1. Padil Species Factsheet Scientific Name: Common Name Image Library Partners for Australian Pollinators Image Library

Total Page:16

File Type:pdf, Size:1020Kb

1. Padil Species Factsheet Scientific Name: Common Name Image Library Partners for Australian Pollinators Image Library 1. PaDIL Species Factsheet Scientific Name: Leiopodus singularis (Linsley & Michener, 1937) (Hymenoptera: Apidae: Apinae: Protepeolini) Common Name Tribe Representative - Protepeolini Live link: http://www.padil.gov.au/pollinators/Pest/Main/139824 Image Library Australian Pollinators Live link: http://www.padil.gov.au/pollinators/ Partners for Australian Pollinators image library Western Australian Museum https://museum.wa.gov.au/ South Australian Museum https://www.samuseum.sa.gov.au/ Australian Museum https://australian.museum/ Museums Victoria https://museumsvictoria.com.au/ 2. Species Information 2.1. Details Specimen Contact: Museum Victoria - [email protected] Author: Ken Walker Citation: Ken Walker (2010) Tribe Representative - Protepeolini(Leiopodus singularis)Updated on 8/14/2010 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/pollinators/Pest/Main/139824 2.3. Facets Bio-Region: Central and South America Host Family: Not recorded Host Genera: Cleptoparasitic Status: Exotic Species not in Australia Bio-Regions: Neotropical Body Hair and Scopal location: Scopa absent Cleptoparasite: Yes - all species Episternal groove: Present but not extending below scrobal groove Wings: Submarginal cells - Three, Apex of marginal cell truncate or rounded, Hairy, Hind wing with second abscissa of M + Cu greater than half as long as vein M, Stigma significantly larger than prestigma Head - Structures: One subantennal suture below each antennal socket Legs: Arolia present, Middle coxa fully exposed Metasoma & Metanotum: Pygidial plate absent, S6 curved to form tubular guide for sting Head - Mouthparts: Galeal comb absent, Stipial comb present, Labrum broader than long, Lorum V shaped; mentum tapered Male Genitalia: S7 apical lobes and discs reduced Nests, Ovarioles & Immatures: Parasitic, Ovarioles per ovary equals 4 or more Larval provisions: Parasitic on other bees 2.4. Diagnostic Notes The subfamily Apinae consists of the corbiculate Apidae and taxa from the Anthophoridae. There is no known unique subfamily character that is present in all species, many such useful characters are lost in the cleptoparasitic species. Most species have a pygidial plate and well developed prepygidial fimbriae. The scopa is restricted to the hind leg and basitarsus. Source: Michener (2007). Bees of the World. John Hopkins University Press. 3. Diagnostic Images Results Generated: Sunday, October 3, 2021 .
Recommended publications
  • Efectos De La Fragmentación Del Hábitat Sobre Himenópteros Antófilos (Insecta) En El Bosque Chaqueño Serrano
    Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Doctorado en Ciencias Biológicas Manuscrito de Tesis para optar al título de Dra. en Ciencias Biológicas Efectos de la fragmentación del hábitat sobre himenópteros antófilos (Insecta) en el Bosque Chaqueño Serrano Doctorando: Bióloga Mariana Laura Musicante Directora: Dra. Adriana Salvo Co-Director: Dr. Leonardo Galetto Centro de Investigaciones Entomológicas de Córdoba (CIEC) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Córdoba, Argentina 2013 Comisión Asesora Dr. Marcelo Aizen Laboratorio Ecotono-Centro Regional Universitario Bariloche (CRUB), Universidad Nacional del Comahue e Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), San Carlos de Bariloche. Departamento de Botánica, Museo Argentino de Ciencias Naturales, Buenos Aires. Dr. Marcelo Cabido Instituto Multidisciplinario de Biología Vegetal-CONICT. Universidad Nacional de Córdoba. Dra. Adriana Salvo Centro de Investigaciones Entomológicas de Córdoba. Instituto Multidisciplinario de Biología Vegetal-CONICT Universidad Nacional de Córdoba. Defensa Oral y Pública Lugar y fecha: Calificación: Tribunal ______________________________ _____________________________________ Firma Aclaración ______________________________ _____________________________________ Firma Aclaración ______________________________ ____________________________________ Firma Aclaración A esos pequeños seres que zumbaban ayer y a los que todavía zumban hoy Efectos de la fragmentación del hábitat
    [Show full text]
  • Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2640, pp. 1-24, figs. 1-36, tables 1-3 January 3, 1978 The Bionomics and Immature Stages of the Cleptoparasitic Bee Genus Protepeolus (Anthophoridae, Nomadinae) JEROME G. ROZEN, JR.,' KATHLEEN R. EICKWORT,2 AND GEORGE C. EICKWORT3 ABSTRACT Protepeolus singularis was found attacking cells numerous biological dissimilarities. The first in- in nests of Diadasia olivacea in southeastern Ari- star Protepeolus attacks and kills the pharate last zona. The following biological information is pre- larval instar of the host before consuming the sented: behavior of adult females while searching provisions, a unique feature for nomadine bees. for host nests; intraspecific interactions of fe- First and last larval instars and the pupa are males at the host nesting site; interactions with described taxonomically and illustrated. Brief host adults; oviposition; and such larval activities comparative descriptions of the other larval in- as crawling, killing the host, feeding, defecation, stars are also given. Larval features attest to the and cocoon spinning. In general, adult female be- common origin of Protepeolus and the other havior corresponds to that of other Nomadinae. Nomadinae. Cladistic analysis using 27 characters Females perch for extended periods near nest of mature larvae of the Nomadinae demonstrates entrances and avoid host females, which attack that Isepeolus is a sister group to all the other parasites when encountered. Females apparently Nomadinae known from larvae, including Pro- learn the locations of host nests and return to tepeolus, and that Protepeolus is a sister group to them frequently.
    [Show full text]
  • Diversity and Distribution of Hymenoptera Aculeata in Midwestern Brazilian Dry Forests
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/264895151 Diversity and Distribution of Hymenoptera Aculeata in Midwestern Brazilian Dry Forests Chapter · September 2014 CITATIONS READS 2 457 6 authors, including: Rogerio Silvestre Manoel F Demétrio UFGD - Universidade Federal da Grande Dourados UFGD - Universidade Federal da Grande Dourados 41 PUBLICATIONS 539 CITATIONS 8 PUBLICATIONS 27 CITATIONS SEE PROFILE SEE PROFILE Bhrenno Trad Felipe Varussa de Oliveira Lima UFGD - Universidade Federal da Grande Dourados 4 PUBLICATIONS 8 CITATIONS 8 PUBLICATIONS 8 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Phylogeny and Biogeography of genus Eremnophila Menke, 1964 (HYMENOPTERA: Sphecidae) View project Functional diversity, phylogeny, ethology and biogeography of Hymenoptera in the chacoan subregion View project All content following this page was uploaded by Rogerio Silvestre on 28 November 2014. The user has requested enhancement of the downloaded file. 28 R. Silvestre, M. Fernando Demétrio, B. Maykon Trad et al. ENVIRONMENTAL HEALTH - PHYSICAL, CHEMICAL AND BIOLOGICAL FACTORS DRY FORESTS ECOLOGY, SPECIES DIVERSITY AND SUSTAINABLE MANAGEMENT FRANCIS ELIOTT GREER EDITOR Copyright © 2014 by Nova Science Publishers, Inc. Diversity and Distribution of Hymenoptera Aculeata ... 29 In: Dry Forests ISBN: 978-1-63321-291-6 Editor: Francis Eliott Greer © 2014 Nova Science Publishers, Inc. Chapter 2 DIVERSITY AND DISTRIBUTION
    [Show full text]
  • The Very Handy Bee Manual
    The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection A Collective and Ongoing Effort by Those Who Love to Study Bees in North America Last Revised: October, 2010 This manual is a compilation of the wisdom and experience of many individuals, some of whom are directly acknowledged here and others not. We thank all of you. The bulk of the text was compiled by Sam Droege at the USGS Native Bee Inventory and Monitoring Lab over several years from 2004-2008. We regularly update the manual with new information, so, if you have a new technique, some additional ideas for sections, corrections or additions, we would like to hear from you. Please email those to Sam Droege ([email protected]). You can also email Sam if you are interested in joining the group’s discussion group on bee monitoring and identification. Many thanks to Dave and Janice Green, Tracy Zarrillo, and Liz Sellers for their many hours of editing this manual. "They've got this steamroller going, and they won't stop until there's nobody fishing. What are they going to do then, save some bees?" - Mike Russo (Massachusetts fisherman who has fished cod for 18 years, on environmentalists)-Provided by Matthew Shepherd Contents Where to Find Bees ...................................................................................................................................... 2 Nets ............................................................................................................................................................. 2 Netting Technique ......................................................................................................................................
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Species Index R
    663 NOMINA INSECTA NEARCTICA russata Townes Lissonota (Ichneumonidae) Lissonota sabax Kieffer Plastogryon (Scelionidae) Gryon misellum russatus Bohart Odynerus (Vespidae) Leucodynerus sabeana Buckley Myrmica (Formicidae) Solenopsis xyloni russatus Cresson Ichneumon (Ichneumonidae) Cratichneumon sabina Gittins Mimesa (Sphecidae) Mimesa russellensis Roberts Sapyga (Sapygidae) Sapyga angustata sabinasae Scullen Eucerceris (Sphecidae) Eucerceris lacunosa russelli Burks Brachymeria (Chalcididae) Brachymeria sabinensis Cockerell Melissodes (Anthophoridae) Svastra russelli Crawford Physothorax (Torymidae) Physothorax sabinensis Mitchell Megachile (Megachilidae) Megachile russelli Crawford Thripoctenus (Eulophidae) Ceranisus sabino Schuster Sphaeropthalma (Mutillidae) Sphaeropthalma russeola Mickel Pseudomethoca (Mutillidae) Pseudomethoca sabroskyi Fischer Opius (Braconidae) Opius russeolus Krombein Gorytes (Sphecidae) Gorytes dorothyae sabulosus Dasch Mesochorus (Ichneumonidae) Mesochorus russeus Townes Exochus (Ichneumonidae) Exochus sabulus Sanborne Sinophorus (Ichneumonidae) Sinophorus russeus Townes Gateruption [sic] (Gasteruptiidae) Gasteruption sacatona Caldwell Pseudomethoca (Mutillidae) Pseudomethoca kirbii propinqua russeus Townes Hemiteles (Ichneumonidae) Hemiteles subglaber saccata Viereck Andrena (Andrenidae) Andrena russipes Bohart Odynerus (Vespidae) Cephalodynerus sacchari Myers Microdus (Braconidae) Alabagrus stigma russulus Bohart Dienoplus (Sphecidae) Dienoplus saccharicola Gahan Blepyrus (Encyrtidae) Blepyrus russulus Bohart
    [Show full text]
  • Classification of the Bees Or the Superfamily Apoidea
    Utah State University DigitalCommons@USU An Bee Lab 5-1-1899 Classification of the Bees or the Superfamily Apoidea William H. Ashmead Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_an Part of the Entomology Commons Recommended Citation Ashmead, William H., "Classification of the Bees or the Superfamily Apoidea" (1899). An. Paper 68. https://digitalcommons.usu.edu/bee_lab_an/68 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in An by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SG • V CLASSIFICATION OF THE BEES OR THE Superfamily APOIDEA By WILLIAM H. ASHMEAD. [Transactions American Entomological Society, XXVI, 1899.] .,, ~roperty of ~- E. BoHARi l l -J CLASSIFICATION OF THE BEES. -HJ CLASSI F I CATION O F T H E B EES, Olt T HE SUP ERFAlUILY A POIDEA. BY WILLIAM II. ASHMEAD. In the Journal of the New York Entomological Society, for March, 1 99, I separate<l the Hymenoptera into ten superfamilie, . The firct of these or the Apoi<lea comprise the bees, among which, especially among the social bees, are to be found probably the h ighe t or most specialized type in the orcler; hence my rea on for beginning the cla ification of the Hymenoptera with these in ects. Our own bee , an<l in leecl the bees of most countries, except tho,e of the European fauna, are but little tudied and very imperfectly known. Thomas Say, Frederick Smith, Ezra T.
    [Show full text]
  • Comparative Morphology of the Head Glands in Species of Protepeolini and Emphorini (Hymenoptera: Apidae) Gerónimo Galvani, Beatriz Settembrini
    Comparative morphology of the head glands in species of Protepeolini and Emphorini (Hymenoptera: Apidae) Gerónimo Galvani, Beatriz Settembrini To cite this version: Gerónimo Galvani, Beatriz Settembrini. Comparative morphology of the head glands in species of Protepeolini and Emphorini (Hymenoptera: Apidae). Apidologie, Springer Verlag, 2013, 44 (4), pp.367-381. 10.1007/s13592-012-0188-z. hal-01201307 HAL Id: hal-01201307 https://hal.archives-ouvertes.fr/hal-01201307 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2013) 44:367–381 Original article * INRA, DIB and Springer-Verlag France, 2013 DOI: 10.1007/s13592-012-0188-z Comparative morphology of the head glands in species of Protepeolini and Emphorini (Hymenoptera: Apidae) 1,2 1,2 Gerónimo L. GALVANI , Beatriz P. SETTEMBRINI 1Museo Argentino de Ciencias Naturales, Avenida Ángel Gallardo 470, C1405DJR, Ciudad de Buenos Aires, Argentina 2Facultad de Ciencias Biomédicas, Universidad Austral, Presidente Perón 1500, B1629AHJ, Pilar, Provincia de Buenos Aires, Argentina Received 3 September 2012 – Revised 16 November 2012 – Accepted 17 December 2012 Abstract – The tribe Protepeolini is formed by parasitic bees with Leiopodus being the only genus of the tribe.
    [Show full text]
  • Bee Community and Trophic Resources in Joinville, Santa Catarina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Portal de Periódicos da UNIVILLE (Universidade da Região de Joinville) Acta Biológica Catarinense 2017 Jan-Jun;4(1):29-41 Bee community and trophic resources in Joinville, Santa Catarina Comunidade de abelhas e recursos tróficos em Joinville, Santa Catarina Bruna Tereza POSSAMAI1; Enderlei DEC1 & Denise Monique Dubet da Silva MOUGA1, 2 ABSTRACT Recebido: 16 dez. 2016 Aiming to verify the relationships between native bees and floral resources in an urban Aceito: 17 abr. 2017 area, their interactions were observed in Joinville, state of Santa Catarina, southern Brazil. Observations were established, lasting 8 hours daily, during different periods from 2009 to 2015. Bees and plants, after preparation, were identified and registered in a database. We sampled 3,073 bees, all of which 1042 were wild native species. The collected bees are included in 34 species and 44 morphospecies (Halictinae-35, Megachilinae-17, Apinae non corbiculate-15, Apinae corbiculate- 10, Andreninae-1). With the exception of Apis mellifera, the most abundant bee taxa sampled were Trigona spinipes (330 individuals), Xylocopa brasilianorum (92) and Pseudaugochlora graminea (92). Euglossini females and species poorly sampled in inventories such as Leiopodus lacertinus, Thygater (Thygater) armandoi, Anthodioctes megachiloides and Coelioxys aculeaticeps were captured. The bees were sampled over 83 botanical species of 38 families. The most visited botanical families were Lamiaceae and Asteraceae. The richness of the studied area is lower than those of other nearby compared places, indicating probably a decrease of the apifauna. The found diversity previews the place as a possible refuge.
    [Show full text]
  • The Bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a Species List and Comparative Notes Regarding Their Distribution1
    Apidologie 31 (2000) 579–592 579 © INRA/DIB-AGIB/EDP Sciences Original article The bees of the Caatinga (Hymenoptera, Apoidea, Apiformes): a species list and comparative notes regarding their distribution1 Fernando C.V. ZANELLA* Departamento de Engenharia Florestal, Universidade Federal da Paraíba, Cx. P. 64. 58700-970 Patos, Paraíba, Brazil (Received 27 July 1999; revised 30 May 2000; accepted 23 June 2000) Abstract – A list of bee species recorded in the Caatinga region is presented, including literature and new data. Caatinga is a xerophilous vegetation characteristic of the semi-arid region of Northeastern Brazil. The species richness of its bee fauna is comparatively low with about 187 species and 77 genera (114 species and 45 genera of Apidae, 35 and 9 of Megachilidae, 18 and 7 of Halictidae, 13 and 9 of Colletidae, and 8 and 7 of Andrenidae). Some genera, that are well diversified and rela- tively common in the Cerrado, an adjacent but more humid biome also characterized by open vege- tation, are not recorded or rare in the Caatinga, e.g. Epicharis, Monoeca, Paratetrapedia and Tetra- pedia. By contrast the genera Diadasina, Melitoma and Leiopodus are relatively well diversified in the Caatinga. diversity / biogeography / dry region / Brazil / South America 1. INTRODUCTION surveys, there are no lists of bee species for the major Brazilian biomes. The few com- Since the 1960s many surveys of bees pilations refer to political units like those and bee flowers have been made in Brazil, for the States of Rio Grande do Sul [41] and mainly in the Southern and Southeastern São Paulo [24].
    [Show full text]
  • NL Bijen H20 Literatuur.Pdf
    HOOFDSTUK 20 LITERATUUR Achterberg, C. van Can Townes type malaise traps be im- Alford, D.V. Bumblebees. – Davis-Poynter, London. proved? Some recent developments. – Entomologische Berichten : Al-Ghzawi, A., S. Zaitoun, S. Mazary, M. Schindler & D. Witt- -. mann Diversity of bees (Hymenoptera, Apiformes) in extensive Achterberg, C. van & T.M.J. Peeters Naamgeving, verwant- orchards in the highlands of Jordan. – Arxius de Miscellània Zoològica schappen en diversiteit. – In: T.M.J. Peeters, C. van Achterberg, : -. W.R.B. Heitmans, W.F. Klein, V. Lefeber, A.J. van Loon, A.A. Mabe- Almeida, E.A.B. a Colletidae nesting biology (Hymenoptera: lis, H. Nieuwenhuijsen, M. Reemer, J. de Rond, J. Smit & H.H.W. Apoidea). – Apidologie : -. Velthuis, De wespen en mieren van Nederland (Hymenoptera: Acule- Almeida, E.A.B. b Revised species checklist of the Paracolletinae ata). Nederlandse Fauna . Nationaal Natuurhistorisch Museum Na- (Hymenoptera, Colletidae) of the Australian region, with the descrip- turalis, Uitgeverij & European Invertebrate Survey-Nederland, tion of new taxa. – Zootaxa : -. Leiden: -. Almeida, E.A.B. & B.N. Danforth Phylogeny of colletid bees Adriaens, T. & D. Laget To bee or not to bee. Mogelijkheden (Hymenopera: Colletidae) inferred from four nuclear genes. – Molecu- voor het houden van bijenvolken in natuurgebieden: een inschatting. lar Phylogenetics and Evolution : -. – Advies van het Instituut voor Natuur- en Bosonderzoek, Almeida, E.A.B., L. Packer & B.N. Danforth Phylogeny of the INBO.A... Xeromelissinae (Hymenoptera: Colletidae) based upon morphology Aizen, M.A. & L.D. Harder The global stock of domesticated and molecules. – Apidologie : -. honey bees is growing slower than agricultural demand for pollination. Almeida, E.A.B., M.R.
    [Show full text]
  • Macropis Cuckoo Bee (Epeoloides Pilosulus) in Canada, Prepared Under Contract with Environment Canada
    COSEWIC Assessment and Status Report on the Macropis Cuckoo Bee Epeoloides pilosulus in Canada ENDANGERED 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Macropis Cuckoo Bee Epeoloides pilosulus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. ix + 25 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Cory S. Sheffield for writing the status report on the Macropis Cuckoo Bee (Epeoloides pilosulus) in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Laurence Packer, Co-chair of the COSEWIC Arthropods Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’Abeille-coucou de Macropis (Epeoloides pilosulus) au Canada. Cover illustration/photo: Macropis Cuckoo Bee — ©Cory S. Sheffield. ©Her Majesty the Queen in Right of Canada, 2011. Catalogue No. CW69-14/628-2011E-PDF ISBN 978-1-100-18682-5 Recycled paper COSEWIC Assessment Summary Assessment Summary – May 2011 Common name Macropis Cuckoo Bee Scientific name Epeoloides pilosulus Status Endangered Reason for designation This species is a habitat specialist, requiring both a suitable host (Macropis bees) and their host’s foodplant. The foodplant requires moist habitat and the host bee requires sunny, sandy slopes for its nest site.
    [Show full text]