Engineering with Value Sensitive Design

Total Page:16

File Type:pdf, Size:1020Kb

Engineering with Value Sensitive Design Engineering with Value Sensitive Design David Hendry Value Sensitive Design Lab Information School University of Washington, Seattle, Washington Engineering has Planetary Impacts Why this Sociotechnical Future? 3 Moral Imagination Technical Imagination — Simon Wecker, 2020 21st Century Engineering Requirements 1. Human agency and oversight 2. Technical robustness and safety 3. Privacy and data governance 4. Transparency 5. Diversity, non-discrimination and fairness, 6. Societal and environmental well-being 7. Accountability — Artificial Intelligence: A European Approach to Excellence and Trust, February 19, 2020 Human Dignity Autonomous System Exoskeleton: Argumentation — See: van Wynsberghe, A. (2013). Value Sensitive Design An interactional theory and method that accounts for human values in a principled and structured manner throughout the design process. Pioneered by Prof. Batya Friedman in 1990s — Friedman, 1997; Friedman, Borning, & Hendry, 2017; Friedman and Hendry, 2019 Level of Human Experience Two Solitudes: Bridge the Gap — van den Hoven, J., 2017 Human Values human flourishing ● environmental sustainability ● human dignity quality of life ● well-being justice ● equity ● … Engineering Values performance ● scale ● security reliability ● cost robustness ● … Value Hierarchy Values Principles | Laws | Ethics Quality of Life ... ... Norms Safety of ... Objectives | Goals | Constraints Vulnerable Road Users ... Design Requirements Infrastructure | Devices | Policy ... ... — van de Poel, I., 2013 (redrawn) Panel Questions on VSD 1. Three Key Problems Responsibility. Accounting for human values in 1 technical design and in deployment. Theory and practice. Developing theory and 2 methods that enable conceptual, empirical, and technical work – integrative and iterative. Appropriation. Adapting and sharing methods for 3 particular engineering cultures, methodologies, and practices. Panel Questions on VSD 2. Three Solved Problems We have methods. Use them: Frequently and 1 throughout the product development and deployment processes (design and engineering). Evaluation criteria. Use human values as a criteria 2 for evaluating system performance (alongside of engineering criteria). Co-evolve technology and policy. Mutual shaping 3 power – consider the long-term, at scale, diverse stakeholders. Panel Questions on VSD 3. Three Trends Standardization. IEEE P7000 and recent work at 1 ISO engineering methodologies. Prescriptive, stepwise refinement methodologies. Education. Interest in transforming engineering 2 education to include human values (MIT College of Computing, Values in Computing, etc.). Ethics washing. Need for genuine engagement with 3 values and principles in design processes. Panel Questions on VSD 4. Three Tractable Questions Stakeholders. Legitimating direct and indirect human 1 stakeholders and non-human entities with moral standing. Value Tensions. Beyond trade-offs; Addressing 2 tensions and finding moral-technical sweet spots; Large scale cost-benefit analyses. Accounting for power. How should differences in 3 power be handled? Summary and takeaways Engineering Strategies • Worse case planning. Precaution. On-going engagement throughout deployment for course correcting, pausing, stopping. • Saying “no.” When risks are unequally shared or when benefits are uncertain. • Planet: finite, yet regenerative. Engineer within this constraint. Life-cycle analysis. Progress, not perfection VSD Intro Account of the State of the Art Origins Theory Method Applications Looking to the Future Moving Forward Credits Image of spring leaf out (1) Image of mobile phones and wagon, Artist: Simon Weckert (2) Urban air mobility graphical scenario (3) Image of Exoskeleton (4) (1) https://www.usanpn.org/news/spring (2) http://www.simonweckert.com/googlemapshacks.html (3) https://cra.org/ccc/wp-content/uploads/sites/2/2019/10/Natasha- Neogi.pdf (4) https://www.semanticscholar.org/paper/Exoskeletal-Spine-and-Shoulders- for-Full-Body-in-Rol-Taal/8ee956157d572ae89fda4149bda63dd22b74dacc Moving Forward References European Commission (2020, Feb 19). White Paper on Artificial Intelligence: A European Approach to Excellence and Trust. https://ec.europa.eu/info/sites/info/files/commission-white-paper- artificial-intelligence-feb2020_en.pdf Friedman, B. (Ed.) (1997). Human Values and the Design of Computer Technology. Stanford, CA: CSLI Publications. Friedman, B., Hendry, D. G., & Borning, A. (2017). A survey of value sensitive design methods. Foundations and Trends in Human-Computer Interaction, 11(23), 63–125. http://doi.org/10.1561/1100000015 Friedman, B., & Hendry, D. G. (2019). Value Sensitive Design: Shaping Technology with Moral Imagination. Cambridge, MA: MIT Press. van den Hoven, J. (2017) Ethics for the Digital Age: Where Are the Moral Specs?. In Werthner H., van Harmelen F. (eds) Informatics in the Future. Springer, Cham. van de Poel I. (2013) Translating Values into Design Requirements. In: Michelfelder D., McCarthy N., Goldberg D. (eds) Philosophy and Engineering: Reflections on Practice, Principles and Process. Philosophy of Engineering and Technology, vol 15. Springer, Dordrecht van Wynsberghe, A. (2013). Designing robots for care: Care centered value-sensitive design. Science and engineering ethics, 19(2), 407-433. .
Recommended publications
  • The Sciences of Design: Observations on an Emerging Field Working Paper
    The Sciences of Design: Observations on an Emerging Field Sandeep Purao Carliss Y. Baldwin Alan Hevner Veda C. Storey Jan Pries-Heje Brian Smith Ying Zhu Working Paper 09-056 Copyright © 2008 by Sandeep Purao, Carliss Y. Baldwin, Alan Hevner, Veda C. Storey, Jan Pries-Heje, Brian Smith, and Ying Zhu Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. The Sciences of Design: Observations on an Emerging Field Sandeep Purao College of IST, Penn State University, Carliss Baldwin Harvard Business School Alan Hevner University of South Florida Veda C. Storey Georgia State University Jan Pries-Heje Roskilde University Brian Smith Penn State University Ying Zhu Georgia State University Excerpted from The Sciences of Design: Observations on an Emerging Field by Purao, Baldwin, Hevner, Storey, Pries-Heje, Smith and Zhu, (c) 2008. Used with permission from Association for Information Systems, Atlanta, GA; 404-413-7444; www.aisnet.org. All rights reserved. Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the authors. THE SCIENCES OF DESIGN OCTOBER 9, 2008 ABSTRACT The boundaries and contours of design sciences continue to undergo definition and refinement. In many ways, the sciences of design defy disciplinary characterization. They demand multiple epistemologies, theoretical orientations (e.g. construction, analysis or intervention) and value considerations.
    [Show full text]
  • Design Science Research and the Grounded Theory
    Association for Information Systems AIS Electronic Library (AISeL) European Conference on Information Systems ECIS 2010 Proceedings (ECIS) 2010 Design Science Research and the Grounded Theory Method: Characteristics, Differences, and Complementary Uses Robert Gregory Goethe University Frankfurt, [email protected] Follow this and additional works at: http://aisel.aisnet.org/ecis2010 Recommended Citation Gregory, Robert, "Design Science Research and the Grounded Theory Method: Characteristics, Differences, and Complementary Uses" (2010). ECIS 2010 Proceedings. 44. http://aisel.aisnet.org/ecis2010/44 This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted for inclusion in ECIS 2010 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact [email protected]. 18th European Conference on Information Systems DESIGN SCIENCE RESEARCH AND THE GROUNDED THEORY METHOD: CHARACTERISTICS, DIFFERENCES, AND COMPLEMENTARY USES Journal: 18th European Conference on Information Systems Manuscript ID: ECIS2010-0045.R1 Submission Type: Research Paper Research methods/methodology, Design/design science, Behavioral Keyword: science, IS research methodologies Page 1 of 12 18th European Conference on Information Systems DESIGN SCIENCE RESEARCH AND THE GROUNDED THEORY METHOD: CHARACTERISTICS, DIFFERENCES, AND COMPLEMENTARY USES Gregory, Robert Wayne, Goethe University Frankfurt, Grüneburgplatz 1, 60323 Frankfurt am Main, Germany, [email protected] Abstract Two research strategies that have received increasing scholarly attention recently in IS are design science research (DSR) and the grounded theory method (GTM). In this paper, we conduct a systematic comparison of the most salient characteristics of both research strategies to identify the differences as well as possible complementary uses in a pluralistic research design.
    [Show full text]
  • Designing for Human Rights in AI
    Delft University of Technology Designing for human rights in AI Aizenberg, E.; van den Hoven, J. DOI 10.1177/2053951720949566 Publication date 2020 Document Version Final published version Published in Big Data & Society Citation (APA) Aizenberg, E., & van den Hoven, J. (2020). Designing for human rights in AI. Big Data & Society, 7(2). https://doi.org/10.1177/2053951720949566 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. Original Research Article Big Data & Society July–December 2020: 1–14 Designing for human rights in AI ! The Author(s) 2020 DOI: 10.1177/2053951720949566 journals.sagepub.com/home/bds Evgeni Aizenberg1,2 and Jeroen van den Hoven2,3 Abstract In the age of Big Data, companies and governments are increasingly using algorithms to inform hiring decisions, employ- ee management, policing, credit scoring, insurance pricing, and many more aspects of our lives. Artificial intelligence (AI) systems can help us make evidence-driven, efficient decisions, but can also confront us with unjustified, discriminatory decisions wrongly assumed to be accurate because they are made automatically and quantitatively.
    [Show full text]
  • An Application of the Design Science Research Theoretical Framework
    Journal of Advances in Information Technology Vol. 7, No. 4, November 2016 An Application of the Design Science Research Theoretical Framework and Methodology in the Construction of an Approach for Designing Applications in 3D Virtual Worlds William Sawyerr Anglia Ruskin University, Cambridge, United Kingdom Email: [email protected] Abstract—This paper discusses the use of the design science In spite of these ideals, the application development research theoretical framework and methodology for process in VWs is currently at an early stage of constructing an approach for designing applications in 3D development, largely utilising existing methods and tools virtual worlds. The research is about the need for a suitable for application design. These methods and tools were method and tools for designing virtual world applications, mostly developed for managing application design which is evidenced by many of the problems that virtual worlds continue to suffer due to poor design. The proposed activities for the classic types of applications in SE. approach uses the generative design grammar framework Therefore, their use is unsuitable for designing VW and the generative design agent model as tools for designing applications. The use of unsuitable methods and tools for virtual world applications. Preliminary analyses suggest designing VW applications results in poorly designed that, the use of a method and tools created specifically for specifications. Poor design is one of the causes of designing virtual world applications provides a suitable and usability problems in VW applications [2]. Furthermore, robust approach for designing these types of applications. poor design can also adversely affect the adoption and use of VWs [3], [4].
    [Show full text]
  • Theoretically Comparing Design Thinking to Design Methods for Large- Scale Infrastructure Systems
    The Fifth International Conference on Design Creativity (ICDC2018) Bath, UK, January 31st – February 2nd 2018 THEORETICALLY COMPARING DESIGN THINKING TO DESIGN METHODS FOR LARGE- SCALE INFRASTRUCTURE SYSTEMS M.A. Guerra1 and T. Shealy1 1Civil Engineering, Virginia Tech, Blacksburg, USA Abstract: Design of new and re-design of existing infrastructure systems will require creative ways of thinking in order to meet increasingly high demand for services. Both the theory and practice of design thinking helps to exploit opposing ideas for creativity, and also provides an approach to balance stakeholder needs, technical feasibility, and resource constraints. This study compares the intent and function of five current design strategies for infrastructure with the theory and practice of design thinking. The evidence suggests the function and purpose of the later phases of design thinking, prototyping and testing, are missing from current design strategies for infrastructure. This is a critical oversight in design because designers gain much needed information about the performance of the system amid user behaviour. Those who design infrastructure need to explore new ways to incorporate feedback mechanisms gained from prototyping and testing. The use of physical prototypes for infrastructure may not be feasible due to scale and complexity. Future research should explore the use of prototyping and testing, in particular, how virtual prototypes could substitute the experience of real world installments and how this influences design cognition among designers and stakeholders. Keywords: Design thinking, design of infrastructure systems 1. Introduction Infrastructure systems account for the vast majority of energy use and associated carbon emissions in the United States (US EPA, 2014).
    [Show full text]
  • Understanding the Creative Mechanisms of Design Thinking: an Evolutionary Approach
    !"#$%&'("#)"*+',$+-%$(').$+/$0,(")&1&+23+4$&)*"+5,)"6)"*7+ 8"+9.2:;')2"(%<+8==%2(0,+ Katja Thoring Roland M. Müller Department of Design Faculty of Business and Economics Anhalt University of Applied Sciences Berlin School of Economics and Law Seminarplatz 2a, 06846 Dessau/Germany Badensche Str. 50/51, 10825 Berlin/Germany +49 (0) 340 5197-1747 +49 (0) 30 85789-387 [email protected] [email protected] 8>?5@8-5+ Since generating creative concepts is one of the core aims In this article, we analyse the concept of design thinking of design thinking, we try to analyse how this is actually with its process, the team structure, the work environment, achieved. The first part of this article presents a short the specific culture, and certain brainstorming rules and overview of the design thinking process, as well as the techniques. The goal of this work is to understand how the involved artefacts and team members, and the underlying creative mechanisms of design thinking work and how they principles and guidelines for the process. In the second might be improved. For this purpose, we refer to the idea of section, we present an overview of the evolutionary theory creativity as an evolutionary process, which is determined of creativity. Both sections also cover the analysis of by generation (i.e., recombination and mutation), selection, existing literature in each area. The third section describes and retention of ideas. We evaluate the design thinking the used methodology, while in the fourth section, the main process in terms of its capabilities to activate these part of this article, we draw a comparison between the two mechanisms, and we propose possible improvements.
    [Show full text]
  • Information Systems Foundations: the Role of Design Science
    Information Systems Foundations: The role of design science Information Systems Foundations: The role of design science Dennis N. Hart and Shirley D. Gregor (Editors) THE AUSTRALIAN NATIONAL UNIVERSITY E P R E S S E P R E S S Published by ANU E Press The Australian National University Canberra ACT 0200, Australia Email: [email protected] This title is also available online at: http://epress.anu.edu.au/is_foundations_citation.html National Library of Australia Cataloguing-in-Publication entry Author: Information Systems Foundations (‘The role of design science’) Workshop (2008 : Canberra, A.C.T.) Title: Information systems foundations : the role of design science / edited by Shirley D. Gregor and Dennis N. Hart. ISBN: 9781921666346 (pbk.) ISBN: 9781921666353 (eBook) Notes: Workshop held at the Australian National University in Canberra from 2-3 October, 2008. Includes bibliographical references. Subjects: Management information systems--Congresses. Information resources management--Congresses. System design--Congresses. Other Authors/Contributors: Gregor, Shirley Diane. Hart, Dennis N. Dewey Number: 658.4038 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design by Teresa Prowse Cover ilustration by Jackson Gable Printed by Griffin Press This edition © 2010 ANU E Press Contents Preface . ix Philosophical Foundations 1 . Identification-interaction-innovation: a phenomenological basis for an information services view . 3 Dirk Hovorka, Matt Germonprez 2 . How critical realism clarifies validity issues in theory- testing research: analysis and case . 21 Robert B. Johnston, Stephen P.
    [Show full text]
  • Understanding Concepts and Values for the Future of Online Education Through the Practice of Design
    Understanding Concepts and Values for the Future of Online Education through the Practice of Design Michael Marcinkowski, the Pennsylvania State University Fred Fonseca, the Pennsylvania State University Abstract The rise of interest in online education from pedagogical, administrative, and technological perspectives presents numerous possibilities and challenges for researchers and practitioners, the most basic of which is the fundamental question of the determination of the concepts, categories, and values used to guide their work within this rapidly developing field. Drawing from contemporary discussions of the possibility for the instantiation of values and categories in the work of design, critical approaches to questions of technology and conceptual development surrounding the design of technological systems are discussed. It is argued that current value driven approaches to technological design, when refined and considered through a logic of conceptual deconstruction, offer a broad and open basis from which the direction of online education can best be considered. In the formulation of such an approach, general lessons for interaction design and information science as a whole can be found. Keywords: Online education; design; deconstruction; ethics; MOOCs Citation: Marcinkowski, M., Fonseca, F. (2015). Understanding Concepts and Values for the Future of Online Education through the Practice of Design. In iConference 2015 Proceedings. Copyright: Copyright is held by the author(s). Research Data: In case you want to publish research
    [Show full text]
  • Hannes Werthner Frank Van Harmelen Editors
    Hannes Werthner Frank van Harmelen Editors Informatics in the Future Proceedings of the 11th European Computer Science Summit (ECSS 2015), Vienna, October 2015 Informatics in the Future Hannes Werthner • Frank van Harmelen Editors Informatics in the Future Proceedings of the 11th European Computer Science Summit (ECSS 2015), Vienna, October 2015 Editors Hannes Werthner Frank van Harmelen TU Wien Vrije Universiteit Amsterdam Wien, Austria Amsterdam, The Netherlands ISBN 978-3-319-55734-2 ISBN 978-3-319-55735-9 (eBook) DOI 10.1007/978-3-319-55735-9 Library of Congress Control Number: 2017938012 © The Editor(s) (if applicable) and The Author(s) 2017. This book is an open access publication. Open Access This book is licensed under the terms of the Creative Commons Attribution- NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made. The images or other third party material in this book are included in the book’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. This work is subject to copyright. All commercial rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Media Ecology and Value Sensitive Design: a Combined Approach to Understanding the Biases of Media Technology
    Proceedings of the Media Ecology Association, Volume 6, 2005 Media Ecology and Value Sensitive Design: A Combined Approach to Understanding the Biases of Media Technology Michael Zimmer New York University In recent years, a field known as value sensitive design has emerged to identify, understand, anticipate, and address the ethical and value biases of media and information technologies. Upon developing a dialectical model of how bias exists in technology, this paper makes a case for the dual relevance of value sensitive design to media ecology. I argue that bringing the two approaches together would be mutually beneficial, resulting in richer investigations into the biases in media technologies. Media Ecology and Value Sensitive Design: A Combined Approach to Understanding the Biases of Media Technology N his book Technopoly, Neil Postman (1992) remarked how “we are surrounded by the wondrous effects of machines and are encouraged to ignore the ideas embedded in them. I Which means we become blind to the ideological meaning of our technologies” (p. 94). It has been the goal of many scholars of media technology to remove these blinders and critically explore the ideological biases embedded within the material forms of media technologies. This endeavor forms the foundation of media ecology, an approach to studying media technology that Postman helped to establish. The goal of media ecological scholarship is to uncover and understand “how the form and inherent biases of communication media help create the environment . in which people symbolically construct the world they come to know and understand, as well as its social, economic, political, and cultural consequences” (Lum, 2000, p.
    [Show full text]
  • Value Sensitive Design of Unmanned Aerial Systems As ”The Main Research Questions Are ’How’ Or ’Why’”, and ”The Focus of the Study Is a Contemporary Phenomenon” [85]
    Supervisors: Author: Alf Rehn Dylan Cawthorne Marianne Harbo Frederiksen Douglas Cairns Contents List of Figures 7 List of Tables 13 Acronyms 14 1 ABSTRACT IN ENGLISH 16 2 RESUMEP´ A˚ DANSK 17 3 DEDICATION 18 4 ACKNOWLEDGEMENTS 19 5 INTRODUCTION 20 5.1 Drones . 20 5.2 Value Sensitive Design . 22 5.3 Research gap . 22 5.4 Reading guide . 24 5.4.1 Overview of Case Studies . 24 5.4.2 Overview of Papers . 25 5.5 Context . 28 5.6 Scope . 28 5.6.1 Within scope . 28 5.6.2 Outside of scope . 29 5.7 Audience . 30 6 METHODOLOGY 31 6.1 Philosophical world view - pragmatism . 31 6.2 Research approach - mixed methods . 32 6.3 Research design - abduction . 32 6.4 Research strategy - experimental and non-experimental . 33 6.5 Research methods - various . 33 7 CASE STUDY I - THE HUMANITARIAN CARGO DRONE IN PERU 35 1 8 PAPER 1 - Value Sensitive Design of a Humanitarian Cargo Drone 36 8.1 Introduction . 36 8.1.1 Background . 37 8.1.2 Embodied values . 37 8.1.3 Technology in a social context . 37 8.1.4 Non-epistemic values . 38 8.1.5 Prior Art . 38 8.2 Value Sensitive Design Methdology . 38 8.2.1 The three phases of VSD . 38 8.2.2 Conceptual phase . 38 8.2.3 Empirical phase . 39 8.2.4 Technological phase . 39 8.2.5 Interactions . 41 8.2.6 Iteration . 41 8.2.7 Basis of analysis . 41 8.2.8 Applications . 41 8.3 Retrospective Analysis .
    [Show full text]
  • Uncovering Topological Generativity with a Ck Model of Evolutionary
    INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED21 16-20 AUGUST 2021, GOTHENBURG, SWEDEN WHAT IS GENERATIVE IN GENERATIVE DESIGN TOOLS? UNCOVERING TOPOLOGICAL GENERATIVITY WITH A C-K MODEL OF EVOLUTIONARY ALGORITHMS. Hatchuel, Armand; Le Masson, Pascal; Thomas, Maxime; Weil, Benoit MINES ParisTech-PSL ABSTRACT Generative design (GD) algorithms is a fast growing field. From the point of view of Design Science, this fast growth leads to wonder what exactly is 'generated' by GD algorithms and how? In the last decades, advances in design theory enabled to establish conditions and operators that characterize design generativity. Thus, it is now possible to study GD algorithms with the lenses of Design Science in order to reach a deeper and unified understanding of their generative techniques, their differences and, if possible, find new paths for improving their generativity. In this paper, first, we rely on C-K ttheory to build a canonical model of GD, based independent of the field of application of the algorithm. This model shows that GD is generative if and only if it builds, not one single artefact, but a "topology of artefacts" that allows for design constructability, covering strategies, and functional comparability of designs. Second, we use the canonical model to compare four well documented and most advanced types of GD algorithms. From these cases, it appears that generating a topology enables the analyses of interdependences and the design of resilience. Keywords: C-K theory, generative design algorithms, Design theory, Computational design methods, Design informatics Contact: Le Masson, Pascal MINES ParisTech-PSL Management Science France [email protected] Cite this article: Hatchuel, A., Le Masson, P., Thomas, M., Weil, B.
    [Show full text]