T E S I S Doctor En Ciencias
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xhaie'ican%Mllsllm
XhAie'ican1ox4tate%Mllsllm PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK 24, N.Y. NUMBER 2 244 MAY I9, I 966 The Larvae of the Anthophoridae (Hymenoptera, Apoidea) Part 2. The Nomadinae BY JEROME G. ROZEN, JR.1 The present paper is the second of a series that treats the phylogeny and taxonomy of the larvae belonging to the bee family Anthophoridae. The first (Rozen, 1965a) dealt with the pollen-collecting tribes Eucerini and Centridini of the Anthophorinae. The present study encompasses the following tribes, all of which consist solely of cuckoo bees: Protepeolini, Epeolini, Nomadini, Ammobatini, Holcopasitini, Biastini, and Neolarrini. For reasons presented below, these tribes are believed to represent a monophyletic group, and consequently all are placed in the Nomadinae. It seems likely that the cleptoparasitic tribes Caenoprosopini, Ammoba- toidini, Townsendiellini, Epeoloidini, and Osirini are also members of the subfamily, although their larvae have not as yet been collected. Although the interrelationships of the numerous taxa within the Nomadinae need to be re-evaluated, the tribal concepts used by Michener (1944) are employed here. Adjustments in the classifications will certainly have to be made in the future, however, for Michener (1954) has already indicated, for example, that characters of the adults in the Osirini, the Epeolini, and the Nomadini intergrade. The affinities of the Nomadinae with the other subfamilies of the Antho- phoridae will be discussed in the last paper of the series. Because of char- 1 Curator, Department of Entomology, the American Museum of Natural History. 2 AMERICAN MUSEUM NOVITATES NO. -
Polarization Microscopy and Infrared Microspectroscopy of Integument Coverings of Diapausing Larvae in Two Distantly Related Nonsocial Bees
Microscopy and Microanalysis (2018), 24,75–81 doi:10.1017/S1431927618000053 Micrographia Polarization Microscopy and Infrared Microspectroscopy of Integument Coverings of Diapausing Larvae in Two Distantly Related Nonsocial Bees Maria Luiza S. Mello1, Benedicto de Campos Vidal1 and Jerome G. Rozen, Jr.2 1Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil and 2Division of Invertebrate Zoology, American Museum of Natural History, Central Park West, 79th St., New York, NY 10024, USA Abstract The larvae of the two distantly related nonsocial bees Ericrocis lata (Apidae) and Hesperapis (Carinapis) rhodocerata (Melittidae), which develop mostly under arid desert areas of North America, and that differ in that they either spin (E. lata) or do not spin (H. rhodocerata) protective cocoons before entering diapause, produce transparent films that cover the larval integument. To understand the nature of these films, their responses to topochemical tests and their characteristics when examined with fluorescence and high-performance polarization microscopy and microspectroscopy were studied. A positive staining by Sudan black B, birefringence of negative sign, and a Fourier transform-infrared (FT-IR) spectrum typical of lipids were detected for the integument covering of both species. The FT-IR signature, particularly, suggests a wax chemical composition for these lipid coverings, resembling the waxes that are used as construction materials in the honey cells produced by social bees. Considering the arid environmental conditions under which these larvae develop, we hypothesize that their covering films may have evolved as protection against water depletion. This hypothesis seems especially appropriate for H. rhodocerata larvae, which are capable of undergoing a long diapause period in the absence of a protective cocoon. -
Tate Plant Board
LIBRARY TATE PLANT BOARD E-479 June 1939 United States Department of Agriculture Bureau of Entomology and Plant Quarantine AIDS TO THE IDENTIFICATION OF THE MORMON AND COULEE CRICKETS AND THEIR ALLIES (ORTHOPTERA; TETTIGONIIDAE, GRYLLACRIDIDAE) By Ashley B. Gurney, Division of Insect Identification Introduction In field work with the Mormon cricket (Anabrus simplex Hald.) and the coulee cricket (Peranabrus scabricollis (Thos.)), it is important to distinguish the two species from each other and from several allied genera and species of Orthoptera. In this paper identification keys, descriptions, notes on known distribution, and illustrations are presented for the purpose of aiding in the identification of these species. In some cases it is inm- possible at present to be sure whether certain specimens which have been studied represent two distinct species or whether they are subspecies of the same one. An attempt has been made to explain such difficulties, and to suggest what specimens will be most helpful in adding to our knowledge of the taxonomic position and geographical distribution of those forms. The principal genera discussed, in addition to the most important ones, Anabrus and Peranabrus, are Apote, Steiroxys, Pediodectes, and Eremopedes. The present paper will be more useful to field workers if a short time is given to studying identified material of several species, so that the important distinctions may be learned by comparison with specimens. The paper is the outgrowth of a study of collections made in 1938 by field work— ers in 10 Western States, who brought together large and important series of several species and genera. Caudell (1907) monographed the Decticinae of North America, and, as regards the species of immediate concern to the Mormon cricket problen, there have been few taxonomic changes. -
First Observations on Nesting and Immatures of the Bee Genus Ancyla (Apoidea: Apidae: Apinae: Ancylaini)
AMERICAN MUSEUM NOVITATES Number 3749, 24 pp. June 25, 2012 First Observations on Nesting and Immatures of the Bee Genus Ancyla (Apoidea: Apidae: Apinae: Ancylaini) JAKUB STRAKA1 AND JEROME G. RoZEN, JR.2 ABSTRACT Herein we present information on the nest architecture and nesting biology primarily of Ancyla asiatica Friese and, to a lesser extent, of A. anatolica Warncke, both found near Adana, Turkey. These two ground-nesting species visit Apiaceae for mating and larval provisions, with A. asiatica going to Daucus carota and A. anatolica, to Eryngium. The cocoon of A. asiatica is described in detail as are the mature oocytes of both species and the pre- and postdefecating larvae of A. asiatica. Each site was attacked by a separate, unnamed cleptoparasitic species of Ammobates (Nomadinae). The relationships of the Ancylaini to other apine tribes are discussed based on their mature larvae, and a revised tribal key to mature larvae of nonparasitic, noncor- biculate Apinae is presented. INTRODUCTION Of all tribes of nonparasitic Apidae, the natural history of the Ancylaini3 has been the least investigated. Until now, nothing has been recorded concerning the nests of any species, 1 Department of Zoology, Faculty of Science, Charles University in Prague, CZ-12844 Prague 2, Czech Republic. 2 Division of Invertebrate Zoology, American Museum of Natural History. 3 The spelling of tribe Ancylini Michener, 1944, has recently been emended to Ancylaini to remove hom- onymy with Ancylini Rafinsque, 1815 (Mollusca, Gastropoda) (Engel et al., 2010: ICZN Ruling (Opinion 2246-Case 3461). Copyright © American Museum of Natural History 2012 ISSN 0003-0082 2 AMERican MUSEUM NOVITATEs NO. -
Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time
Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1-17-2019 Decades of Native Bee Biodiversity Surveys at Pinnacles National Park Highlight the Importance of Monitoring Natural Areas Over Time Joan M. Meiners University of Florida Terry L. Griswold Utah State University Olivia Messinger Carril Independent Researcher Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Life Sciences Commons Recommended Citation Meiners JM, Griswold TL, Carril OM (2019) Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time. PLoS ONE 14(1): e0207566. https://doi.org/10.1371/journal. pone.0207566 This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. RESEARCH ARTICLE Decades of native bee biodiversity surveys at Pinnacles National Park highlight the importance of monitoring natural areas over time 1 2 3 Joan M. MeinersID *, Terry L. Griswold , Olivia Messinger Carril 1 School of Natural Resources and Environment, University of Florida, Gainesville, Florida, United States of a1111111111 America, 2 USDA-ARS Pollinating Insects Research Unit (PIRU), Utah State University, Logan, Utah, United States of America, 3 Independent Researcher, Santa Fe, New Mexico, United States of America a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 Abstract Thousands of species of bees are in global decline, yet research addressing the ecology OPEN ACCESS and status of these wild pollinators lags far behind work being done to address similar impacts on the managed honey bee. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
Novitatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
NovitatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3029, 36 pp., 67 figures, 3 tables November 27, 1991 Evolution of Cleptoparasitism in Anthophorid Bees as Revealed by Their Mode of Parasitism and First Instars (Hymenoptera: Apoidea) JEROME G. ROZEN, JR.1 CONTENTS Abstract .............................................. 2 Introduction .............................................. 2 Acknowledgments ............... ............................... 3 Historical Background ................ .............................. 4 Evolution of Cleptoparasitism in the Anthophoridae ............. ................... 6 Systematics of Cleptoparasitic First-Instar Anthophoridae ......... ................. 12 Methods .............................................. 12 Description of the Nomadinae Based on First Instars .......... .................. 13 Description of the Protepeolini Based on the First Instar ......... ................ 13 Description of the Melectini Based on First Instars ............ .................. 17 Xeromelecta (Melectomorpha) californica (Cresson) ........... ................. 17 Melecta separata callura (Cockerell) ......................................... 20 Melecta pacifica fulvida Cresson ............................................. 20 Thyreus lieftincki Rozen .............................................. 22 Zacosmia maculata (Cresson) ............................................. 22 Description of the Rhathymini Based on First Instars ......... -
Efectos De La Fragmentación Del Hábitat Sobre Himenópteros Antófilos (Insecta) En El Bosque Chaqueño Serrano
Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Doctorado en Ciencias Biológicas Manuscrito de Tesis para optar al título de Dra. en Ciencias Biológicas Efectos de la fragmentación del hábitat sobre himenópteros antófilos (Insecta) en el Bosque Chaqueño Serrano Doctorando: Bióloga Mariana Laura Musicante Directora: Dra. Adriana Salvo Co-Director: Dr. Leonardo Galetto Centro de Investigaciones Entomológicas de Córdoba (CIEC) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Córdoba, Argentina 2013 Comisión Asesora Dr. Marcelo Aizen Laboratorio Ecotono-Centro Regional Universitario Bariloche (CRUB), Universidad Nacional del Comahue e Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), San Carlos de Bariloche. Departamento de Botánica, Museo Argentino de Ciencias Naturales, Buenos Aires. Dr. Marcelo Cabido Instituto Multidisciplinario de Biología Vegetal-CONICT. Universidad Nacional de Córdoba. Dra. Adriana Salvo Centro de Investigaciones Entomológicas de Córdoba. Instituto Multidisciplinario de Biología Vegetal-CONICT Universidad Nacional de Córdoba. Defensa Oral y Pública Lugar y fecha: Calificación: Tribunal ______________________________ _____________________________________ Firma Aclaración ______________________________ _____________________________________ Firma Aclaración ______________________________ ____________________________________ Firma Aclaración A esos pequeños seres que zumbaban ayer y a los que todavía zumban hoy Efectos de la fragmentación del hábitat -
The Taxonomy of Utah Orthoptera
Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College. -
Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2640, pp. 1-24, figs. 1-36, tables 1-3 January 3, 1978 The Bionomics and Immature Stages of the Cleptoparasitic Bee Genus Protepeolus (Anthophoridae, Nomadinae) JEROME G. ROZEN, JR.,' KATHLEEN R. EICKWORT,2 AND GEORGE C. EICKWORT3 ABSTRACT Protepeolus singularis was found attacking cells numerous biological dissimilarities. The first in- in nests of Diadasia olivacea in southeastern Ari- star Protepeolus attacks and kills the pharate last zona. The following biological information is pre- larval instar of the host before consuming the sented: behavior of adult females while searching provisions, a unique feature for nomadine bees. for host nests; intraspecific interactions of fe- First and last larval instars and the pupa are males at the host nesting site; interactions with described taxonomically and illustrated. Brief host adults; oviposition; and such larval activities comparative descriptions of the other larval in- as crawling, killing the host, feeding, defecation, stars are also given. Larval features attest to the and cocoon spinning. In general, adult female be- common origin of Protepeolus and the other havior corresponds to that of other Nomadinae. Nomadinae. Cladistic analysis using 27 characters Females perch for extended periods near nest of mature larvae of the Nomadinae demonstrates entrances and avoid host females, which attack that Isepeolus is a sister group to all the other parasites when encountered. Females apparently Nomadinae known from larvae, including Pro- learn the locations of host nests and return to tepeolus, and that Protepeolus is a sister group to them frequently. -
Novltatesamerican MUSEUM PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
NovltatesAMERICAN MUSEUM PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3180, 39 pp., 17 figures, 8 tables August 23, 1996 Phylogenetic Analysis of the Cleptoparasitic Bees Belonging to the Nomadinae Based on Mature Larvae (Apoidea: Apidae) JEROME G. ROZEN, JR.' CONTENTS Abstract .................................................................... 2 Introduction .................................................................... 2 Acknowledgments .............................................................. 3 Historical Background ............................................................ 4 Methodology ...................................................................5 Evaluation of Characters ....................... .................................. 6 Monophyly of the Nomadinae ................ ................................... 10 Phylogeny of the Nomadinae ................ .................................... 12 Analysis 1. Based on larval features alone ...................................... 13 Analysis 2. Based on larval characters from current study and adult characters from Alexander (1990) ................. .................................... 13 Analysis 3. Based on larval characters from current study and adult characters from Roig-Alsina (1991) ................................................... 16 Analysis 4. Based on larval characters from current study and adult characters from Roig-Alsina and Michener (1993) ..................................... -
World Spider Catalog (Accessed 4 January 2020) Family: Thomisidae Sundevall, 1833
World Spider Catalog (accessed 4 January 2020) Family: Thomisidae Sundevall, 1833 Gen. Bassaniana Strand, 1928 Bassaniana floridana (Banks, 1896) AL, AR, FL, GA, LA, MD, MS, NJ, OH, SC, TX, VA Bassaniana utahensis (Gertsch, 1932) AB, BC, LB, MB, NB, NF, NS, NT, NU, ON, PQ, SK; AK, AZ, CA, CO, FL, ID, IL, MA, ME, MI, MN, MS, MT, ND, NH, NM, NV, NY, OH, OR, PA, SD, TX, UT, VT, WA, WI Bassaniana versicolor (Keyserling, 1880) ON; AL, AR, AZ, CT, FL, IA, IL, IN, KS, KY, LA, MA, MD, MI, MO, MS, NC, NE, NM, NY, OH, OR, PA, RI, TN, TX, VA, WI, WV Gen. Bucranium O. Pickard-Cambridge, 1881 Bucranium sp. undescribed TX Gen. Coriarachne Thorell, 1870 Coriarachne brunneipes Banks, 1893 AB, BC, MB, NT, ON, PQ, SK; AK, AZ, CA, CO, ID, NV, OR, WA, WY Gen. Diaea Thorell, 1869 Diaea livens Simon, 1876 CA Diaea seminola Gertsch, 1939 FL Gen. Mecaphesa Simon, 1900 Mecaphesa aikoae (Schick, 1965) CA Mecaphesa asperata (Hentz, 1847) AB, BC, MB, ON, PQ, SK; AL, AR, CA, CO, CT, DC, FL, GA, ID, IL, IN, KS, KY, LA, MA, MD, MI, MN, MO, NC, NE, NH, NJ, NM, NY, OH, OK, PA, RI, TN, TX, UT, VA, WI Mecaphesa californica (Banks, 1896) CA, CO, TX, UT Mecaphesa carletonica (Dondale & Redner, 1976) ON, PC; IN, TX Mecaphesa celer (Hentz, 1847) AB, BC, SK; AL, AZ, CA, CO, FL, GA, ID, IL, IN, KS, LA, MA, MI, MN, MO, MS, NC, NE, NM, NV, NY, OH, OK, OR, TX, UT, VA, WA, WY Mecaphesa coloradensis (Gertsch, 1933) AZ, CO, TX, UT Mecaphesa deserti (Schick, 1965) CA Mecaphesa devia (Gertsch, 1939) CA Mecaphesa dubia (Keyserling, 1880) AZ, CA, FL, KS, LA, MS, OK, TX Mecaphesa gabrielensis (Schick, 1965) CA Mecaphesa importuna (Keyserling, 1881) CA Mecaphesa importuna belkini (Schick, 1965) CA Mecaphesa lepida (Thorell, 1877) CA, UT Mecaphesa lowriei (Schick, 1970) CA Mecaphesa quercina (Schick, 1965) CA Mecaphesa rothi (Schick, 1965) CA Mecaphesa schlingeri (Schick, 1965) CA Mecaphesa sierrensis (Schick, 1965) BC Mecaphesa verityi (Schick, 1965) CA Gen.