Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa

Total Page:16

File Type:pdf, Size:1020Kb

Peptide-Based Quorum Sensing Systems in Paenibacillus Polymyxa bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Peptide-based quorum sensing systems in Paenibacillus polymyxa 2 3 Maya Voichek1, Sandra Maaß2, Tobias Kroniger2, Dörte Becher2, Rotem Sorek1,# 4 5 1 Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel 6 2 Institute of Microbiology, Department of Microbial Proteomics; Center for Functional 7 Genomics of Microbes, University of Greifswald, Germany. 8 # Correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 9 Abstract 10 Paenibacillus polymyxa is an agriculturally important plant growth-promoting 11 rhizobacterium. Many Paenibacillus species are known to be engaged in complex bacteria- 12 bacteria and bacteria-host interactions, which in other species were shown to necessitate 13 quorum sensing communication. However, to date no quorum sensing systems have been 14 described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 15 encodes at least 16 peptide-based communication systems. Each of these systems is 16 comprised of a pro-peptide that is secreted to the growth medium and processed to generate 17 a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP 18 family, and we show that external addition of P. polymyxa communication peptides leads 19 to reprogramming of the transcriptional response. We found that these quorum sensing 20 systems are conserved across hundreds of species belonging to the Paenibacillaceae 21 family, with some species encoding more than 25 different peptide-receptor pairs, 22 representing a record number of quorum sensing systems encoded in a single genome. bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 23 Introduction 24 Paenibacillaceae is a diverse family of bacteria, many of which are important in 25 agricultural and clinical settings. These include Paenibacillus larvae, a pathogen causing 26 the lethal American Foulbrood disease in honeybees1, as well as P. dendritiformis and P. 27 vortex, which are used as models for complex colony pattern formation2,3. Arguably the 28 best studied member of Paenibacillaceae is P. polymyxa, known for its plant-growth 29 promoting traits4–6. P. polymyxa produces a plethora of beneficial compounds, including 30 the antibiotic polymyxin7 and the phytohormone indole-3-acetic acid (IAA)8, and was 31 shown to protect multiple plant species against pathogens (reviewed in 9). Due to its 32 beneficial traits, P. polymyxa is commercially used as a soil supplement to improve crop 33 growth10,11. 34 Many of the characteristic features associated with the above-mentioned behaviors – 35 production and secretion of antimicrobials, expression of virulence factors, and forming 36 complex colony structures – often require some form of inter-cellular communication such 37 as quorum sensing12. Bacteria use quorum sensing to coordinate gene expression patterns 38 on a population level. For example, the quorum sensing network of Pseudomonas 39 aeruginosa controls the production of secreted toxins as well as the production of 40 rhamnolipids, which are important for its biofilm architecture13,14. Quorum sensing 41 regulates the production of bacteriocin antimicrobials in Lactobacilli15 and 42 Streptococci16,17; and in Bacillus subtilis, quorum sensing systems play a major role in 43 sporulation, biofilm formation and genetic competence18. Although Paenibacillus bacteria 44 are engaged in similar behaviors, no quorum sensing was reported in any Paenibacillus 45 species to date. 46 Gram-positive bacteria frequently use short peptides, termed autoinducer peptides, as their 47 quorum sensing agents12. A widespread group of such peptide-based communication 48 systems involves intracellular peptide sensors (receptors) of the RRNPP family, together 49 with their cognate peptides19. Peptides of these quorum sensing systems are secreted from 50 the cell as pro-peptides and are further processed by extracellular proteases20 to produce a 51 mature short peptide, usually 5-10 amino acids (aa) long19,21. The mature peptides are re- 52 internalized into the cells via the oligopeptide permease (OPP) transporter22,23, and bind bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 53 their intracellular receptors24. These receptors act either as transcription factors or as 54 phosphatases, and peptide binding activates or represses their function eventually leading 55 to modulation of the bacterial transcriptional program. For example, in B. subtilis the Rap 56 receptors function as phosphatases that regulate the major transcription factor Spo0A; upon 57 binding to their cognate Phr peptides, the phosphatase activity of Rap receptors is inhibited, 58 leading to activation of Spo0A that alters the transcriptional program25,26. In B. 59 thuringiensis the PlcR receptor is a transcription factor that becomes activated when bound 60 to its cognate PapR peptide, leading to expression of virulence factors that facilitate 61 infection of its insect larval host27. Such peptide-based communication was recently shown 62 also to control the lysis-lysogeny decision of phages infecting many species of Bacillus28,29. 63 Here we report the identification of a large group of peptide-based quorum sensing systems 64 in P. polymyxa. We found that pro-peptides of these systems are secreted and further 65 processed, and that the mature peptides modulate the transcriptional program of P. 66 polymyxa. We further show that these quorum sensing systems are conserved throughout 67 the Paenibacillaceae family of bacteria, with some bacteria encoding over 25 different 68 peptide-receptor pairs in a single genome. 69 Results 70 Identification of RRNPP-like peptide-receptor pairs in P. polymyxa ATCC 842 71 All members of the RRNPP family of intracellular peptide receptors contain a C-terminal 72 tetratricopeptide repeat (TPR) or TPR-like domain, which forms the peptide-binding 73 pocket in the receptor protein19,30. To search for possible such quorum sensing systems in 74 P. polymyxa we first scanned all annotated protein-coding genes of the type strain P. 75 polymyxa ATCC 84231 for TPR domains using TPRpred32 (Methods). As TPR domains are 76 found in diverse protein types, we manually analyzed the genomic vicinity of the identified 77 TPR-containing proteins to search for a peptide-encoding gene characteristic of quorum 78 sensing systems. We found two TPR domain genes that were immediately followed by a 79 short open reading frame with a predicted N-terminal hydrophobic helix, typical of a signal 80 peptide that targets the pro-peptide for secretion33 (Fig. 1a). Two-gene operons that encode bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 81 the receptor followed by its cognate peptide are a hallmark of many known members of 82 the RRNPP family of quorum sensing systems19. 83 We then used BLAST to search for additional homologs of the two putative TPR-domain 84 receptors in the P. polymyxa ATCC 842 genome (Methods). This search revealed 14 85 additional homologous genes that were not initially recognized by TPRpred, in most cases 86 because their C-terminal TPR domains were divergent and did not pass the default 87 threshold of the TPRpred software. We found that all but three of the homologs had a short 88 ORF (32-50 aa) encoded immediately downstream to them. We denote these putative 89 communication systems as Alo (Autoinducer peptide Locus), with predicted Alo receptor 90 genes designated aloR and the cognate peptide-encoded gene aloP. We number Alo loci in 91 the P. polymyxa ATCC 842 genome from alo1 to alo16 (Fig. 1b). 92 93 Fig. 1: Alo systems identified in P. polymyxa. (a) Schematic representation of aloR-aloP operon 94 organization and putative peptide processing. HTH, helix-turn-helix; TPR, tetratricopeptide repeat. (b) Alo 95 loci identified in P. polymyxa ATCC 842. For the aloR receptor genes, the locus tag in the IMG database34 is 96 specified. Blue sequence in AloP peptides represents the predicted N-terminal signal sequence for 97 secretion, as predicted by Phobius35 (Methods). Asterisks (*) mark cases in which the aloP gene was absent 98 or found as a degenerate sequence. bioRxiv preprint doi: https://doi.org/10.1101/767517; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 99 Alo systems are ubiquitous in P. polymyxa strains 100 Examining the genomes of 13 additional P.
Recommended publications
  • Identification of Contaminating Bacteria When Attempting to Isolate Mycobacterium Avium Subsp
    Arch Med Vet 47, 97-100 (2015) COMMUNICATION Identification of contaminating bacteria when attempting to isolate Mycobacterium avium subsp. paratuberculosis (MAP) from bovine faecal and tissue samples using the BACTEC MGIT 960 system# Identificación de bacterias contaminantes al aislar Mycobacterium avium subsp. paratuberculosis (MAP) desde muestras de material fecal y tejido de bovinos, utilizando el sistema de cultivo BACTEC-MGIT 960 P Steuera, b, J de Waardc, MT Collinsd, EP Troncosoa, OA Martíneza, C Tejedaa, MA Salgadoa* aBiochemistry and Microbiology Department, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile. bGraduate School, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile. cLaboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela. dDeptartment of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, USA. RESUMEN El diagnóstico de la infección por Mycobacterium avium subsp. paratuberculosis (MAP) al utilizar un sistema de cultivo líquido resulta en una mayor sensibilidad, rapidez y automatización. Sin embargo, tiene como desventajas una mayor tasa de contaminación en relación con los sistemas convencionales y también es menos específico. El presente estudio identificó algunas bacterias contaminantes del sistema de cultivo BACTEC-MGIT 960 al procesar muestras clínicas de ganado bovino del sur de Chile. No se detectaron micobacterias en las muestras falsas positivas a MAP mediante la técnica Reacción en Cadena de la Polimerasa-Análisis con Enzimas de Restricción (PRA)-hsp65. Por otra parte, el Análisis de los Espaciadores Intergénicos Ribosomales (RISA) seguido de un análisis de secuenciación, reveló la presencia de Paenibacillus sp., Enterobacterias y Pseudomonas aeruginosa como contaminantes comunes. Los protocolos de eliminación de contaminantes deberían considerar esta información para mejorar los resultados diagnósticos de los sistemas de cultivo líquido.
    [Show full text]
  • Product Sheet Info
    Product Information Sheet for NR-2490 Paenibacillus macerans, Strain NRS 888 Citation: Acknowledgment for publications should read “The following reagent was obtained through the NIH Biodefense and Catalog No. NR-2490 Emerging Infections Research Resources Repository, NIAID, ® (Derived from ATCC 8244™) NIH: Paenibacillus macerans, Strain NRS 888, NR-2490.” For research use only. Not for human use. Biosafety Level: 2 Appropriate safety procedures should always be used with this material. Laboratory safety is discussed in the following Contributor: ® publication: U.S. Department of Health and Human Services, ATCC Public Health Service, Centers for Disease Control and Prevention, and National Institutes of Health. Biosafety in Product Description: Microbiological and Biomedical Laboratories. 5th ed. Bacteria Classification: Paenibacillaceae, Paenibacillus Washington, DC: U.S. Government Printing Office, 2007; see Species: Paenibacillus macerans (formerly Bacillus www.cdc.gov/od/ohs/biosfty/bmbl5/bmbl5toc.htm. macerans)1 Type Strain: NRS 888 (NCTC 6355; NCIB 9368) Disclaimers: Comments: Paenibacillus macerans, strain NRS 888 was ® 2 You are authorized to use this product for research use only. deposited at ATCC in 1961 by Dr. N. R. Smith. It is not intended for human use. Paenibacillus macerans are Gram-positive, dinitrogen-fixing, Use of this product is subject to the terms and conditions of spore-forming rods belonging to a class of bacilli of the the BEI Resources Material Transfer Agreement (MTA). The phylum Firmicutes. These bacteria have been isolated from MTA is available on our Web site at www.beiresources.org. a variety of sources including soil, water, plants, food, diseased insect larvae, and clinical specimens. While BEI Resources uses reasonable efforts to include accurate and up-to-date information on this product sheet, Material Provided: ® neither ATCC nor the U.S.
    [Show full text]
  • Laboratory and Field Performance of Some Soil Bacteria Used As Seed Treatments on Meloidogyne Incognita in Chickpea
    08 Khan_143 4-01-2013 17:33 Pagina 143 Nematol. medit. (2012), 40: 143-151 143 LABORATORY AND FIELD PERFORMANCE OF SOME SOIL BACTERIA USED AS SEED TREATMENTS ON MELOIDOGYNE INCOGNITA IN CHICKPEA M.R. Khan*, M.M. Khan, M.A. Anwer and Z. Haque Department of Plant Protection, Aligarh Muslim University, 202002, India Received: 26 May 2012; Accepted: 27 September 2012. Summary. Experiments were conducted under in vitro and field conditions to assess the efficacy of the soil bacteria Bacillus sub- tilis, Pseudomonas fluorescens, P. stutzeri and Paenibacillus polymyxa for controlling the root knot nematode, Meloidogyne incogni- ta, in chickpea, Cicer arietinum, in India. The bacterial strains tested solubilized phosphorous under in vitro and soil conditions and produced indole acetic acid, ammonia and hydrogen cyanide in vitro. Both pure culture and culture filtrates of the bacteria reduced egg hatching and increased juvenile mortality of the nematode. Under field conditions, seed treatment (at 5 ml/kg seed) with cultures containing 1012 colony forming units/ml of P. fluorescens and P. stutzerisignificantly increased yield and root nodula- tion of chickpea. Inoculation with 2000 juveniles of M. incognita/spot (plant) caused severe root galling and decreased the yield of chickpea by 24%. Treatment with P. fluorescens suppressed gall formation, and treatment with P. fluorescensor B. subtilis sup- pressed reproduction and soil populations of M. incognita. However, the suppressive effects of the two bacteria on the nematode were less than that of fenamiphos. In nematodes infested plots, only treatments with P. fluorescens increased the yield (14%) com- pared to fenamiphos, being 31% above the untreated nematode control.
    [Show full text]
  • Paenibacillus Polymyxa: Antibiotics, Hydrolytic Enzymes and Hazard Assessment
    002_OfferedReview_419 13-11-2008 14:35 Pagina 419 Journal of Plant Pathology (2008), 90 (3), 419-430 Edizioni ETS Pisa, 2008 419 OFFERED REVIEW PAENIBACILLUS POLYMYXA: ANTIBIOTICS, HYDROLYTIC ENZYMES AND HAZARD ASSESSMENT W. Raza, W. Yang and Q-R. Shen 1 College of Resource and Environmental Sciences, Nanjing Agriculture University, Nanjing, 210095, Jiangsu Province, P.R. China SUMMARY pressing several plant diseases and promoting plant growth (Benedict and Langlykke, 1947; Ryu and Park, Certain Paenibacillus polymyxa strains that associate 1997). These strains have been isolated from the rhizos- with many plant species have been used effectively in phere of a variety of crops like wheat (Triticum aes- the control of plant pathogenic fungi and bacteria. In tivum), barley (Hordeum gramineae) (Lindberg and this article we review the possible mechanism of action Granhall, 1984), white clover (Trifolium repens), peren- by which P. polymyxa promotes plant growth and sup- nial ryegrass (Lolium perenne), crested wheatgrass presses some plant diseases. Furthermore we present an (Agropyron cristatum) (Holl et al., 1988), lodgepole pine updated summary of antibiotics, autolysis, hydrolytic (Pinus contorta latifolia) (Holl and Chanway, 1992), and autolytic enzymes and levanase produced by this Douglas fir (Pseudotsuga menziesii) (Shishido et al., bacterium. Some hazards and mild pathogenic effects 1996), green bean (Phaseolus vulgaris) (Petersen et al., are also reported, but these appear to be strain-specific 1996) and garlic (Allium sativum ) (Kajimura and Kane- and negligible. The association between plants and P. da, 1996). P. polymyxa has been successfully used to con- polymyxa seems to be specific and to involve co-adapta- trol Botrytis cinerea, the causal agent of grey mould, in tion processes.
    [Show full text]
  • Bacterial Extracellular Polymeric Substances
    A Seminar Paper on Bacterial Extracellular Polymeric Substances: Characteristics and Bioremoval of Heavy Metals Course Title: Seminar Course Code: ENS 598 Term: Summer, 2020 Submitted To: Course Instructors Major Professor Dr. A. K. M. Aminul Islam Dr. Md. Manjurul Haque Professor Professor Department of Environmental Dr. Md. Mizanur Rahman Science Professor BSMRAU, Gazipur Dr. Dinesh Chandra Shaha Associate Professor Dr. Md. Sanaullah Biswas Associate Professor BSMRAU, Gazipur Submitted By: Md. Mohiminul Haque Mithun Reg. No. 15-05-3509 MS Student Term: Summer, 2020 Department of Environmental Science BANGABANDHU SHEIKH MUJIBUR RAHMAN AGRICULTURAL UNIVERSITY GAZIPUR-1706 1 ABSTRACT Extracellular polymeric substances (EPS) of microbial origin are a fancy mixture of biopolymers having polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. EPS could be loosely attached to the cell surface or bacteria may be embedded in EPS. Regulated by the organic and inorganic constituents of the microenvironment compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities. EPS function mainly works as cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. Additionaly exopolymers fuction biosorbing agents by accumulating nutrients from the encircling environment and also play an important role in biosorption of heavy metals. EPS produced by Bacillus sp. reported for the removal of copper, lead and zinc from different solutions. Some other EPS produced bacterial strain like Pseudomonas sp.
    [Show full text]
  • Application of a Bacterial Extracellular Polymeric Substance in Heavy Metal Adsorption in a Co-Contaminated Aqueous System
    Brazilian Journal of Microbiology (2008) 39:780-786 ISSN 1517-8382 APPLICATION OF A BACTERIAL EXTRACELLULAR POLYMERIC SUBSTANCE IN HEAVY METAL ADSORPTION IN A CO-CONTAMINATED AQUEOUS SYSTEM Paula Salles de Oliveira Martins*; Narcisa Furtado de Almeida; Selma Gomes Ferreira Leite Departamento de Engenharia Bioquímica, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil Submitted: November 30, 2007; Returned to authors for corrections: March 18, 2008; Approved: November 02, 2008. ABSTRACT The application of a bacterial extracellular polymeric substance (EPS) in the bioremediation of heavy metals (Cd, Zn and Cu) by a microbial consortium in a hydrocarbon co-contaminated aqueous system was studied. At the low concentrations used in this work (1.00 ppm of each metal), it was not observed an inhibitory effect on the cellular growing. In the other hand, the application of the EPS lead to a lower concentration of the free heavy metals in solution, once a great part of them is adsorbed in the polymeric matrix (87.12% of Cd; 19.82% of Zn; and 37.64% of Cu), when compared to what is adsorbed or internalized by biomass (5.35% of Cd; 47.35% of Zn; and 24.93% of Cu). It was noted an increase of 24% in the consumption of ethylbenzene, among the gasoline components that were quantified, in the small interval of time evaluated (30 hours). Our results suggest that, if the experiments were conducted in a larger interval of time, it would possibly be noted a higher effect in the degradation of gasoline compounds. Still, considering the low concentrations that were evaluated, it is possible that a real system could be bioremediated by natural attenuation process, demonstrated by the low effect of those levels of contaminants and co-contaminants over the naturally present microbial consortium.
    [Show full text]
  • Biochemical Characterization and 16S Rdna Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Available online at www.sciencedirect.com ScienceDirect IERI Procedia 5 ( 2013 ) 258 – 264 2013 International Conference on Agricultural and Natural Resources Engineering Biochemical Characterization and 16S rDNA Sequencing of Lipolytic Thermophiles from Selayang Hot Spring, Malaysia a a a a M.J., Norashirene , H., Umi Sarah , M.H, Siti Khairiyah and S., Nurdiana aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia. Abstract Thermophiles are well known as organisms that can withstand extreme temperature. Thermoenzymes from thermophiles have numerous potential for biotechnological applications due to their integral stability to tolerate extreme pH and elevated temperature. Because of the industrial importance of lipases, there is ongoing interest in the isolation of new bacterial strain producing lipases. Six isolates of lipases producing thermophiles namely K7S1T53D5, K7S1T53D6, K7S1T53D11, K7S1T53D12, K7S2T51D14 and K7S2T51D19 were isolated from the Selayang Hot Spring, Malaysia. The sampling site is neutral in pH with a highest recorded temperature of 53°C. For the screening and isolation of lipolytic thermopiles, selective medium containing Tween 80 was used. Thermostability and the ability to degrade the substrate even at higher temperature was proved and determined by incubation of the positive isolates at temperature 53°C. Colonies with circular borders, convex in elevation with an entire margin and opaque were obtained. 16S rDNA gene amplification and sequence analysis were done for bacterial identification. The isolate of K7S1T53D6 was derived of genus Bacillus that is the spore forming type, rod shaped, aerobic, with the ability to degrade lipid.
    [Show full text]
  • Paenibacillus Polymyxa
    Liu et al. BMC Microbiology (2021) 21:70 https://doi.org/10.1186/s12866-021-02132-2 RESEARCH ARTICLE Open Access Interactional mechanisms of Paenibacillus polymyxa SC2 and pepper (Capsicum annuum L.) suggested by transcriptomics Hu Liu, Yufei Li, Ke Ge, Binghai Du, Kai Liu, Chengqiang Wang* and Yanqin Ding* Abstract Background: Paenibacillus polymyxa SC2, a bacterium isolated from the rhizosphere soil of pepper (Capsicum annuum L.), promotes growth and biocontrol of pepper. However, the mechanisms of interaction between P. polymyxa SC2 and pepper have not yet been elucidated. This study aimed to investigate the interactional relationship of P. polymyxa SC2 and pepper using transcriptomics. Results: P. polymyxa SC2 promotes growth of pepper stems and leaves in pot experiments in the greenhouse. Under interaction conditions, peppers stimulate the expression of genes related to quorum sensing, chemotaxis, and biofilm formation in P. polymyxa SC2. Peppers induced the expression of polymyxin and fusaricidin biosynthesis genes in P. polymyxa SC2, and these genes were up-regulated 2.93- to 6.13-fold and 2.77- to 7.88-fold, respectively. Under the stimulation of medium which has been used to culture pepper, the bacteriostatic diameter of P. polymyxa SC2 against Xanthomonas citri increased significantly. Concurrently, under the stimulation of P. polymyxa SC2, expression of transcription factor genes WRKY2 and WRKY40 in pepper was up-regulated 1.17-fold and 3.5-fold, respectively. Conclusions: Through the interaction with pepper, the ability of P. polymyxa SC2 to inhibit pathogens was enhanced. P. polymyxa SC2 also induces systemic resistance in pepper by stimulating expression of corresponding transcription regulators.
    [Show full text]
  • Paenibacillus Polymyxa Initiates Biocontrol Against Crown Rot Disease W.M
    Journal of Applied Microbiology ISSN 1364-5072 ORIGINAL ARTICLE Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease W.M. Haggag1 and S. Timmusk2 1 Department of Plant Pathology, National Research Center, Dokki, Cairo, Egypt 2 Department of Biology, University of Waterloo, Waterloo, Canada Keywords Abstract Aspergillus niger, biofilm, colonization, Paenibacillus polymyxa, population dynamics. Aim: To investigate the role of biofilm-forming Paenibacillus polymyxa strains in controlling crown root rot disease. Correspondence Methods and Results: Two plant growth-promoting P. polymyxa strains were S. Timmusk, Department of Forest Mycology isolated from the peanut rhizosphere, from Aspergillus niger-suppressive soils. and Pathology, SLU, Box 7026, SE-750 07 The strains were tested, under greenhouse and field conditions for inhibition Uppsala, Sweden. E-mail: of the crown root rot pathogen of the peanut, as well as for biofilm formation [email protected] in the peanut rhizosphere. The strains’ colonization and biofilm formation 2007 ⁄ 0343: received 5 March 2007, revised were further studied on roots of the model plant Arabidopsis thaliana and with 24 July 2007 and accepted 5 September solid surface assays. Their crown root rot inhibition performance was studied 2007 in field and pot experiments. The strains’ ability to form biofilms in gnotobi- otic and soil systems was studied employing scanning electron microscope. doi:10.1111/j.1365-2672.2007.03611.x Conclusion: Both strains were able to suppress the pathogen but the superior biofilm former offers significantly better protection against crown rot. Significance and Impact of the Study: The study highlights the importance of efficient rhizosphere colonization and biofilm formation in biocontrol.
    [Show full text]
  • Bacterial Succession Within an Ephemeral Hypereutrophic Mojave Desert Playa Lake
    Microb Ecol (2009) 57:307–320 DOI 10.1007/s00248-008-9426-3 MICROBIOLOGY OF AQUATIC SYSTEMS Bacterial Succession within an Ephemeral Hypereutrophic Mojave Desert Playa Lake Jason B. Navarro & Duane P. Moser & Andrea Flores & Christian Ross & Michael R. Rosen & Hailiang Dong & Gengxin Zhang & Brian P. Hedlund Received: 4 February 2008 /Accepted: 3 July 2008 /Published online: 30 August 2008 # Springer Science + Business Media, LLC 2008 Abstract Ephemerally wet playas are conspicuous features RNA gene sequencing of bacterial isolates and uncultivated of arid landscapes worldwide; however, they have not been clones. Isolates from the early-phase flooded playa were well studied as habitats for microorganisms. We tracked the primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet geochemistry and microbial community in Silver Lake clone libraries were dominated by Betaproteobacteria and yet playa, California, over one flooding/desiccation cycle uncultivated Actinobacteria. Isolates from the late-flooded following the unusually wet winter of 2004–2005. Over phase ecosystem were predominantly Proteobacteria, partic- the course of the study, total dissolved solids increased by ularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, ∽10-fold and pH increased by nearly one unit. As the lake Hydrogenophaga, Alishwenella, and relatives of Thauera; contracted and temperatures increased over the summer, a however, clone libraries were composed almost entirely of moderately dense planktonic population of ∽1×106 cells ml−1 Synechococcus (Cyanobacteria). A sample taken after the of culturable heterotrophs was replaced by a dense popula- playa surface was completely desiccated contained diverse tion of more than 1×109 cells ml−1, which appears to be the culturable Actinobacteria typically isolated from soils.
    [Show full text]
  • Discovery of a Paenibacillus Isolate for Biocontrol of Black Rot in Brassicas
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Discovery of a Paenibacillus isolate for biocontrol of black rot in brassicas A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University by Hoda Ghazalibiglar Lincoln University 2014 DECLARATION This dissertation/thesis (please circle one) is submitted in partial fulfilment of the requirements for the Lincoln University Degree of ________________________________________ The regulations for the degree are set out in the Lincoln University Calendar and are elaborated in a practice manual known as House Rules for the Study of Doctor of Philosophy or Masters Degrees at Lincoln University. Supervisor’s Declaration I confirm that, to the best of my knowledge: • the research was carried out and the dissertation was prepared under my direct supervision; • except where otherwise approved by the Academic Administration Committee of Lincoln University, the research was conducted in accordance with the degree regulations and house rules; • the dissertation/thesis (please circle one)represents the original research work of the candidate; • the contribution made to the research by me, by other members of the supervisory team, by other members of staff of the University and by others was consistent with normal supervisory practice.
    [Show full text]
  • Paenibacillaceae Cover
    The Family Paenibacillaceae Strain Catalog and Reference • BGSC • Daniel R. Zeigler, Director The Family Paenibacillaceae Bacillus Genetic Stock Center Catalog of Strains Part 5 Daniel R. Zeigler, Ph.D. BGSC Director © 2013 Daniel R. Zeigler Bacillus Genetic Stock Center 484 West Twelfth Avenue Biological Sciences 556 Columbus OH 43210 USA www.bgsc.org The Bacillus Genetic Stock Center is supported in part by a grant from the National Sciences Foundation, Award Number: DBI-1349029 The author disclaims any conflict of interest. Description or mention of instrumentation, software, or other products in this book does not imply endorsement by the author or by the Ohio State University. Cover: Paenibacillus dendritiformus colony pattern formation. Color added for effect. Image courtesy of Eshel Ben Jacob. TABLE OF CONTENTS Table of Contents .......................................................................................................................................................... 1 Welcome to the Bacillus Genetic Stock Center ............................................................................................................. 2 What is the Bacillus Genetic Stock Center? ............................................................................................................... 2 What kinds of cultures are available from the BGSC? ............................................................................................... 2 What you can do to help the BGSC ...........................................................................................................................
    [Show full text]