Danielbarrosortegatese2019.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Danielbarrosortegatese2019.Pdf Figure 1 Average biomass of Paenibacillus elgii strain AC13 cultures at 37°C expressing swarming or non-swarming behavior.Pró- CulturesReitoria were scraped Acadêmica from agar and weighted (n=147).......... 58 Escola de Saúde e Medicina Programa de Pós-Graduação Stricto Sensu em Ciências Genômicas e Biotecnologia Production of Polypeptin A analogues by Paenibacillus elgii strain AC13 and quorum sensing dependent bacterial processes Autor: Daniel Barros Ortega Orientadora: Cristine Chaves Barreto Brasília - DF 1 2019 Daniel Barros Ortega Production of Polypeptin A analogues by Paenibacillus elgii strain AC13 and quorum sensing dependent bacterial processes Tese apresentada ao Programa de Pós- graduação Stricto Sensu em Ciências Genômicas e Biotecnologia da Universidade Católica de Brasília como requisito parcial para obtenção do Título de Doutor em Ciências Genômicas e Biotecnologia Orientadora: Prof.ª Dr.ª Cristine Chaves Barreto Coordenadora: Prof.ª Dr.ª Maria Sueli Soares Felipe Brasília 2019 2 Para o Léo, João, Raissa, Nez e Neusa. Amo vocês. 3 AGRADECIMENTOS À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES, pelo financiamento prestado; À Universidade Católica de Brasília e aos professores, por acreditarem em novas Ideias e no desenvolvimento da Pesquisa; À professora Dra. Beatriz Simas Magalhães, por ter me apresentado ao Projeto; À professora Dra. Cristine Chaves Barreto, por, apesar de tantas divergências, conseguiu aparar arestas e me ajudou a produzir este documento; À coordenação do programa de pós-graduação da UCB, pela compreensão e apoio; À Universidade da Califórnia San Diego e aos membros do Laboratório do Professor Dorrestein, pelas palestras, disponibilização do espaço e equipamentos; Aos amigos desde a infância até agora e colegas de laboratório Tamires, Clarissa, Rosiane, Flávio, Michel, Marise, Thiago entre tantos que compartilharam momentos de planejamento, organização, frustrações, conquistas e também de bem estar e insights, dos mais coerentes aos mais absurdos! Fundamentais. À minha mãe, Neusa; irmã, Raissa; e à Nez, pelo Todo. Aos meus sobrinhos, por serem a luz que ilumina tanto espaço e tempo deste Todo. 4 “Awareness is the world's mystical experience.” Thus Spoke Zarathustra; F. Nietzsche 5 Resumo Quorum sensing (QS) são sofisticadas redes de comunicação baseadas em trocas metabólicas que influenciam processos bacterianos como a bioluminescência, reprodução, esporulação, formação de biofilme, expressão de virulência e produção de antimicrobianos. Peptídeos não ribossomais (NRP) utilizam aminoácidos não proteinogênicos como blocos de construção, aumentando o número de possíveis arcabouços quando comparados aos obtidos pelo processo de síntese ribossômica. Naturalmente produzida por Paenibacillus elgii, a família das Pelgipeptinas (PGP) é constituída por cinco NRP cíclicos e catiônicos compostos por nove aminoácidos e uma cadeia de ácido graxo. Após a linearização de NRP semelhantes às PGP, concentrações mais baixas foram suficientes para inibição do crescimento de Candida albicans patogênica, ampliando a polivalência deste grupo de moléculas. A cepa de P. elgii AC13 foi isolada de amostras de solo do Cerrado brasileiro. PGP produzidas por AC13 tiveram atividade contra Escherichia coli, Staphylococcus aureus e Klebsiella pneumoniae multirresistente. Isoformas lineares de PGP também foram encontradas em culturas de AC13 em caldo nutriente. Parâmetros de crescimento, quantificação de PGP e caracterização parcial de lipopeptídeos produzidos sugerem que a cepa AC13 é capaz de modular a produção PGP em função de variações de seu ambiente ou de sua população inicial. Associações por Redes Moleculares indicam que o íon de massa 1.101,7052 Da (PGP- B) relaciona-se ao gene leu B, responsável por codificar 3-isopropilmalato desidrogenase em P. dendritiformis C454, P. selenitireducens, P. yonginensis e P. amylolyticus. A enzima é parte da via biossintética da leucina e é responsável por catalisar a oxidação do 3- isopropilmalato. Analises semelhantes também sugerem que a enzima responsável por sintetizar O-acetil-L-homoserina em Lysinibacillus sp. cepa FJAT-14222 está relacionada ao íon 416.7368 Da, ambos encontrados em cultura de AC13 por LC-MS. Entre as vias de sinalização de QS, N-acil-homoserina lactonas são moléculas de sinalização para mais de 70 espécies diferentes de bactérias Gram-negativas. Como forma de se aumentar as estratégias no combate aos microrganismos multirresistentes, sugere-se a interferência nos sistemas de comunicação QS, que podem ser interrompidos pela redução da atividade ou bloqueio da síntese de proteínas receptoras de sinalização ou ainda por meio de moléculas sintéticas análogas aos compostos sinalizadores de QS. Contudo, uma melhor compreensão da interface entre a biologia de sistemas e técnicas avançadas de redes moleculares se faz necessária. 6 Palavras-chave: Paenibacillus; Pelgipeptinas; microbiologia de solos; quorum-sensing Abstract Quorum sensing (QS) are sophisticated communication networks based on metabolic exchanges that influence bacteria processes such as reproduction, sporulation, biofilm formation, virulence and antimicrobials expression. Non-ribosomal peptides (NRP) use non- proteinogenic amino acids as building blocks, which increase the number of possible templates when compared to standard ribosomal synthesis process. Naturally produced by Paenibacillus elgii, the NRP family of Pelgipeptins (PGP) consists of five cyclic and cationic lipopeptides comprising nine amino acids and a fatty acid chain. Linearization of NRP similar to PGPs have improved antifungal activity against pathogenic Candida albicans. Paenibacillus elgii strain AC13 was isolated from soil samples of the Brazilian Cerrado. PGPs produced by AC13 were active against Escherichia coli, Staphylococcus aureus and multidrug resistant Klebsiella pneumoniae. Strain AC13 also synthesizes linear counterparts or PGPs in nutrient broth. Growth parameters, PGPs quantification, and partial characterization of produced lipopeptides suggest that strain AC13 is able to modulate its lipopeptides production based on variations of its environment or initial population. Molecular networking analysis indicates that the precursor mass of 1,101.7052 Da (PGP-B) is connected to the gene leuB pathway, responsible to code 3-isopropylmalate dehydrogenase described for P. dendritiformis C454, P. selenitireducens, P. yonginensis and P. amylolyticus. The enzyme is part of leucine biosynthetic pathway and is responsible to catalyze the oxidation of 3-isopropylmalate. Molecular networking analysis also indicates that the enzyme responsible to synthesize O-acetyl-L-homoserine (gene metAA) expressed by Lysinibacillus sp. strain FJAT-14222 is connected to precursor mass 416.7368 Da. Among QS signaling pathways, N-acyl-homoserine lactones occur as signaling molecules for more than 70 different species of diderm bacteria. QS communication can be interrupted by reducing the activity of signaling receptor proteins, their synthesis or by synthetic molecules analogous to QS signaling compounds, increasing the strategies on fighting against multidrug resistant microorganisms. Notwithstanding, a better understanding of the overlap between system biology and advanced molecular network techniques is needed. Key-words: Paenibacillus; Pelgipeptin; soil microbiology; quorum-sensing. 7 List of Abbreviations QS – Quorum Sensing; NRP – Non ribosomal peptides; PGP – Pelgipeptin; AHL – Acyl-homoserine lactones; AIP – Auto-inducing peptides; RNA – Ribonucleic acid; DNA – Deoxyribonucleic acid; EPS – Extracellular polymeric substances; GMP – Guanosine 3’, 5’-monophosphate; NRPS – Nonribosomal Peptide Synthases; LC – Liquid Chromatography; MS – Mass Spectrometry; rRNA – ribosomal RNA; SDS – Sodium dodecyl sulfate; PGAP – Prokaryotic Genome Annotation Process Pipeline; NCBI – National Center for Biotechnology Information; PGAAP – Prokaryotic Genome Automatic Annotation Pipeline; ORF – Open reading frame; HMM – Hidden Markov model; CDS – Coding sequences; tRNA – transporter RNA; ANI – Average Nucleotide Identity; MALDI-TOF – Matrix assisted laser desorption ionization time of flight; RP-HPLC – Reversed-Phase High Performance Liquid Chromatography; UPLC – Ultra Performance Liquid Chromatography; SG – Schaeffer’s Glucose; ACN – Acetonitrile; MMP – Mineral Medium for Paenibacillus; NB – Nutrient Broth; MHB – Mueller-Hinton Broth; PMHB – Peptone enriched Mueller-Hinton broth; 8 OD – Optical density; SASPs – Small acid-soluble proteins; NPAAs – Non-proteinogenic amino acids; Dab – 2, 4-diaminobutyric acid; Val – Valine Ile – Isoleucine. Phe – Phenylalanine; Leu – Leucine; Ser – Serine; AFB – American Foulbrood disease; GNPS – Global Natural Products Social Molecular Networking; LB – Luria-Bertani; CFU – Colony forming units; RT – Retention time; MDR – Multidrug resistant; TFA – Trifluoroacetic acid; MIC – Minimal Inhibitory concentration; FIC – Fractional Inhibitory Concentration; FICI – Fractional Inhibitory Concentration Index; UV – Ultraviolet; MTT – 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide; TSA – Trypticase soy agar; ATCC – American Type Culture Collection; 9 List of Figures Introduction………………………………………………………………………………....................19 Figure 1: LuxIR bioluminescence expression system for Vibrio fischeri represented as quorum sensing mechanism model for diderm bacteria. Protein luxI is responsible to synthesizes auto-inducers (AHL). At high cell density, a critical threshold of auto-inducers triggers a
Recommended publications
  • Paenibacillaceae Cover
    The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ...........................................................................................................................
    [Show full text]
  • Comparative Fecal Metagenomics Unveils Unique Functional Capacity
    Lamendella et al. BMC Microbiology 2011, 11:103 http://www.biomedcentral.com/1471-2180/11/103 RESEARCHARTICLE Open Access Comparative fecal metagenomics unveils unique functional capacity of the swine gut Regina Lamendella1,4, Jorge W Santo Domingo2*, Shreya Ghosh1, John Martinson3 and Daniel B Oerther1,5 Abstract Background: Uncovering the taxonomic composition and functional capacity within the swine gut microbial consortia is of great importance to animal physiology and health as well as to food and water safety due to the presence of human pathogens in pig feces. Nonetheless, limited information on the functional diversity of the swine gut microbiome is available. Results: Analysis of 637, 722 pyrosequencing reads (130 megabases) generated from Yorkshire pig fecal DNA extracts was performed to help better understand the microbial diversity and largely unknown functional capacity of the swine gut microbiome. Swine fecal metagenomic sequences were annotated using both MG-RAST and JGI IMG/M-ER pipelines. Taxonomic analysis of metagenomic reads indicated that swine fecal microbiomes were dominated by Firmicutes and Bacteroidetes phyla. At a finer phylogenetic resolution, Prevotella spp. dominated the swine fecal metagenome, while some genes associated with Treponema and Anareovibrio species were found to be exclusively within the pig fecal metagenomic sequences analyzed. Functional analysis revealed that carbohydrate metabolism was the most abundant SEED subsystem, representing 13% of the swine metagenome. Genes associated with stress, virulence, cell wall and cell capsule were also abundant. Virulence factors associated with antibiotic resistance genes with highest sequence homology to genes in Bacteroidetes, Clostridia, and Methanosarcina were numerous within the gene families unique to the swine fecal metagenomes.
    [Show full text]
  • Mutually Facilitated Dispersal Between the Nonmotile Fungus Aspergillus Fumigatus and the Swarming Bacterium Paenibacillus Vortex
    Mutually facilitated dispersal between the nonmotile fungus Aspergillus fumigatus and the swarming bacterium Paenibacillus vortex Colin J. Inghama,b,c,1, Oren Kalismand, Alin Finkelshteind,e, and Eshel Ben-Jacobd,1 aLaboratory of Microbiology, Wageningen University, 6703 HB, Wageningen, The Netherlands; bJBZ Hospital, Department of Infection Control and Microbiology, 5223 GZ, Den Bosch, The Netherlands; cMicroDish BV, 3584 CH, Utrecht, The Netherlands; dThe Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel; and eThe Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel Edited* by Nigel D. Goldenfeld, University of Illinois at Urbana–Champaign, Urbana, IL, and approved October 19, 2011 (received for review February 25, 2011) In the heterogeneous environment surrounding plant roots (the bials, including putative antifungals. P. vortex is known to limit the rhizosphere), microorganisms both compete and cooperate. Here, growth of Verticillium dahliae, a fungal pathogen of plants (8). we show that two very different inhabitants of the rhizosphere, Members of the genus Paenibacillus have a variety of interactions the nonmotile fungus Aspergillus fumigatus and the swarming with fungi, both antagonistic (9, 10) and cooperative; an example bacterium Paenibacillus vortex, can facilitate each other’s dis- of the latter is stimulation of the growth of the fungus Glomus persal. A. fumigatus conidia (nonmotile asexual fungal spores) intraradices by P. validus (11). can be transported by P. vortex swarms over distances of at least Aspergillus fumigatus is another versatile inhabitant of the −1 30 cm and at rates of up to 10.8 mm h . Moreover, conidia can be rhizosphere and many other environments; its 29.4-Mb genome rescued and transported by P.
    [Show full text]
  • Isolati on and Bacill D Char Lus Spe Acteriz Ecies I Zation N Lake of Ant E
    Vol. 9(14), pp. 1037-1043, 8 April, 2015 DOI: 10.5897/AJMR2015.7441 Article Number: FF2AA0F52318 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2015 Author(s) retain the copyrighht of this article http://www.academicjournals.org/AJMR Full Length Research Paper Isolation and characterization of antibiotic producing Bacillus species in Lake Bogoria, Kenya Tom Kintet Torome1*, Lexa Gomezgani Matasyoh2, George Orinda1 and Francis Gakuya3 1Biochemistry and Biotechnology Department, Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya. 2Biological Science Department, University of Eldoret, P. O. Box 1125-30100, Eldoret, Kenya. 3Kenya Wildlife Service, P. O. Box 402411-00100, Nairobi, Kenya. Received 20 February, 2015; Accepted 25 March, 2015 Bacilli are a large homogeneous group of bacteria that survive in a wide range of environmental conditions. Formation of resistant spores allows them to survive in high temperature zones where other organisms cannot. Eighty samples were collected and inoculated directly into nutrient broth. Of the eighty samples collected, thirty three exhibited growth. Nine of these were Gram positive rods, twenty were Gram negative rods, and four were Gram positive cocci. Only cultures that yielded Gram positive rods were processed further. Antimicrobial profiling was performed using standard organisms: Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 25922, E. coli 35218 and Pseuddomonas aeruginosa ATCC 27853. No inhibition was noted against S. aureus ATCC 29213 and E. coli 35218. Five of the nine Gram positive isolates revealed inhibitory properties against the standard organisms. Phylogenetic analysis of amplified 16S rDNA gene conffirmed that aall the six antagonistic isolates formed close phylogenetic clusters with known members of Bacillus species with a 88-99% sequence identity.
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    Published Online: 6 August, 2020 | Supp Info: http://doi.org/10.26508/lsa.202000847 Downloaded from life-science-alliance.org on 1 October, 2021 Research Article Peptide-based quorum sensing systems in Paenibacillus polymyxa Maya Voichek1 , Sandra Maaß2 , Tobias Kroniger2,Dorte¨ Becher2, Rotem Sorek1 Paenibacillus polymyxa is an agriculturally important plant Many of the characteristic features associated with the above- growth–promoting rhizobacterium. Many Paenibacillus species mentioned behaviors—production and secretion of antimicrobials, are known to be engaged in complex bacteria–bacteria and expression of virulence factors, and forming complex colony bacteria–host interactions, which in other species were shown to structures—often require some form of intercellular communica- necessitate quorum sensing communication. However, to date, no tion such as quorum sensing (12). Bacteria use quorum sensing to quorum sensing systems have been described in Paenibacillus. coordinate gene expression patterns on a population level. For Here, we show that the type strain P. polymyxa ATCC 842 encodes example, the quorum sensing network of Pseudomonas aeruginosa at least 16 peptide-based communication systems. Each of these controls the production of secreted toxins as well as the production systems is comprised of a pro-peptide that is secreted to the of rhamnolipids, which are important for its biofilm architecture (13, growth medium and processed to generate a mature short peptide. 14). Quorum sensing regulates the production of bacteriocin an- Each peptide has a cognate intracellular receptor of the RRNPP timicrobials in Lactobacilli (15) and Streptococci (16, 17), and in P. polymyxa family, and we show that external addition of com- Bacillus subtilis, quorum sensing systems play a major role in munication peptides leads to reprogramming of the transcriptional sporulation, biofilm formation, and genetic competence (18).
    [Show full text]
  • Mathematical Studies of Pattern Formation and Cooperative Organization in Bacterial Colonies
    Mathematical Studies of Pattern Formation and Cooperative Organization in Bacterial Colonies Thesis Submitted for the Degree ”Doctor of Philosophy” by Inon Cohen Submitted to the Senate of Tel-Aviv University 2006 The research work for this thesis has been carried out at Tel-Aviv University under the supervision of Professor Zeev Schuss and Professor Eshel Ben-Jacob This work was carried out under the supervision of Professor Zeev Schuss and Professor Eshel Ben-Jacob. Acknowledgments This work is dedicated to the memory of my mother, Ruthy Cohen, how did not live to see its completion. Foremost, I would like to thank my supervisor and mentor, Eshel Ben-Jacob, for his guidance, patience and support. I have benefited immensely from his profound physical insight, and his inexhaustible curiosity. I am especially grateful for his ability to direct me to interesting problems and their not less interesting solutions. I would like to thank my supervisor Zeev Schuss for his patience and instructive guid- ance in advanced mathematics. His vast knowledge was of great help for me. This dissertation was submitted in a delay of several years due to personal reasons. I would like to apologize to my supervisors for this ineptness, and thank them for not giving up on me. I had the fortune to learn from Herbert Levine during our collaboration. I am thankful to David Gutnick for aiding me in the world of micro biology. His vast biological knowledge and experience was of great help for me. Most importantly, I thank my wife Galit for her ceaseless encouragement and support.
    [Show full text]
  • 1471-2180-9-124.Pdf
    Citation for published version: Jamieson, WD, Pehl, MJ, Gregory, GA & Orwin, PM 2009, 'Coordinated surface activities in Variovorax paradoxus EPS', BMC Microbiology, vol. 9, no. 1, pp. 124. https://doi.org/10.1186/1471-2180-9-124 DOI: 10.1186/1471-2180-9-124 Publication date: 2009 Link to publication Publisher Rights CC BY © 2009 Jamieson et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 BMC Microbiology BioMed Central Research article Open Access Coordinated surface activities in Variovorax paradoxus EPS W David Jamieson1, Michael J Pehl2, Glenn A Gregory2,3 and Paul M Orwin*2 Address: 1Department of Biology and Biochemistry, University of Bath, Bath, BA2
    [Show full text]
  • Paenibacillus Sp.Y412MC10
    Standards in Genomic Sciences (2012) 6:366-385 DOI:10.4056/sigs.2605792 Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park David A. Mead1,2, Susan Lucas3, Alex Copeland3, Alla Lapidus3, Jan-Feng Cheng3, David C. Bruce3,4, Lynne A. Goodwin3,4, Sam Pitluck2, Olga Chertkov3, Xiaojing Zhang3,4, John C. Detter3,4, Cliff S. Han3,4, Roxanne Tapia3,4, Miriam Land3,5, Loren J. Hauser3,5, Yun-juan Chang3, Nikos C. Kyrpides3, Natalia N. Ivanova3, Galina Ovchinnikova3, Tanja Woyke3, Catherine Brumm3, Rebecca Hochstein1, Thomas Schoenfeld1, and Phillip Brumm2* 1 Lucigen Corporation, Middleton, Wisconsin 2DOE Great Lakes Bioenergy Research Center, University of Wisconsin, Madison, Wisconsin 3DOE Joint Genome Institute, Walnut Creek, California 4Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico 5Oak Ridge National Laboratory, Oak Ridge, Tennessee *Corresponding author: Phillip Brumm ([email protected]) Keywords: Geobacillus sp. Y412MC10, Paenibacillus sp. Y412MC10, Obsidian Hot Spring Paenibacillus sp.Y412MC10 was one of a number of organisms isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA under permit from the National Park Ser- vice. The isolate was initially classified as a Geobacillus sp. Y412MC10 based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species, and the organism was most closely relat- ed to Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was se- quenced, assembled, and annotated by the DOE Joint Genome Institute.
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    Published Online: 6 August, 2020 | Supp Info: http://doi.org/10.26508/lsa.202000847 Downloaded from life-science-alliance.org on 7 August, 2020 Research Article Peptide-based quorum sensing systems in Paenibacillus polymyxa Maya Voichek1 , Sandra Maaß2 , Tobias Kroniger2,Dorte¨ Becher2, Rotem Sorek1 Paenibacillus polymyxa is an agriculturally important plant Many of the characteristic features associated with the above- growth–promoting rhizobacterium. Many Paenibacillus species mentioned behaviors—production and secretion of antimicrobials, are known to be engaged in complex bacteria–bacteria and expression of virulence factors, and forming complex colony bacteria–host interactions, which in other species were shown to structures—often require some form of intercellular communica- necessitate quorum sensing communication. However, to date, no tion such as quorum sensing (12). Bacteria use quorum sensing to quorum sensing systems have been described in Paenibacillus. coordinate gene expression patterns on a population level. For Here, we show that the type strain P. polymyxa ATCC 842 encodes example, the quorum sensing network of Pseudomonas aeruginosa at least 16 peptide-based communication systems. Each of these controls the production of secreted toxins as well as the production systems is comprised of a pro-peptide that is secreted to the of rhamnolipids, which are important for its biofilm architecture (13, growth medium and processed to generate a mature short peptide. 14). Quorum sensing regulates the production of bacteriocin an- Each peptide has a cognate intracellular receptor of the RRNPP timicrobials in Lactobacilli (15) and Streptococci (16, 17), and in P. polymyxa family, and we show that external addition of com- Bacillus subtilis, quorum sensing systems play a major role in munication peptides leads to reprogramming of the transcriptional sporulation, biofilm formation, and genetic competence (18).
    [Show full text]
  • Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa
    bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Peptide-based quorum sensing systems in Paenibacillus polymyxa 2 3 Maya Voichek1, Sandra Maaß2, Tobias Kroniger2, Dörte Becher2, Rotem Sorek1,# 4 5 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel 6 2 Institute of Microbiology, Department of Microbial Proteomics; Center for Functional 7 Genomics of Microbes, University of Greifswald, Germany. 8 # Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 9 Abstract 10 Paenibacillus polymyxa is an agriculturally important plant growth-promoting 11 rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria- 12 bacteria and bacteria-host interactions, which in other species were shown to necessitate 13 quorum sensing communication. However, to date no quorum sensing systems have been 14 described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 15 encodes at least 16 peptide-based communication systems. Each of these systems is 16 comprised of a pro-peptide that is secreted to the growth medium and processed to generate 17 a mature short peptide.
    [Show full text]
  • High-Quality Genome Sequence and Description of Paenibacillus Dakarensis Sp
    NEW MICROBES IN HUMANS High-quality genome sequence and description of Paenibacillus dakarensis sp. nov. C. I. Lo1, S. A. Sankar1, B. Fall2, B. Sambe-Ba2, O. Mediannikov1,3, C. Robert1, N. Faye4, B. Wade2, D. Raoult1,3,5, P.-E. Fournier1 and F. Fenollar1,3 1) Aix-Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, Inserm U1095, Faculté de médecine, Marseille, France, 2) Hôpital Principal de Dakar, 3) Campus International UCAD-IRD, 4) Université Cheikh Anta Diop de Dakar, Laboratoire de Parasitologie générale, Dakar, Senegal and 5) Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia Abstract Strain FF9T was isolated in Dakar (Senegal) from a blood-culture taken from a 16-month-old child. MALDI-TOF analysis did not allow for identification. After sequencing, strain FF9T exhibited 98.18% similarity with the 16SrRNA sequence of Paenibacillus uliginis. A polyphasic study of phenotypic and genomic analyses showed that strain FF9T is Gram variable, catalase-positive, and presents a genome of 4,569,428 bp (one chromosome but no plasmid) with 4,427genes (4,352 protein-coding and 75 RNA genes (including 3 rRNA operons). The G+C content is 45.7%. On the basis of these genomic and phenotypic data analyses, we propose the creation of Paenibacillus dakarensis strain FF9T. New Microbes and New Infections © 2016 The Authors. Published by Elsevier Ltd on behalf of European Society of Clinical Microbiology and Infectious Diseases. Keywords: Culturomics, genome, Paenibacillus dakarensis, taxono-genomics Original Submission: 15 October 2015; Revised Submission: 18 December 2015; Accepted: 14 January 2016 Article published online: 22 January 2016 Currently this genus includes 165 validly published species and Corresponding author: F.
    [Show full text]
  • 133 What Does “NO-Synthase” Stand for ? Jerome Santolini1 1Institute For
    [Frontiers In Bioscience, Landmark, 24, 133-171, Jan 1, 2019] What does “NO-Synthase” stand for ? Jerome Santolini1 1Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Universite Paris-Saclay, F-91198, Gif-sur-Yvette cedex, France TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Distribution of NOS 3.1.Mammalian NOSs as exclusive NO-synthase models 3.2. Emergence of a new family of proteins 3.3. Prokaryotes, Eubacteria and Archae 3.4. Eukaryotes: fungi and plants 3.5. Metazoan 4. A new and heterogeneous family of proteines 4.1. The impasse of standard phylogenetic analysis 4.2. A singular versatile enzyme 4.2.1. NOS function 4.2.2. Instability of NOS activity and function 4.2.3. Overlaps of NOS activity 4.2.4. Multiplicity of NOS 4.2.5. What does NOS stand for? 4.3. The necessity of an original approach 5. Diversity of NOS structures 5.1. A variable assembly of multiple modules 5.2. Existence of other types of NOSs 5.3. Types of NOSs are not uniform within a simple phylogenetic group 5.4. Strong disparities in the structure of oxygenase domains 5.4.1. Basal metazoans 5.4.2. Plants 5.4.3. Cyanobacteria 6. Discussion: Diversity of functions 6.1. A Name is not a function 6.2. A Structure is not a function 6.2.1. A built-in versatile catalysis 6.2.2. A highly-sensitive chemical system 6.2.3. Electron transfer (ET) as a major NOS fingerprint 6.3. An Activity is not a function 6.3.1.
    [Show full text]