FGF23 and Its Role in X-Linked Hypophosphatemia-Related Morbidity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Supp Table 1.Pdf
Upregulated genes in Hdac8 null cranial neural crest cells fold change Gene Symbol Gene Title 134.39 Stmn4 stathmin-like 4 46.05 Lhx1 LIM homeobox protein 1 31.45 Lect2 leukocyte cell-derived chemotaxin 2 31.09 Zfp108 zinc finger protein 108 27.74 0710007G10Rik RIKEN cDNA 0710007G10 gene 26.31 1700019O17Rik RIKEN cDNA 1700019O17 gene 25.72 Cyb561 Cytochrome b-561 25.35 Tsc22d1 TSC22 domain family, member 1 25.27 4921513I08Rik RIKEN cDNA 4921513I08 gene 24.58 Ofa oncofetal antigen 24.47 B230112I24Rik RIKEN cDNA B230112I24 gene 23.86 Uty ubiquitously transcribed tetratricopeptide repeat gene, Y chromosome 22.84 D8Ertd268e DNA segment, Chr 8, ERATO Doi 268, expressed 19.78 Dag1 Dystroglycan 1 19.74 Pkn1 protein kinase N1 18.64 Cts8 cathepsin 8 18.23 1500012D20Rik RIKEN cDNA 1500012D20 gene 18.09 Slc43a2 solute carrier family 43, member 2 17.17 Pcm1 Pericentriolar material 1 17.17 Prg2 proteoglycan 2, bone marrow 17.11 LOC671579 hypothetical protein LOC671579 17.11 Slco1a5 solute carrier organic anion transporter family, member 1a5 17.02 Fbxl7 F-box and leucine-rich repeat protein 7 17.02 Kcns2 K+ voltage-gated channel, subfamily S, 2 16.93 AW493845 Expressed sequence AW493845 16.12 1600014K23Rik RIKEN cDNA 1600014K23 gene 15.71 Cst8 cystatin 8 (cystatin-related epididymal spermatogenic) 15.68 4922502D21Rik RIKEN cDNA 4922502D21 gene 15.32 2810011L19Rik RIKEN cDNA 2810011L19 gene 15.08 Btbd9 BTB (POZ) domain containing 9 14.77 Hoxa11os homeo box A11, opposite strand transcript 14.74 Obp1a odorant binding protein Ia 14.72 ORF28 open reading -
Inhibition of MEPE Cleavage by Phex
_________________________________________________________________________http://www.paper.edu.cn BBRC Biochemical and Biophysical Research Communications 297 (2002) 38–45 www.academicpress.com Inhibition of MEPE cleavage by Phex Rong Guo,a Peter S.N. Rowe,b Shiguang Liu,a Leigh G. Simpson,a Zhou-Sheng Xiao,a and L. Darryl Quarlesa,* a Department of Medicine, The Center for Bone and Mineral Disorders, Duke University Medical Center, Box 3036, Durham, NC 27710, USA b The University of Texas Health Science Center at San Antonio, Institute for Drug Development, Molecular Therapies, Endocrinology, Texas Research Park, 14960 Omicron Drive, 78245 San Antonio, TX, USA Received 7 August 2002 Abstract X-linked hypophosphatemia (XLH) and the Hyp-mouse disease homolog are caused by inactivating mutations of Phex which results in the local accumulation of an unknown autocrine/paracrine factor in bone that inhibits mineralization of extracellular matrix. In these studies, we evaluated whether the matrix phosphoglycoprotein MEPE, which is increased in calvaria from Hyp mice, is a substrate for Phex. Using recombinant full-length Phex (rPhexWT) produced in Sf9 cells, we failed to observe Phex- dependent hydrolysis of recombinant human MEPE (rMEPE). Rather, we found that rPhex-WT inhibited cleavage of rMEPE by endogenous cathepsin-like enzyme activity present in Sf9 membrane. Sf9 membranes as well as purified cathepsin B cleaved MEPE into two major fragments of 50 and 42 kDa. rPhexWT protein in Sf9 membrane fractions, co-incubation of rPhexWT and cathepsin B, and pre-treatment of Sf9 membranes with leupeptin prevented the hydrolysis of MEPE in vitro. The C-terminal domain of Phex was required for inhibition of MEPE cleavage, since the C-terminal deletion mutant rPhex (1–433) [rPhex30M] failed to inhibit Sf9-dependent metabolism of MEPE. -
140503 IPF Signatures Supplement Withfigs Thorax
Supplementary material for Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis Daryle J. DePianto1*, Sanjay Chandriani1⌘*, Alexander R. Abbas1, Guiquan Jia1, Elsa N. N’Diaye1, Patrick Caplazi1, Steven E. Kauder1, Sabyasachi Biswas1, Satyajit K. Karnik1#, Connie Ha1, Zora Modrusan1, Michael A. Matthay2, Jasleen Kukreja3, Harold R. Collard2, Jackson G. Egen1, Paul J. Wolters2§, and Joseph R. Arron1§ 1Genentech Research and Early Development, South San Francisco, CA 2Department of Medicine, University of California, San Francisco, CA 3Department of Surgery, University of California, San Francisco, CA ⌘Current address: Novartis Institutes for Biomedical Research, Emeryville, CA. #Current address: Gilead Sciences, Foster City, CA. *DJD and SC contributed equally to this manuscript §PJW and JRA co-directed this project Address correspondence to Paul J. Wolters, MD University of California, San Francisco Department of Medicine Box 0111 San Francisco, CA 94143-0111 [email protected] or Joseph R. Arron, MD, PhD Genentech, Inc. MS 231C 1 DNA Way South San Francisco, CA 94080 [email protected] 1 METHODS Human lung tissue samples Tissues were obtained at UCSF from clinical samples from IPF patients at the time of biopsy or lung transplantation. All patients were seen at UCSF and the diagnosis of IPF was established through multidisciplinary review of clinical, radiological, and pathological data according to criteria established by the consensus classification of the American Thoracic Society (ATS) and European Respiratory Society (ERS), Japanese Respiratory Society (JRS), and the Latin American Thoracic Association (ALAT) (ref. 5 in main text). Non-diseased normal lung tissues were procured from lungs not used by the Northern California Transplant Donor Network. -
Osteoactivin and Cd44 : a Novel Interaction Regulating Bone Cell Differentiation and Function
OSTEOACTIVIN AND CD44 : A NOVEL INTERACTION REGULATING BONE CELL DIFFERENTIATION AND FUNCTION A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy by Gregory R. Sondag December 2015 © Copyright All rights reserved Except for previously published materials Dissertation written by Gregory R. Sondag B.S., Edinboro Univeristy of Pennsylvania, Edinboro, PA, USA 2010 M.S., Edinboro Univeristy of Pennsylvania, Edinboro, PA, USA 2011 Approved by Fayez Safadi___________________, Chair, Doctoral Dissertation Committee Walt Horton Jr.___________ ______, Members, Doctoral Dissertation Committee James Hardwick ________________, Werner Geldenhuys _____________, Min-Ho Kim __________________ _, Richard Meindl__________________, Accepted by Ernest Freeman_________________, Director, School of Biomedical Sciences James L. Blank__________________, Dean, College of Arts and Sciences TABLE OF CONTENTS TABLE OF CONTENTS ...................................................................................... III LIST OF FIGURES............................................................................................. VII LIST OF TABLES ............................................................................................ XIII LIST OF ABBREVIATIONS .............................................................................. XIV DEDICATION ..................................................................................................... XV ACKNOWLEDGEMENTS ................................................................................ -
Comparative Transcriptome Analyses Reveal Genes Associated with SARS-Cov-2 Infection of Human Lung Epithelial Cells
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.169268; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Comparative transcriptome analyses reveal genes associated with SARS-CoV-2 infection of human lung epithelial cells Darshan S. Chandrashekar1, *, Upender Manne1,2,#, Sooryanarayana Varambally1,2,3,#* 1Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 2Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 3Institute of Informatics, University of Alabama at Birmingham, Birmingham, AL # Share Senior Authorship (UM Email: [email protected]) *Correspondence to: Sooryanarayana Varambally, Ph.D., Molecular and Cellular Pathology, Department of Pathology, Wallace Tumor Institute, 4th floor, 20B, University of Alabama at Birmingham, Birmingham, AL 35233, USA Phone: (205) 996-1654 Email: [email protected] And Darshan S. Chandrashekar Ph.D., Department of Pathology, University of Alabama at Birmingham, Birmingham, AL Email: [email protected] Running Title: SARS-CoV-2 gene signature in infected lung epithelial cells Disclosure of Potential Conflicts of Interest: No potential conflicts of interest were disclosed. Page | 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.06.24.169268; this version posted June 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Understanding the molecular mechanism of SARS-CoV-2 infection (the cause of COVID-19) is a scientific priority for 2020. Various research groups are working toward development of vaccines and drugs, and many have published genomic and transcriptomic data related to this viral infection. -
Soluble Klotho Causes Hypomineralization in Klotho-Deficient Mice
237 3 Journal of T Minamizaki, Y Konishi sKL causes hypomineralization 237:3 285–300 Endocrinology et al. in kl/kl mice RESEARCH Soluble Klotho causes hypomineralization in Klotho-deficient mice Tomoko Minamizaki1,*, Yukiko Konishi1,2,*, Kaoru Sakurai1,2, Hirotaka Yoshioka1, Jane E Aubin3, Katsuyuki Kozai2 and Yuji Yoshiko1 1Department of Calcified Tissue Biology, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan 2Department of Pediatric Dentistry, School of Dentistry, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan 3Department of Molecular Genetics, University of Toronto, 1 King’s College Circle, Toronto, Canada Correspondence should be addressed to Y Yoshiko: [email protected] *(T Minamizaki and Y Konishi contributed equally to this work) Abstract The type I transmembrane protein αKlotho (Klotho) serves as a coreceptor for the Key Words phosphaturic hormone fibroblast growth factor 23 (FGF23) in kidney, while a truncated f FGF23 form of Klotho (soluble Klotho, sKL) is thought to exhibit multiple activities, including f Klotho acting as a hormone, but whose mode(s) of action in different organ systems remains to f Phex be fully elucidated. FGF23 is expressed primarily in osteoblasts/osteocytes and aberrantly f kl/kl mice high levels in the circulation acting via signaling through an FGF receptor (FGFR)-Klotho coreceptor complex cause renal phosphate wasting and osteomalacia. We assessed the effects of exogenously added sKL on osteoblasts and bone using Klotho-deficient kl/kl( ) mice and cell and organ cultures. sKL induced FGF23 signaling in bone and exacerbated the hypomineralization without exacerbating the hyperphosphatemia, hypercalcemia and hypervitaminosis D in kl/kl mice. -
Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................ -
Ultra-Processed Food Targets Bone Quality Via Endochondral Ossification
Bone Research www.nature.com/boneres ARTICLE OPEN Ultra-processed food targets bone quality via endochondral ossification Janna Zaretsky1, Shelley Griess-Fishheimer1, Adi Carmi1, Tamara Travinsky Shmul1, Lior Ofer2, Tali Sinai1, Svetlana Penn1, Ron Shahar2 and Efrat Monsonego-Ornan 1 Ultra-processed foods have known negative implications for health; however, their effect on skeletal development has never been explored. Here, we show that young rats fed ultra-processed food rich in fat and sugar suffer from growth retardation due to lesions in their tibial growth plates. The bone mineral density decreases significantly, and the structural parameters of the bone deteriorate, presenting a sieve-like appearance in the cortices and poor trabecular parameters in long bones and vertebrae. This results in inferior mechanical performance of the entire bone with a high fracture risk. RNA sequence analysis of the growth plates demonstrated an imbalance in extracellular matrix formation and degradation and impairment of proliferation, differentiation and mineralization processes. Our findings highlight, for the first time, the severe impact of consuming ultra-processed foods on the growing skeleton. This pathology extends far beyond that explained by the known metabolic effects, highlighting bone as a new target for studies of modern diets. Bone Research (2021) ;9:14 https://doi.org/10.1038/s41413-020-00127-9 1234567890();,: INTRODUCTION penetration of blood vessels and bone tissue formation by The vertebrate skeleton has evolved as a dynamic system that osteoblasts.1,2,4,6 The EO process is tightly orchestrated by various serves numerous functions, such as protecting internal organs, signaling molecules and transcription factors, including transform- creating attachment sites for muscles to produce locomotion, ing growth factor β/bone morphogenetic protein (BMP), fibroblast providing a reservoir for minerals, and serving as a hematopoietic growth factor (FGF), Wnt, hedgehog, and the transcription factor niche. -
Effects of PHEX Antisense in Human Osteoblast Cells
J Am Soc Nephrol 13: 394–399, 2002 Effects of PHEX Antisense in Human Osteoblast Cells NENGJEN REMI SHIH, OAK D. JO, and NORIMOTO YANAGAWA Medical and Research Services, Sepulveda Veterans Administration Medical Center, Sepulveda, California; and Department of Medicine, School of Medicine, University of California at Los Angeles, Los Angeles, California. Abstract. X-linked hypophosphatemia (XLH) is an X-linked produced and stably transfected with PHEX-antisense vectors, dominant disorder that is characterized by rachitic bone disease resulting in a decrease in PHEX expression at mRNA and and hypophosphatemia due to renal phosphate transport defect. protein levels. It was found that these antisense-transfected The candidate gene for XLH, PHEX, has recently been iden- cells had impaired mineralization, with a decrease in 45Ca tified and found to share high homology with endopeptidases. incorporation and calcification nodule formation. It was also PHEX is expressed in various tissues, including bones, and the found that the conditioned culture media collected from these available evidence today indicates that bones can release ab- antisense-transfected cells exhibited inhibitory activities on normal humoral factors that affect bone mineralization and 45Ca incorporation by the nontransfected MG-63 cells and 32P proximal tubule phosphate transport in XLH. It was, therefore, uptake by the opossum kidney proximal tubular cells. The hypothesized that the inactivating mutations of PHEX in bone results of the study, therefore, provide strong evidence that may lead to the release of humoral factors and contribute to the supports the link between PHEX mutations and the pathogen- phenotypic expression of the disease. To test this possibility, esis of XLH. -
Periapical Bone Response to Bacterial Lipopolysaccharide Is Shifted Upon Cyclooxygenase Blockage
Original Article http://dx.doi.org/10.1590/1678-7757-2018-0641 Periapical bone response to bacterial lipopolysaccharide is shifted upon cyclooxygenase blockage Abstract Fernanda Regina Objectives: Infection, inflammation and bone resorption are closely related events in apical periodontitis development. Therefore, we sought RIBEIRO-SANTOS1,2 to investigate the role of cyclooxygenase (COX) in osteoclastogenesis Geyson Galo da SILVA1 and bone metabolism signaling in periapical bone tissue after bacterial Igor Bassi Ferreira PETEAN1 lipopolysaccharide (LPS) inoculation into root canals. Methodology: Seventy 1 Maya Fernanda Manfrin ARNEZ two C57BL/6 mice had the root canals of the first molars inoculated with Léa Assed Bezerra da SILVA1 a solution containing LPS from E. coli (1.0 mg/mL) and received selective Lúcia Helena FACCIOLI3 (celecoxib) or non-selective (indomethacin) COX-2 inhibitor. After 7, 14, Francisco Wanderley Garcia 21 and 28 days the animals were euthanized and the tissues removed for total RNA extraction. Evaluation of gene expression was performed by qRT- PAULA-SILVA1,3 PCR. Statistical analysis was performed using analysis of variance (ANOVA) followed by post-tests (α=0.05). Results: LPS induced expression of mRNA for COX-2 (Ptgs2) and PGE2 receptors (Ptger1, Ptger3 and Ptger4), indicating that cyclooxygenase is involved in periapical response to LPS. A signaling that favours bone resorption was observed because Tnfsf11 (RANKL), Vegfa, Ctsk, Mmp9, Cd36, Icam, Vcam1, Nfkb1 and Sox9 were upregulated in response to LPS. Indomethacin and celecoxib differentially modulated expression of osteoclastogenic and other bone metabolism genes: celecoxib downregulated Igf1r, Ctsk, Mmp9, Cd36, Icam1, Nfkb1, Smad3, Sox9, Csf3, Vcam1 and Itga3 whereas indomethacin inhibited Tgfbr1, Igf1r, Ctsk, Mmp9, Sox9, Cd36 and Icam1. -
Improving the Diagnosis of X-Linked Hypophosphatemia
AboutOpen | 2021; 8: 29-33 ISSN 2465-2628 | DOI: 10.33393/ao.2021.2235 Rare Diseases ORIGINAL RESEARCH ARTICLE Improving the diagnosis of X-linked hypophosphatemia: recommendations to optimize diagnostic flow and clinician/geneticist cooperation in the Italian clinical practice Emanuele Agolini1, Roberto Chimenz2, Danilo Fintini3, Vito Guarnieri4, Laura Guazzarotti5, Stefano Mora6, Leonardo Salviati7, Giovanna Weber8 1Medical Genetics Laboratory, IRCCS Ospedale Pediatrico Bambino Gesù, Rome - Italy 2Pediatric Nephrology Unit, Azienda Ospedaliera Universitaria G. Martino, Messina - Italy 3Endocrinology Unit, University Pediatric Hospital Department, IRCCS Ospedale Pediatrico Bambino Gesù, Rome - Italy 4Medical Genetics Division, Fondazione IRCCS Casa Sollievo della Sofferenza di San Giovanni Rotondo, Foggia - Italy 5Clinical Pediatric Unit, Azienda Ospedaliera Universitaria di Padova, Padua - Italy 6Pediatric Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan - Italy 7Clinical Genetics Unit, Department of Women and Children’s Health, University of Padova, Padua - Italy 8Vita-Salute San Raffaele University, Department of Pediatrics, IRCCS Ospedale San Raffaele, Milan - Italy ABSTRACT Objective: To provide Italian expert opinion-based practical recommendations to improve the cooperation between clinicians and geneticists in order to optimize diagnostic flow and care of X-linked hypophosphatemia (XLH). Methods: A panel of four geneticists and four clinicians from Italian reference centers for the diagnosis and man- agement of XLH met virtually, first to highlight the critical issues in patient care and then to identify and share proposals to improve the diagnostic and care path of XLH. Results: Critical issues emerged regarding the transfer of adequate clinical information from clinicians to geneti- cists, standardization and clarity of genetic reporting, and adequate interactions between clinicians and geneti- cists during patients’ follow-up.