Jacob This work was carried out under the supervision of Professor Zeev Schuss and Professor Eshel Ben-Jacob. Acknowledgments This work is dedicated to the memory of my mother, Ruthy Cohen, how did not live to see its completion. Foremost, I would like to thank my supervisor and mentor, Eshel Ben-Jacob, for his guidance, patience and support. I have benefited immensely from his profound physical insight, and his inexhaustible curiosity. I am especially grateful for his ability to direct me to interesting problems and their not less interesting solutions. I would like to thank my supervisor Zeev Schuss for his patience and instructive guid- ance in advanced mathematics. His vast knowledge was of great help for me. This dissertation was submitted in a delay of several years due to personal reasons. I would like to apologize to my supervisors for this ineptness, and thank them for not giving up on me. I had the fortune to learn from Herbert Levine during our collaboration. I am thankful to David Gutnick for aiding me in the world of micro biology. His vast biological knowledge and experience was of great help for me. Most importantly, I thank my wife Galit for her ceaseless encouragement and support. Abstract The focus of this dissertation is the study of bacterial colonies. In the past, bacterial colonies were usually grown in the laboratory on soft, semi-solid substrates (intermedi- ate agar concentration) with high levels of nutrient. In such ‘friendly’ conditions, bacterial colonies grow in simple compact patterns. Such patterns fit well into the view that bacterial colonies are collections of independent unicellular organisms (‘non-interacting particles’, in physicists’ notation). In nature, bacteria must often cope with hostile environmental conditions. To do so they have developed sophisticated cooperative behavior and intri- cate communication capabilities, organized within the bacterial colonies. Utilizing such capabilities, the colonies develop complex spatio-temporal patterns in response to adverse growth conditions. When hostile conditions are created in petri-dishes in the laboratory, by using a very low level of nutrients, a hard surface (or both), very complex colonial patterns are often observed (see figure 1.1 in chapter Introduction). In this work I construct mathematical description of such complex biological systems and use it to advance our knowledge and understanding of these biological systems, and the principals governing their development. I endorse the approach that the main theoretical tool we have in such study is the formulation of appropriate mathematical models (‘generic models’). By this approach, the models should conform to the known biological facts and capture the essence of the biological system, yet they should not be overloaded with obscure details irrelevant to the biological phenomena under consideration. ii Once such a model is formulated, and verified to describe the biological phenomena, it can supply us with understanding of the biological system in two ways. First, the mere abil- ity to distinguish between relevant and irrelevant biological facts is of great importance, be- cause understanding the biological interpretation of the model’s mathematical details show us the biological features essential for the formation of the biological phenomena. Sec- ondly, analysis of the model can be further used to produce predictions about the biological system, such as unknown biological features included in the model, the system’s behavior in untested conditions, or the effect of new elements on the system. Bacterial colonies present a wealth of beautiful patterns formed during colonial de- velopment for different environmental conditions. Invoking ideas from pattern formation in non-living systems and using ‘generic’ modeling we are able to reveal novel survival strategies which account for the salient features of the evolved patterns. Using the models, I demonstrate how communication leads to self-organization of the colonies via cooperative behavior of the cells. Three types of colonial patterns are studied in the research I present here. Each one of them is formed by a different type of bacteria, and each one of them deserves a unique mathematical treatment in order to explain the development of the bacterial colonies. The first type of patterns is tip-splitting branching patterns (see Fig. 1.1(a) ). These patterns are formed by Paenibacillus dendritiformis var. dendron bacteria [213], referred to as T . The colonial patterns are branched, and new branches are formed during development as wide, old branches split into two. The bacteria in the colony perform two-dimensional random walk within the boundaries of the colony. The second type of patterns is chiral branching patterns (see Fig. 1.1(b) ). These Abstract iii patterns are formed by Paenibacillus dendritiformis var. chiralis [213] bacteria, referred to as C . The branches are narrow, elongated, and twist sideways as they grow (always in the same direction, in all parts of the colony). New branches are side branches of old ones. The bacteria in the colony perform quasi one-dimensional random walk in the branches, as the branches are too narrow for the bacteria to rotate in. The third type of patterns is vortex-led branching patterns (see Fig. 1.1(c) ). These patterns are formed by Paenibacillus vortex bacteria [212], referred to as V . They are distinguished by the movement of the bacteria: at the tip of each growing branch (and sometimes also within it), there is group of bacteria rotating in a synchronized motion, like a vortex. I study each type of bacteria with at least two models. Double-checking with two mod- els can give us more confidence in the biological interpretation of our mathematical claims. The models can be grouped into two wide categories. (1) Discrete models, where the bacte- ria are represented by discrete entities which perform realizations of a stochastic processes. Such entities can consume nutrients and produce chemicals, reproduce, perform random or biased movement, and respond to chemicals. The time evolution of the chemicals is described by reaction-diffusion equations. (2) Continuum reaction-diffusion models, with multiple coupled diffusive fields. In these models the microorganisms are represented via their 2D density, and the time evolution of this density is described by reaction-diffusion partial differential equation. The equation of bacterial density is coupled to other reaction- diffusion equations for the chemical fields (e.g. nutrient). In some models the bacterial movement is described also by additional fields, such as velocity field or orientation field. For the T bacteria, I find that formation of some kind of boundary to the colony is iv essential for the tip-splitting branching patterns, as could be expected. Using a continuum model I show that the boundary could not be described by a phase shift in the reaction term (food consumption, reproduction and death), but rather it is related to lubrication ma- terial produced by the bacteria to facilitate their movement on the hard surface. The effect of the lubrication material on the bacterial movement is described by reaction-diffusion equation for the bacterial density field, where the diffusion is non-linear and it is density dependent. The colonial boundary in this case is a singularity line of a weak solution to the resulting system of PDEs. Additional aspects of the patterns of the colonies are derived from chemotaxis of the bacteria (Chemotaxis is a response of the bacteria to gradients of external chemical field, where the bacteria bias their movement and move up or down the gradient). Using a discrete model I show that the governing form of chemotaxis is not food chemotaxis, the most common form of bacterial chemotaxis, but rather a signaling chemotaxis. The bacteria respond to chemicals emitted by other bacteria. Chemical com- munication between the bacteria leads to cooperative behavior which affects the colony structure. The T bacteria that build the tip-splitting branching patterns are closely related to the C bacteria that build the chiral branching patterns. Both the continuum and the discrete models show that the crucial different between the two types is the length of the bacteria. The bacteria that build the chiral branching patterns are much longer then their relatives. Their length restrict their rotation in narrow places. As new, small, branches form, the bacterial rotation is limited. The branches become more elongated and narrower and the bacteria are confined to back-and-forth motion. The chirality of the branches is related to the propeller-like action of the bacterial engine, and its interaction with the surface of the substrate. As with their tip-splitting relatives T , results show that the colonial development Abstract v is affected by chemotaxis. The models also give an additional support to the claim that the T bacteria respond the signaling chemotaxis. In some conditions where nutrient is scarce, the T bacteria become somewhat more elongate than they usually are. The branches of the colony become narrower and somewhat twisted to the side. This phenomenon is referred to as weak chirality. The models for the C bacteria, adapted for elongated T bacteria, show that the chirality is due to bacterial response to signaling chemotaxis. The V bacteria that form the vortices have a different mode of motion than T or C bacteria. They do not perform a random walk, but rather a forward notion. Models show the vortices are formed due to contact interactions between the bacteria. The interactions couple the movement of neighboring bacteria. In large parts of the parameters space, there are two steady-state solutions to the bacterial motion equations.
Recommended publications
  • Paenibacillaceae Cover
    The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ...........................................................................................................................
    [Show full text]
  • Comparative Fecal Metagenomics Unveils Unique Functional Capacity
    Lamendella et al. BMC Microbiology 2011, 11:103 http://www.biomedcentral.com/1471-2180/11/103 RESEARCHARTICLE Open Access Comparative fecal metagenomics unveils unique functional capacity of the swine gut Regina Lamendella1,4, Jorge W Santo Domingo2*, Shreya Ghosh1, John Martinson3 and Daniel B Oerther1,5 Abstract Background: Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results: Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes.
    [Show full text]
  • Mutually Facilitated Dispersal Between the Nonmotile Fungus Aspergillus Fumigatus and the Swarming Bacterium Paenibacillus Vortex
    Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex Colin J. Inghama,b,c,1, Oren Kalismand, Alin Finkelshteind,e, and Eshel Ben-Jacobd,1 aLaboratory of Microbiology, Wageningen University, 6703 HB, Wageningen, The Netherlands; bJBZ Hospital, Department of Infection Control and Microbiology, 5223 GZ, Den Bosch, The Netherlands; cMicroDish BV, 3584 CH, Utrecht, The Netherlands; dThe Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel; and eThe Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel Edited* by Nigel D. Goldenfeld, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 19, 2011 (received for review February 25, 2011) In the heterogeneous environment surrounding plant roots (the bials, including putative antifungals. P. vortex is known to limit the rhizosphere), microorganisms both compete and cooperate. Here, growth of Verticillium dahliae, a fungal pathogen of plants (8). we show that two very different inhabitants of the rhizosphere, Members of the genus Paenibacillus have a variety of interactions the nonmotile fungus Aspergillus fumigatus and the swarming with fungi, both antagonistic (9, 10) and cooperative; an example bacterium Paenibacillus vortex, can facilitate each other’s dis- of the latter is stimulation of the growth of the fungus Glomus persal. A. fumigatus conidia (nonmotile asexual fungal spores) intraradices by P. validus (11). can be transported by P. vortex swarms over distances of at least Aspergillus fumigatus is another versatile inhabitant of the −1 30 cm and at rates of up to 10.8 mm h . Moreover, conidia can be rhizosphere and many other environments; its 29.4-Mb genome rescued and transported by P.
    [Show full text]
  • Isolati on and Bacill D Char Lus Spe Acteriz Ecies I Zation N Lake of Ant E
    Vol. 9(14), pp. 1037-1043, 8 April, 2015 DOI: 10.5897/AJMR2015.7441 Article Number: FF2AA0F52318 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2015 Author(s) retain the copyrighht of this article http://www.academicjournals.org/AJMR Full Length Research Paper Isolation and characterization of antibiotic producing Bacillus species in Lake Bogoria, Kenya Tom Kintet Torome1*, Lexa Gomezgani Matasyoh2, George Orinda1 and Francis Gakuya3 1Biochemistry and Biotechnology Department, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya. 2Biological Science Department, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya. 3Kenya Wildlife Service, P. O. Box 402411-00100, Nairobi, Kenya. Received 20 February, 2015; Accepted 25 March, 2015 Bacilli are a large homogeneous group of bacteria that survive in a wide range of environmental conditions. Formation of resistant spores allows them to survive in high temperature zones where other organisms cannot. Eighty samples were collected and inoculated directly into nutrient broth. Of the eighty samples collected, thirty three exhibited growth. Nine of these were Gram positive rods, twenty were Gram negative rods, and four were Gram positive cocci. Only cultures that yielded Gram positive rods were processed further. Antimicrobial profiling was performed using standard organisms: Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, E. coli 35218 and Pseuddomonas aeruginosa ATCC 27853. No inhibition was noted against S. aureus ATCC 29213 and E. coli 35218. Five of the nine Gram positive isolates revealed inhibitory properties against the standard organisms. Phylogenetic analysis of amplified 16S rDNA gene conffirmed that aall the six antagonistic isolates formed close phylogenetic clusters with known members of Bacillus species with a 88-99% sequence identity.
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    Published Online: 6 August, 2020 | Supp Info: http://doi.org/10.26508/lsa.202000847 Downloaded from life-science-alliance.org on 1 October, 2021 Research Article Peptide-based quorum sensing systems in Paenibacillus polymyxa Maya Voichek1 , Sandra Maaß2 , Tobias Kroniger2,Dorte¨ Becher2, Rotem Sorek1 Paenibacillus polymyxa is an agriculturally important plant Many of the characteristic features associated with the above- growth–promoting rhizobacterium. Many Paenibacillus species mentioned behaviors—production and secretion of antimicrobials, are known to be engaged in complex bacteria–bacteria and expression of virulence factors, and forming complex colony bacteria–host interactions, which in other species were shown to structures—often require some form of intercellular communica- necessitate quorum sensing communication. However, to date, no tion such as quorum sensing (12). Bacteria use quorum sensing to quorum sensing systems have been described in Paenibacillus. coordinate gene expression patterns on a population level. For Here, we show that the type strain P. polymyxa ATCC 842 encodes example, the quorum sensing network of Pseudomonas aeruginosa at least 16 peptide-based communication systems. Each of these controls the production of secreted toxins as well as the production systems is comprised of a pro-peptide that is secreted to the of rhamnolipids, which are important for its biofilm architecture (13, growth medium and processed to generate a mature short peptide. 14). Quorum sensing regulates the production of bacteriocin an- Each peptide has a cognate intracellular receptor of the RRNPP timicrobials in Lactobacilli (15) and Streptococci (16, 17), and in P. polymyxa family, and we show that external addition of com- Bacillus subtilis, quorum sensing systems play a major role in munication peptides leads to reprogramming of the transcriptional sporulation, biofilm formation, and genetic competence (18).
    [Show full text]
  • 1471-2180-9-124.Pdf
    Citation for published version: Jamieson, WD, Pehl, MJ, Gregory, GA & Orwin, PM 2009, 'Coordinated surface activities in Variovorax paradoxus EPS', BMC Microbiology, vol. 9, no. 1, pp. 124. https://doi.org/10.1186/1471-2180-9-124 DOI: 10.1186/1471-2180-9-124 Publication date: 2009 Link to publication Publisher Rights CC BY © 2009 Jamieson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 BMC Microbiology BioMed Central Research article Open Access Coordinated surface activities in Variovorax paradoxus EPS W David Jamieson1, Michael J Pehl2, Glenn A Gregory2,3 and Paul M Orwin*2 Address: 1Department of Biology and Biochemistry, University of Bath, Bath, BA2
    [Show full text]
  • Paenibacillus Sp.Y412MC10
    Standards in Genomic Sciences (2012) 6:366-385 DOI:10.4056/sigs.2605792 Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park David A. Mead1,2, Susan Lucas3, Alex Copeland3, Alla Lapidus3, Jan-Feng Cheng3, David C. Bruce3,4, Lynne A. Goodwin3,4, Sam Pitluck2, Olga Chertkov3, Xiaojing Zhang3,4, John C. Detter3,4, Cliff S. Han3,4, Roxanne Tapia3,4, Miriam Land3,5, Loren J. Hauser3,5, Yun-juan Chang3, Nikos C. Kyrpides3, Natalia N. Ivanova3, Galina Ovchinnikova3, Tanja Woyke3, Catherine Brumm3, Rebecca Hochstein1, Thomas Schoenfeld1, and Phillip Brumm2* 1 Lucigen Corporation, Middleton, Wisconsin 2DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 3DOE Joint Genome Institute, Walnut Creek, California 4Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico 5Oak Ridge National Laboratory, Oak Ridge, Tennessee *Corresponding author: Phillip Brumm ([email protected]) Keywords: Geobacillus sp. Y412MC10, Paenibacillus sp. Y412MC10, Obsidian Hot Spring Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Ser- vice. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely relat- ed to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was se- quenced, assembled, and annotated by the DOE Joint Genome Institute.
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    Published Online: 6 August, 2020 | Supp Info: http://doi.org/10.26508/lsa.202000847 Downloaded from life-science-alliance.org on 7 August, 2020 Research Article Peptide-based quorum sensing systems in Paenibacillus polymyxa Maya Voichek1 , Sandra Maaß2 , Tobias Kroniger2,Dorte¨ Becher2, Rotem Sorek1 Paenibacillus polymyxa is an agriculturally important plant Many of the characteristic features associated with the above- growth–promoting rhizobacterium. Many Paenibacillus species mentioned behaviors—production and secretion of antimicrobials, are known to be engaged in complex bacteria–bacteria and expression of virulence factors, and forming complex colony bacteria–host interactions, which in other species were shown to structures—often require some form of intercellular communica- necessitate quorum sensing communication. However, to date, no tion such as quorum sensing (12). Bacteria use quorum sensing to quorum sensing systems have been described in Paenibacillus. coordinate gene expression patterns on a population level. For Here, we show that the type strain P. polymyxa ATCC 842 encodes example, the quorum sensing network of Pseudomonas aeruginosa at least 16 peptide-based communication systems. Each of these controls the production of secreted toxins as well as the production systems is comprised of a pro-peptide that is secreted to the of rhamnolipids, which are important for its biofilm architecture (13, growth medium and processed to generate a mature short peptide. 14). Quorum sensing regulates the production of bacteriocin an- Each peptide has a cognate intracellular receptor of the RRNPP timicrobials in Lactobacilli (15) and Streptococci (16, 17), and in P. polymyxa family, and we show that external addition of com- Bacillus subtilis, quorum sensing systems play a major role in munication peptides leads to reprogramming of the transcriptional sporulation, biofilm formation, and genetic competence (18).
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Peptide-based quorum sensing systems in Paenibacillus polymyxa 2 3 Maya Voichek1, Sandra Maaß2, Tobias Kroniger2, Dörte Becher2, Rotem Sorek1,# 4 5 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel 6 2 Institute of Microbiology, Department of Microbial Proteomics; Center for Functional 7 Genomics of Microbes, University of Greifswald, Germany. 8 # Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 9 Abstract 10 Paenibacillus polymyxa is an agriculturally important plant growth-promoting 11 rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria- 12 bacteria and bacteria-host interactions, which in other species were shown to necessitate 13 quorum sensing communication. However, to date no quorum sensing systems have been 14 described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 15 encodes at least 16 peptide-based communication systems. Each of these systems is 16 comprised of a pro-peptide that is secreted to the growth medium and processed to generate 17 a mature short peptide.
    [Show full text]
  • High-Quality Genome Sequence and Description of Paenibacillus Dakarensis Sp
    NEW MICROBES IN HUMANS High-quality genome sequence and description of Paenibacillus dakarensis sp. nov. C. I. Lo1, S. A. Sankar1, B. Fall2, B. Sambe-Ba2, O. Mediannikov1,3, C. Robert1, N. Faye4, B. Wade2, D. Raoult1,3,5, P.-E. Fournier1 and F. Fenollar1,3 1) Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France, 2) Hôpital Principal de Dakar, 3) Campus International UCAD-IRD, 4) Université Cheikh Anta Diop de Dakar, Laboratoire de Parasitologie générale, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Strain FF9T was isolated in Dakar (Senegal) from a blood-culture taken from a 16-month-old child. MALDI-TOF analysis did not allow for identification. After sequencing, strain FF9T exhibited 98.18% similarity with the 16SrRNA sequence of Paenibacillus uliginis. A polyphasic study of phenotypic and genomic analyses showed that strain FF9T is Gram variable, catalase-positive, and presents a genome of 4,569,428 bp (one chromosome but no plasmid) with 4,427genes (4,352 protein-coding and 75 RNA genes (including 3 rRNA operons). The G+C content is 45.7%. On the basis of these genomic and phenotypic data analyses, we propose the creation of Paenibacillus dakarensis strain FF9T. New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Culturomics, genome, Paenibacillus dakarensis, taxono-genomics Original Submission: 15 October 2015; Revised Submission: 18 December 2015; Accepted: 14 January 2016 Article published online: 22 January 2016 Currently this genus includes 165 validly published species and Corresponding author: F.
    [Show full text]
  • 133 What Does “NO-Synthase” Stand for ? Jerome Santolini1 1Institute For
    [Frontiers In Bioscience, Landmark, 24, 133-171, Jan 1, 2019] What does “NO-Synthase” stand for ? Jerome Santolini1 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Distribution of NOS 3.1.Mammalian NOSs as exclusive NO-synthase models 3.2. Emergence of a new family of proteins 3.3. Prokaryotes, Eubacteria and Archae 3.4. Eukaryotes: fungi and plants 3.5. Metazoan 4. A new and heterogeneous family of proteines 4.1. The impasse of standard phylogenetic analysis 4.2. A singular versatile enzyme 4.2.1. NOS function 4.2.2. Instability of NOS activity and function 4.2.3. Overlaps of NOS activity 4.2.4. Multiplicity of NOS 4.2.5. What does NOS stand for? 4.3. The necessity of an original approach 5. Diversity of NOS structures 5.1. A variable assembly of multiple modules 5.2. Existence of other types of NOSs 5.3. Types of NOSs are not uniform within a simple phylogenetic group 5.4. Strong disparities in the structure of oxygenase domains 5.4.1. Basal metazoans 5.4.2. Plants 5.4.3. Cyanobacteria 6. Discussion: Diversity of functions 6.1. A Name is not a function 6.2. A Structure is not a function 6.2.1. A built-in versatile catalysis 6.2.2. A highly-sensitive chemical system 6.2.3. Electron transfer (ET) as a major NOS fingerprint 6.3. An Activity is not a function 6.3.1.
    [Show full text]
  • Downloaded 18Th January 2018)
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.16.384453; this version posted November 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Metabolic potential, ecology and presence of endohyphal bacteria is reflected in genomic diversity of Mucoromycotina Short title: Genomic diversity of Mucorales and Umbelopsidales Anna Muszewska1,*, Alicja Okrasińska2, Kamil Steczkiewicz1, Olga Drgas1, Małgorzata Orłowska1, Urszula Perlińska-Lenart1,Tamara Aleksandrzak-Piekarczyk1, Katarzyna Szatraj1, Urszula Zielenkiewicz1, Sebastian Piłsyk1, Ewa Malc3, Piotr Mieczkowski3 , Joanna S. Kruszewska1, Przemysław Bernat4, Julia Pawłowska2 1 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland 2 Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland 3 High Throughput Sequencing Facility of UNC, Chapel Hill, NC, USA. 4 Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha Street 12/16, 90-237, Lodz, Poland Abstract We describe the genomes of six Mucoromycotina fungi representing distant saprotrophic lineages within the subphylum (i.e. Umbelopsidales and Mucorales). We selected two Umbelopsis isolates from soil (i.e. U. isabellina, U. vinacea), two soil-derived Mucor isolates (i.e. M. circinatus, M. plumbeus), and two Mucorales representatives with extended proteolytic activity (i.e. Thamnidium elegans and Mucor saturninus). We complement genome analyses with a description of their digestive capabilities, their cell wall carbohydrate composition, and total lipid profiles.
    [Show full text]