Microinjection of Follicle-Enclosed Mouse Oocytes..Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Microinjection of Follicle-Enclosed Mouse Oocytes..Pdf Chapter 12 Microinjection of Follicle-Enclosed Mouse Oocytes Laurinda A. Jaffe, Rachael P. Norris, Marina Freudzon, William J. Ratzan, and Lisa M. Mehlmann Abstract The mammalian oocyte develops within a complex of somatic cells known as a follicle, within which signals from the somatic cells regulate the oocyte, and signals from the oocyte regulate the somatic cells. Because isolation of the oocyte from the follicle disrupts these communication pathways, oocyte physiology is best studied within an intact follicle. Here we describe methods for quantitative microinjection of follicle- enclosed mouse oocytes, thus allowing the introduction of signaling molecules as well as optical probes into the oocyte within its physiological environment. Key words: Microinjection, follicle-enclosed oocyte, mouse. 1. Introduction Intracellular microinjection allows the study of biochemical events within intact cells, but since most cells are interconnected to form complex tissues, many physiological processes could most ideally be investigated by microinjection of cells within intact tissues. This chapter describes methods for injecting mouse oocytes within the complex of surrounding somatic cells known as the follicle (Fig. 12.1). These methods allow the introduction of molecules into the oocyte specifically, without also applying them to the somatic cells, and without disassembling the structure that is needed for investigating physiological responses. These approaches can be used to introduce antibodies, signaling proteins, dominant- negative proteins, buffers, or toxins that interfere with or mimic regulatory pathways (1–4), as well as optical probes to monitor signaling (3,5–7). Because follicles can be cultured for multiple days, these methods also allow the time needed for protein turnover following injection of short interfering RNAs (8). David J. Carroll (ed.), Microinjection: Methods and Applications, Vol. 518 Ó 2009 Humana Press, a part of Springer ScienceþBusiness Media, LLC DOI 10.1007/978-1-59745-202-1_12 157 158 Jaffe et al. Fig. 12.1. Developmental stages of mouse ovarian follicles. From ref. (10), # Society for Reproduction and Fertility (2005). Reproduced by permission. The mouse ovarian follicle forms as a single layer of somatic cells around the oocyte; the somatic cells then proliferate to form multiple layers (Fig. 12.1). Follicles containing an oocyte that is surrounded by 2–3 layers of somatic cells are referred to as ‘‘preantral’’. As the follicle continues to grow, spaces form between the somatic cells, and the spaces fuse to form a single antrum. The antrum separates the 1–3 layers of cumulus cells that directly surround the oocyte from the peripheral layers of mural granulosa cells; the cumulus mass is connected on one side to the mural cells. In response to follicle stimulating hormone (FSH), which stimulates follicle growth, receptors for luteinizing hormone (LH) are synthesized in the mural granulosa cells. Up to this point, the oocyte is arrested in meiotic prophase. Then, in response to a surge of LH from the pituitary, meiosis resumes and progresses to metaphase II, and ovulation occurs. This chapter describes methods for microinjecting follicle-enclosed oocytes at both preantral and antral stages. In our lab, we have used these methods to identify mechan- isms by which meiotic arrest is maintained prior to the LH surge, and to investigate mechanisms by which LH stimulates meiotic resumption. Although cAMP in the oocyte had long been recog- nized as an inhibitor of meiotic progression (see refs (9,10)), it had been uncertain where and how this cAMP is generated. Micro- injection of follicle-enclosed oocytes using the methods described here has contributed essential evidence that a constitutively active G-protein coupled receptor (GPR3) activates Gs in the oocyte, leading to cAMP production (1, 2, 4, 6, 7). Studies using these methods have also provided evidence that LH does not cause meiotic resumption by terminating GPR3/Gs signaling (7),or by stimulating Gi signaling (3). The recent development of optical probes for monitoring cAMP dynamics in living cells (11) should, Microinjection of Follicle-Enclosed Mouse Oocytes 159 in combination with these microinjection techniques, allow further studies of the role of cAMP in regulating meiotic progres- sion within an intact follicle. More generally, these techniques provide a new approach that could be used to investigate many other aspects of the complex bidirectional communication between the oocyte and somatic cells (12,13). The following methods for injection of follicle-enclosed mouse oocytes are based on methods that were previously devel- oped for microinjection of echinoderm oocytes (14–16).The follicle is placed between coverslips that compress it slightly, allowing the oocyte to be clearly visualized with a compound microscope (Fig. 12.2). The microinjection pipette is brought in horizontally, and contains mercury to allow precise control when pressure is applied through a screw-driven syringe. The pipette is front-loaded, and the volume injected is quantified by drawing up an equivalent volume of oil and then measuring the diameter of the expelled oil drop. These general methods have been described in detail in a recent chapter (16),which should be referred to for settinguptheequipment,andforthe basic procedures for injection. The present chapter explains how these techniques have been adapted for follicle-enclosed mouse oocytes. Videos demonstrating these procedures can be viewed at http://www.sciencedirect.com/science/MiamiMultiMediaURL/ B6WDG-4P8B0X8-6/B6WDG-4P8B0X8-6-C/6766/63fd3555 30400573e073a9091ba406e0/video1.mov (supplementary material for ref. 7), and at http://www.jcb.org/cgi/content/full/jcb. 200506194/DC1 (supplementary material for ref. 6). Fig. 12.2. Microinjection of follicle-enclosed mouse oocytes. (A) Diagram of the microinjection chamber and micropip- ette. (B) Photograph of a plastic slide for assembling the injection chamber. (C) Photograph of an antral follicle-enclosed oocyte as it appears in the injection chamber. 160 Jaffe et al. 2. Materials 2.1. Supplies for 1. Mice. Follicles are most easily dissected from ovaries of pre- Dissection and Culture pubertal mice, 22–25 days old. We use BL/6 Â SJL F1 mice of Follicles (The Jackson Laboratory, #100012). 2. Equine chorionic gonadotropin (pregnant mare serum gonado- tropin). From the National Hormone and Peptide Program (http://www.humc.edu/hormones/), or various commercial sources. Store single-use aliquots (50 IU/ml, 500 ml) at –80°C. 3. MEM (Invitrogen, #12000-022). We make this medium from powder, adding 25-mM NaHCO3,75mg/ml penicillin G, and 50 mg/ml streptomycin sulfate, and store at 4°C for up to 2 weeks. Add serum and other supplements on day of use. 4. Penicillin G (Sigma, #PEN-K). Store powder at room temperature. 5. Streptomycin sulfate (Sigma, #S-6501). Store powder at 4°C. 6. Fetal bovine serum (Invitrogen, #16000-044, or other suppli- ers). Store aliquots at –80°C, and then at 4°C for up to 2 weeks. 7. Insulin-transferrin-sodium selenite (Sigma, #I1884), dissolved according to the manufacturer’s instructions to make a 100X stock. Store aliquots at –80°C, and then at 4°C for up to 2 weeks. 8. FSH (ovine), from the National Hormone and Peptide Pro- gram. Store single-use aliquots (10 mg/ml, 25 ml) at –80°C. 9. Steriflip sterile disposable vacuum filter units, 0.2-mm pore size, 50-ml volume (Millipore, #SCGP 005 25). 10. Miniforceps (Fine Science Tools, #11200-14). 11. Millicell culture plate inserts (Millipore, #PICMORG50). 12. Petri dishes (Falcon, #1008, 35 mm). 2.2. Equipment for 1. Stereoscope with an eyepiece micrometer (for dissection of Microinjection follicles and assembly of injection chambers). 2. Vibration free table (a table with a steel plate supported by rubber spacers, or an air table). 3. Compound microscope with a 20x objective and focusable eyepieces with a micrometer reticle. 4. Micromanipulator with X, Y, and Z controls. 5. Horizontal micropipette puller. 6. Screw-driven syringe connected to a micropipette holder by a piece of narrow tubing containing fluorocarbon oil (Sigma #F9880, Fluorinert FC-70). Microinjection of Follicle-Enclosed Mouse Oocytes 161 7. Machined plastic slides for assembling the injection chamber (see Fig. 12.2B). 8. For further details, see ref. (16). 2.3. Equipment for 1. Warm air blower (Nevtek air stream incubator, #ASI400) Temperature, 2. Electric thermometer (Physitemp Instruments, #BAT-12R, Humidity, and CO2 with an IT-18 temperature probe) Control 3. Fritted glass cylinder (Corning, #31770-500C, distributed by VWR Scientific Products) 4. Flowmeter (Gilmont, #GF-8321-2410, distributed by Bar- nant Company) 5. Translucent silicon rubber sheet (Reiss Manufacturing, Inc., 1/800 thick) 6. Magnetic rubber sheet (Custom-Magnets.com) 2.4. Supplies for 1. Diamond knife (Fine Science Tools, #10100-00), or ceramic Construction of Mouth knife (Fine Science Tools, #10025-45) Pipettes for Follicle 2. Translucent silicon rubber sheet (Reiss Manufacturing, Inc., Transfer 1/1600 thick) 3. Polyethylene tubing (Clay Adams, #PE-60, internal diameter 0.76 mm) 4. Mouth pipette assembly (Sigma, #A5177-5EA), see Note 1. 5. Glass capillaries (Drummond Scientific, #9-000-1061, o.d. ¼ 0.8 mm, i.d. ¼ 0.6 mm) 6. Syringe filter (Fisher, #09-719C, 25 mm, 0.2 mm) 7. Glass capillaries (Drummond Scientific, #2-000-100, 100 ml calibrated pipettes) 8. Sigmacote (Sigma, # SL2) 2.5. Supplies for 1. Coverslips, 22-mm square, #1.5. These should be cleaned Construction and before use (see ref. (16)). Assembly of Injection 2. Diamond pencil. This is an ordinary diamond-tipped glass Chambers marker, not the ‘‘diamond knife’’ referred to in Section 2.4.1. 3. Clear flexible plastic ruler, to be used as a guide for cutting coverslips. 4. Black Plexiglas work surface (from a machinist). 5. Double-sided tape (Scotch #137, previously called ‘‘double- stick’’ tape, office supply store). 6. Double-coated tape (Scotch #667, office supply store). 7. Small sharp scissors (Fine Science Tools, #14370-22, Moria 10.5 cm straight).
Recommended publications
  • 2017 Automated Liquid Handling Resource Guide
    The Lab Manager AUTOMATED LIQUID HANDLING RESOURCE GUIDE What You Need to Know When Buying an Automated Liquid Handling System BY RYAN ACKERMAN Upgrading Stand-Alone Automated Liquid Handling Systems to Workstations BY ANGELO DEPALMA, PhD Small-Volume Liquid Handling Requires Advanced Technology BY MIKE MAY, PhD 20 10 Common Liquid Handling Errors & How to Avoid Them 17 BY LAB MANAGER The Latest in Pipette Tip Design BY ANGELO DEPALMA, PhD Automated Liquid Handling Product Finder BY LAB MANAGER Automatic Liquid Handling Resource Guide 2017 What You Need to Know When Buying an Automated Liquid Handling System Automated liquid handlers come in a seemingly endless variety of configurations, with many different specifications. By Ryan Ackerman MAINTENANCE TIP: AUTOMATED LIQUID HANDLING The signs that you should get your automated liquid handler serviced are fairly obvious. If the system is constantly experiencing glitches or producing inconsistent, unreliable results, it’s probably time to do some maintenance. Mechanical problems are another hint that you may want to call your service technician—these issues can include pipette tips being out of calibration, the deck not being “framed” correctly, belts being worn out, or the pipette stages being out of alignment. Why is it important to know the typical sample How does the sensitivity to contamination affect the type volume being used? of automated liquid handler required? Automated liquid handlers come in a seemingly endless variety of As the instrumentation used to analyze samples becomes more configurations, with many different specifications. An important one sensitive, the methods used to transport and prepare the samples to consider is what minimum, or maximum dispensing volume is must become resistant to contamination to ensure no carryover correct for your processes.
    [Show full text]
  • Q & a – Accuracy and Precision
    Food Analysis – FScN 4312W Laboratory: Assessment of Accuracy and Precision Key to Questions 1. Theoretically, how are standard deviation, coefficient of variation, mean, percent relative error, and 95% confidence interval affected by: (1) more replicates, and (2) a larger size of measurement? Was this evident in looking at the actual results obtained using the volumetric pipettes and the buret, with n = 3 vs n = 6, and with 1mL vs 10mL? Ans: (1) As the sample size increases (more replicates) - Calculated mean approaches the true mean - Standard deviation is inversely proportional to the square root of sample size, hence it decreases - CV decreases, as standard deviation approaches 0 for larger sample size - % Relative error decreases as calculated mean approaches true mean - 95% confidence interval narrows down (2) Larger size of measurement - Mean is close to true mean - Standard deviation might be larger due to larger size - CV decreases - % Relative error decreases, as calculated mean is close to true mean - 95% confidence interval narrows down Not all of the above assumptions were confirmed in this experiment according to the data observed. One reason could be that the sample size was very small (n = 3 and n = 6), to notice significant differences, another reason could be human error and variation from one person’s measuring technique to another. 2. Why are percent relative error and coefficient of variation used to compare the accuracy and precision, respectively, of the volumes from pipetting/dispensing 1 and 10mL with the volumetric pipettes and buret in parts 2 and 3, rather than simply the mean and standard deviation, respectively? Ans: Mean calculated from the readings gives the calculated mean, which may differ from the true mean.
    [Show full text]
  • Introducing Automation to Your Lab
    Introducing Automation to Your Lab A step-by-step reference guide for the 21st Century biologist Written by Opentrons © OPENTRONS 2019 | INTRODUCING AUTOMATION TO YOUR LAB 1 INTRODUCTION Table of Contents CONTENT FIGURES Introduction Dispelling Myths About Lab Automation 03 Figure 1 Busting The Top 5 Automation Myths 03 Chapter 1 The Overall Benefits Of Lab Automation 05 Figure 2 Top 5 Benefits Of Lab Automation 05 Chapter 2 Choosing The Best Workflow To Automate 06 Figure 3 Your Workflow Is A Good Candidate For 06 Automation If... Chapter 3 Precision And Lab Automation 08 Figure 4 Translating Manual Processes To Automation 07 Chapter 4 How Much Liquid To Move? 09 – Volume Ranges Figure 5 Levels of Throughput 09 – Low, Medium, or High Throughput? Figure 6 Robot Pricing Table 12 Chapter 5 Space Considerations 10 Figure 7 The Opentrons Approach: 14 – Sterility Figure 8 Next Steps When Purchasing An Automated 16 – Size Lab Robot Chapter 6 Cash Considerations 11 Chapter 7 Developing Your Protocol 14 Chapter 8 Choosing The Right Vendor 15 Conclusion Next Steps On The Path To Automation 16 Appendix Resources 17 © OPENTRONS 2019 | INTRODUCING AUTOMATION TO YOUR LAB 2 INTRODUCTION Dispelling the Myths of Lab Automation “Repetitio est mater studiorum,” says the Latin FIGURE 1 proverb: “Repetition is the mother of all learning.” Busting the top 5 automation myths Scientists live this ancient saying every day, winning hard-earned discoveries by repeating the same process over and over. In some cases, this simply MYTH REALITY builds a large enough sample size to create statistical significance in the results.
    [Show full text]
  • 2021 Product Guide
    2021 PRODUCT GUIDE | LIQUID HANDLING | PURIFICATION | EXTRACTION | SERVICES TABLE OF CONTENTS 2 | ABOUT GILSON 56 | FRACTION COLLECTORS 4 | COVID-19 Solutions 56 | Fraction Collector FC 203B 6 | Service Experts Ready to Help 57 | Fraction Collector FC 204 7 | Services & Support 8 | OEM Capabilities 58 | AUTOMATED LIQUID HANDLERS 58 | Liquid Handler Overview/selection Guide 10 | LIQUID HANDLING 59 | GX-271 Liquid Handler 11 | Pipette Selection Guide 12 | Pipette Families 60 | PUMPS 14 | TRACKMAN® Connected 60 | Pumps Overview/Selection Guide 16 | PIPETMAN® M Connected 61 | VERITY® 3011 18 | PIPETMAN® M 62 | Sample Loading System/Selection Guide 20 | PIPETMAN® L 63 | VERITY® 4120 22 | PIPETMAN® G 64 | DETECTORS 24 | PIPETMAN® Classic 26 | PIPETMAN® Fixed Models 66 | PURIFICATION 28 | Pipette Accessories 67 | VERITY® CPC Lab 30 | PIPETMAN® DIAMOND Tips 68 | VERITY® CPC Process 34 | PIPETMAN® EXPERT Tips 70 | LC Purification Systems 36 | MICROMAN® E 71 | Gilson Glider Software 38 | DISTRIMAN® 72 | VERITY® Oligonucleotide Purification System 39 | REPET-TIPS 74 | Accessories Overview/Selection Guide 40 | MACROMAN® 75 | Racks 41 | Serological Pipettes 43 | PLATEMASTER® 76 | GEL PERMEATION 44 | PIPETMAX® CHROMATOGRAPHY (GPC) 76 | GPC Overview/Selection Guide 46 | BENCHTOP INSTRUMENTS 77 | VERITY® GPC Cleanup System 46 | Safe Aspiration Station & Kit 47 | DISPENSMAN® 78 | EXTRACTION 48 | TRACKMAN® 78 | Automated Extraction Overview/ 49 | Digital Dry Bath Series Selection Guide 49 | Roto-Mini Plus 80 | ASPEC® 274 System 50 | Mini Vortex Mixer 81 | ASPEC® PPM 50 | Vortex Mixer 82 | ASPEC® SPE Cartridges 51 | Digital Mini Incubator 84 | Gilson SupaTop™ Syringe Filters 86 | EXTRACTMAN® 52 | CENTRIFUGES 52 | CENTRY™ 103 Minicentrifuge 88 | SOFTWARE 53 | CENTRY™ 117 Microcentrifuge 88 | Software Selection Guide 53 | CENTRY™ 101 Plate Centrifuge 54 | PERISTALTIC PUMP 54 | MINIPULS® 3 Pump & MINIPULS Tubing SHOP ONLINE WWW.GILSON.COM 1 ABOUT US Gilson is a family-owned global manufacturer of sample management and purification solutions for the life sciences industry.
    [Show full text]
  • Laboratory Equipment Used in Filtration
    KNOW YOUR LAB EQUIPMENTS Test tube A test tube, also known as a sample tube, is a common piece of laboratory glassware consisting of a finger-like length of glass or clear plastic tubing, open at the top and closed at the bottom. Beakers Beakers are used as containers. They are available in a variety of sizes. Although they often possess volume markings, these are only rough estimates of the liquid volume. The markings are not necessarily accurate. Erlenmeyer flask Erlenmeyer flasks are often used as reaction vessels, particularly in titrations. As with beakers, the volume markings should not be considered accurate. Volumetric flask Volumetric flasks are used to measure and store solutions with a high degree of accuracy. These flasks generally possess a marking near the top that indicates the level at which the volume of the liquid is equal to the volume written on the outside of the flask. These devices are often used when solutions containing dissolved solids of known concentration are needed. Graduated cylinder Graduated cylinders are used to transfer liquids with a moderate degree of accuracy. Pipette Pipettes are used for transferring liquids with a fixed volume and quantity of liquid must be known to a high degree of accuracy. Graduated pipette These Pipettes are calibrated in the factory to release the desired quantity of liquid. Disposable pipette Disposable transfer. These Pipettes are made of plastic and are useful for transferring liquids dropwise. Burette Burettes are devices used typically in analytical, quantitative chemistry applications for measuring liquid solution. Differing from a pipette since the sample quantity delivered is changeable, graduated Burettes are used heavily in titration experiments.
    [Show full text]
  • Thermo Scientific Pipetting Guide
    Thermo Scientific Pipetting Guide Tips for Good Laboratory Pipetting Part of Thermo Fisher Scientific Thermo Scientific Thermo Scientific Contents Introduction 3 Pipetting Pipetting Guide Pipetting terms 3 Types of pipettes 4 General pipetting guidelines 6 Pipetting techniques 6 Tip information 7 Recommendations for pipetting different compounds 8 Ensuring optimum performance 8 Usage of Finpipette Novus 9 Factors affecting the accuracy of air displacement pipettes 10 Preventing cross-contamination 11 Maintenance of your Finnpipettes 1 Autoclaving 1 UV resistance 1 Calibrating your pipettes (incl. conversion table) 13 On-line pipette calibration 15 General guidelines for decontaminating pipettes 16 Chemical compatibility of plastics 18 Customer support 19 Trouble shooting 19 Thermo Scientific Over 35 Years of Innovation A leader in pipetting For over 35 years we have led the way in liquid handling products and microplate instrumentation. We have always ensured that innovation, ergonomics, accuracy, precision and safety are key aspects of our products’ designs. In 1971 we introduced Thermo Scientific Finnpipettes, the world’s first continuously variable micropi- pettes. In 1976 we introduced the world’s first multichannel pipette. Since then we have continuously improved our pipettes, always leading the way with ergonomic design. Over the last 35 years, innovations such as the improved finger rest, soft-touch tip ejection and super blow-out have made Finnpipettes increasingly user-friendly. Our intensive research program and commitment to our customers forms the foundation for future innovations. The new demands in pipette applications are the key drivers of our product development. To date, over 3 mil- lion Finnpipettes have been sold in 150 countries.
    [Show full text]
  • Pipette Evolution
    SCIENTIFIC DEMANDS CONTINUE TO DRIVE THE DEVELOPMENT OF Evolution THIS ONCE SIMPLE, NOW HIGHLY SOPHISTICATED, TECHNOLOGY John Buie With ergonomics, precision and safety becoming the Pipette buzzwords in the pipettor market, electronic pipettors are poised to overshadow gains in the mechanical pipettor market. The worldwide pipette market is expected to grow by 48.27 The pipette, along with the analytical balance, This article looks at the pipette and how thousand units between 2008 and 2012. This growth is driven by novel designs, a rise in PCR diagnostic tests and the microscope and centrifuge, is a laboratory increasing demands in microanalysis, lab safety involvement of ultra-micro volumes in laboratories. staple whose history dates back to the turn of and automation have shaped its evolution. We Innovation will continue from companies such as Thermo the century. But when examining the early also look at particular innovators in the LabL b researchers,h althoughlh hh happy withih theh functif ionalitylii of the pipette, were still concerned Fisher Matrix Technologies, which has recently introduced about cross-contamination between samples and bacteria being passed via the pipette. novel ways of adjusting dispensed volume in the pipette, iterations of this important tool, you do not find manufacturing of scientific instruments who, including scrolling presets and voice recognition technology. much in common with what comes out of the with their thumbs on the pulse of research, The pipette manufacturer Capp Denmark A/S (products available through pipette.com) responded by inventing the first autoclavable multichannel pipette. About 80 percent box in today’s lab equipment deliveries.
    [Show full text]
  • Pipetting 101 Developed by BSU Citylab
    Discover the Microbes Within: The Wolbachia Project Pipetting 101 Developed by BSU CityLab Color Comparisons Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able to: • Choose the correct size micropipette for the volume of liquid to be moved • Demonstrate how to correctly set the volume on different sizes of micropipettes • Demonstrate the sequence of steps for using a micropipette to draw up liquid from one container and transfer it to another • Demonstrate the proper use (and care for) these finely-tuned instruments BACKGROUND INFORMATION Micropipettes are used to accurately measure microliter volumes of liquid. The prefix “micro” means millionth, and one microliter is one millionth of a Liter. In decimal notation, one microliter is 0.000001 L. In scientific notation, one microliter is 1 x 10-6. A microliter is abbreviated with the symbol !L, which comes from the Greek letter ! (pronounced “mew”). When thinking about a microliter, it may be helpful to first consider a milliliter (mL). A typical transfer pipette, when filled to the base of the bulb as in the diagram, will hold about 1.0 mL of liquid. One thousand microliters will occupy the same one milliliter space! Small plastic tubes with attached caps, called A transfer pipette, microcentrifuge tubes (or microfuge tubes) are filled to the base of used in this activity, and they hold only about 1.5 mL (or 1,500 the bulb (as microliters). In fact, the largest micropipette holds 1,000 !L of indicated by the liquid – a single milliliter! arrow), holds about one milliliter of When you use a measuring instrument, you are comparing an liquid (1.0 mL).
    [Show full text]
  • Titrations Titrations Are Done Often to Find out the Concentration of One Substance by Reacting It with Another Substance of Known Concentration
    Titrations Titrations are done often to find out the concentration of one substance by reacting it with another substance of known concentration. They are often done with neutralisation reactions, but can be done with redox reactions. One substance (generally the one we don’t know the concentration) is put in the conical flask. It is measured using a volumetric burette pipette. The other substance is placed in the burette However, the standard phrase: titrate solution A with solution B means that A should be in the conical conical flask and B should be in the burette. flask A conical flask is used in preference to a beaker because it is easier to swirl the mixture in a conical flask without spilling the contents. pipette Method for Titration Make sure bottom of Using the pipette meniscus is on line on neck of pipette •rinse pipette with substance to go in it (often alkali). •pipette 25 cm3 of solution A into conical flask. The volumetric pipette will have a mark on its neck to show the level to fill to. The bottom of the meniscus should sit on this line. •touch surface of solution with pipette ( to ensure correct amount is added). A small amount of solution will be left in the pipette at this stage. The calibration of the pipette will take into account this effect. It should not be forced out. N Goalby chemrevise.org 1 Using the burette The burette should be rinsed out with substance that will be put in it. If it is not rinsed out the acid or alkali added may be diluted by residual water in the burette or may react with substances left from a previous titration.
    [Show full text]
  • Labfacts 52: Pipettes and Their Calibration
    LABFACTS 52 Pipettes and Their Calibration Pipettes are narrow glass tubes, open at both ends, They are TD pipettes, but are designed for use with Requirements used to transfer and measure liquids by drawing the more viscous fluids such as blood or serum. Etched liquid into the tube. Manual pipettes use separate rings near the mouthpiece of Oswald-Folin pipettes for good bulbs or pumps to draw the liquid into the tube, while signify that they are blow out pipettes, meaning that laboratory semi-automatic pipettes have similar devices built after the liquid has drained, the residual film on the into the pipette. Mouth pipetting, aspirating the liquid wall of the pipette is blown out. practice into the pipette by mouth, is strictly forbidden. Since and COLA laboratory testing often relies on the accurate mea- surement of reagents or specimens, the proper use of Laboratory pipettes is crucial in the operation of an efficient Figure 2--Oswald-Folin pipette laboratory. Accreditation Semi-automatic pipetters are also considered TD programs There are two basic types of pipettes--volumetric and pipettes. These pipettes are available in sizes rang- graduated. Other types of pipettes include Oswald- ing from 0.0005 to 20 ml, and dispense a pre-rated are underlined. Folin pipettes, a type of volumetric pipette, and semi- sample (usually adjusted with a set screw) when their automatic pipetters. plunger is fully depressed. The volume of semi- automatic pipetters can be checked by dispensing a Volumetric pipettes are designed to deliver a single, sample into a graduated cylinder and reading the specific volume of liquid (see Figure 1).
    [Show full text]
  • Andersen Lab Washing Protocols Plastic and Glass Bottles, Flasks, And
    Andersen Washing Protocols March 2013 Andersen Lab Washing Protocols Plastic and glass bottles, flasks, and beakers 1. Check the dirty area by the sink for any dishes that need to be washes 2. For each item: a. Fill up with regular tap water, swirl water around in container, and dump water b. Fill up with regular tap water and add a squirt of 10% Alconox soap c. Swirl soapy water around in container d. Rinse soapy water out with regular tap water until there are no more suds e. Rinse with deionized water (from white tap) 3. Lay each item to dry in the clean dishes area and let air dry 4. Prepare any glass bottles/flasks for autoclaving once they are dry Stir Bars, Spatulas, and Scoops 1. Take pan of dirty spatulas, stir bars, and scoops to the sink. 2. For each item, do the following: a. Rinse in regular water. b. Rinse in distilled water (from the distilled water tap). c. Lay the item on a paper towel-lined tray. 3. Spray all items with 70% ethanol. 4. Wipe items off with a kim-wipe and return to their storage location. 5. Return the pan to hold the dirty spatulas, stir bars, and scoops to the chemical area. Test Tubes 1. The tubes are in a tub of soapy water. 2. For each tube and cap, do the following: a. Scrub the tubes with a test tube brush and rinse out the soapy water. b. Squirt with 95% ethanol. c. Scrub using a test tube brush. d.
    [Show full text]
  • Lab Exercise: Light Absorption, Spectrophotometer, and the Pulse Oximeter
    Lab Exercise: Light Absorption, Spectrophotometer, and the Pulse Oximeter Objectives Determine which characteristics of a medium are important for light absorption. Explain how absorption properties of blood allow for a pulse oximeter to measure oxygen content and the pulse of a patient. Explain why bromothymol blue solution can be used as an analog for blood, based on its light absorption characteristics. Equipment Vernier spectrophotometer Cuvettes for spectrophotometer Distilled water Petri dish or clear plastic cup Salt Pipette Bromothymol blue solution Simulated pulse oximeter device Beaker Vernier light sensors Cuvette tissue for cleaning cuvette surfaces Introduction The Medical Field By the end of this lab you should have a good idea of how a pulse oximeter, a device commonly used in hospitals to measure vital signs of patients, is able to noninvasively measure the change in oxygen content in blood. Due to the difficulties in working with blood, we will instead use bromothymol blue in the lab to make the relevant observations necessary to understand how the pulse oximeter works. Bromothymol blue is a compound that is used as a pH indicator for weak acids and bases. When in a basic solution, Bromothymol blue will appear blue; when it is in a neutral solution it will appear green; and when in an acidic solution it appears yellow. These changes in color can be observed both visibly and with a spectrophotometer. A spectrophotometer is a device that measures the absorbance or percent transmittance of light through a solution. Simply breathing on a solution of Bromothymol blue will introduce carbon dioxide (CO2) from your breath into the solution.
    [Show full text]