Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies

Total Page:16

File Type:pdf, Size:1020Kb

Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies water Article Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies Gianluca Quarta 1,* , Lucio Maruccio 2, Marisa D’Elia 2 and Lucio Calcagnile 1 1 CEDAD (Centre for Applied Physics, Dating and Diagnostics), Department of Mathematics and Physics, “Ennio De Giorgi”, University of Salento, INFN-Lecce Section, 73100 Lecce, Italy; [email protected] 2 CEDAD (Centre for Applied Physics, Dating and Diagnostics), Department of Mathematics and Physics, “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; [email protected] (L.M.); [email protected] (M.D.) * Correspondence: [email protected] Abstract: Radiocarbon dating by AMS (Accelerator Mass Spectrometry) is a well-established absolute dating technique widely used in different areas of research for the analysis of a wide range of organic materials. Precision levels of the order of 0.2–0.3% in the measured age are nowadays achieved while several international intercomparison exercises have shown the high degree of reproducibility of the results. This paper discusses the applications of 14C dating related to the analysis of samples up-taking carbon from marine carbon pools such as the sea and the oceans. For this kind of samples relevant methodological issues have to be properly addressed in order to correctly interpret 14C data and then obtain reliable chronological frameworks. These issues are mainly related to the so-called “marine reservoirs effects” which make radiocarbon ages obtained on marine organisms apparently older than coeval organisms fixing carbon directly from the atmosphere. We present the strategies used to correct for these effects also referring to the last internationally accepted and recently released Citation: Quarta, G.; Maruccio, L.; calibration curve. Applications will be also reviewed discussing case studies such as the analysis of D’Elia, M.; Calcagnile, L. Radiocarbon marine biogenic speleothems and for applications in sea level studies. Dating of Marine Samples: Methodological Aspects, Applications Keywords: radiocarbon dating; Accelerator Mass Spectrometry; marine environment and Case Studies. Water 2021, 13, 986. https://doi.org/10.3390/w13070986 Academic Editor: Hong Yang 1. Introduction Radiocarbon dating is a well-established and mature absolute dating method widely Received: 9 March 2021 applied in different research fields spanning from Archaeological sciences, to Earth, Ma- Accepted: 1 April 2021 rine and Life sciences. In the last years important methodological advancements such as Published: 3 April 2021 those related to refined data analysis and calibration procedures and, at the same time, the development of new dedicated, high precision and throughput, compact instruments Publisher’s Note: MDPI stays neutral significantly enhanced the impact of this method in different fields. Nowadays advanced with regard to jurisdictional claims in statistical tools, mainly based on Bayesian approaches, are routinely used for the anal- published maps and institutional affil- ysis of sets of radiocarbon data in different fields while precision levels of 0.2–0.3% are iations. routinely achieved, corresponding to uncertainties of ±20/30 years on radiocarbon age determinations. In marine sciences radiocarbon dating is widely and routinely used in different areas such as the analysis of sedimentary records for climate or ecology studies, of corals and bio-constructions for the reconstruction of the calibration curve, of water for Copyright: © 2021 by the authors. ocean circulation modelling, of marine samples (fossil fish and shells) for coastal geomor- Licensee MDPI, Basel, Switzerland. phology and sea-level variation studies. In this paper we will briefly review the basics This article is an open access article of AMS (Accelerator Mass Spectrometry) radiocarbon dating in particular discussing the distributed under the terms and specific issues associated with the analysis of marine samples such as, mainly, the so-called conditions of the Creative Commons Attribution (CC BY) license (https:// marine-reservoir effect. Different case studies will be also presented in different application creativecommons.org/licenses/by/ fields spanning from the study of the evolution of marine bioconstructions and sea-level 4.0/). rise studies using different types of sea-level indicators. Aim of the paper is then to give Water 2021, 13, 986. https://doi.org/10.3390/w13070986 https://www.mdpi.com/journal/water Water 2021, 13, 986 2 of 10 Water 2021, 13, x FOR PEER REVIEW 2 of 11 an overview of the specificities connected with the use of radiocarbon dating of marine rise studies using different types of sea-level indicators. Aim of the paper is then to give samples, discussing the relevant advantages and drawbacks of the method in this field. an overview of the specificities connected with the use of radiocarbon dating of marine 2.samples, AMS Radiocarbon discussing the Dating relevant advantages and drawbacks of the method in this field. Radiocarbon (14C) is the radioactive isotope of carbon which exists in nature also in 2. AMS Radiocarbon Dating the two stable isotopic form of 12C and 13C. Radiocarbon is a cosmogenic nuclide produced in theRadiocarbon upper terrestrial (14C) atmosphere is the radioactive trough theisotope interaction of carbon of secondary which exists neutrons, in nature produced also in bythe cosmic two stable rays, isotopic with the form atmospheric of 12C and nitrogen: 13C. Radiocarbon is a cosmogenic nuclide produced in the upper terrestrial atmosphere trough the interaction of secondary neutrons, pro- 14 14 duced by cosmic rays, with the atmospheric7 N + n ! nitrogen:6 C + p − − Through this nuclear reaction 2.02 atoms→ cm 2 s 1 of 14C atoms are continuously pro- duced [1]. When produced 14C is oxidised by O and OH atmospheric molecules to 14CO Through this nuclear reaction 2.02 atoms 2cm−2 s−1 of 14C atoms are continuously pro-2 entering, trough different mechanisms14 and following the same bio-chemical pathways14 as duced [1].12 When produced13 C is oxidised by O2 and OH atmospheric molecules to CO2 the “light” CO2 and CO2 molecules, the different terrestrial carbon pools. For terrestrial entering, trough14 different mechanisms and following the same bio-chemical pathways as organisms CO2 is fixed from the atmosphere either directly through photosynthesis or the “light” 12CO2 and 13CO2 molecules, the different terrestrial carbon pools. For terrestrial indirectly through the food chain. Marine organisms fix (radio)carbon from the marine pool organisms 14CO2 is fixed from the atmosphere either directly through photosynthesis or where it is dissolved from the atmosphere (Figure1). In this way all the living organisms indirectly through the food chain. Marine organisms fix (radio)carbon from the marine exhibit a 14C concentration in their tissues mirroring the concentration in the reservoir they pool where it is dissolved from the atmosphere (Figure 1). In this way all the living organ- are in equilibrium with (such as the atmosphere or the sea). When an organism dies the isms exhibit a 14C concentration in their tissues mirroring the concentration in the reservoir uptake of radiocarbon from the reservoir ceases and the 14C, β-decaying to14N: they are in equilibrium with (such as the atmosphere or the sea). When an organism dies the uptake of radiocarbon from the14 reservoir14 ceases− and the 14C, β-decaying to14N: 6 C ! 7 N + e + n → ̅ is not compensated by the uptake from the environment. Its concentration starts to decrease 14 byis followingnot compensated the well-known by the uptake radioactive from exponential the environment. decay law. Its concentration If we then express starts the to de-C concentration in a sample, relative to the constant concentration of 12C, we can write the crease by following the well-known radioactive exponential decay law. If we then express 14C 14the 1214C concentration in a sample, relative to the constant concentration6 of 12C, we can C/ C isotopic ratio in sample at the time t after the death 12 as: 6 C write the 14C/12C isotopic ratio in sample at the time t after the deatht as: ! ! 14C 14C − (ln 2) × t 6 = 6 e t1/2 12 12 C C / 6 t 6 0 14C 6 wherewhere 12 indicates thethe isotopicisotopic ratioratio atatthe the time time of of death death and andt1/2 t1/2is is the the radiocarbon radiocarbon 6C 0 half-lifehalf-life of of 5700 5700± ± 3030 yearsyears [[2].2]. FigureFigure 1. 1. SchematicSchematic representation of the the mechanism mechanism un underlyingderlying the the uptake uptake of of carbon carbon from from ma- ma- rinerine organisms. organisms. Water 2021, 13, x FOR PEER REVIEW 3 of 11 Water 2021, 13, 986 3 of 10 By reversing this equation one can then calculate, assuming that the isotopic ratios and are known, the time elapsed since the death of the organisms [3]. The By reversing this equation one can then calculate, assuming that the isotopic ratios principle14C of the14C method is then simple though, as we will discuss in the following, the 6 and 6 are known, the time elapsed since the death of the organisms [3]. The 12C 12C estimation6 t and6 the0 measurement of these two quantities rises important issues. principle of the method is then simple though, as we will discuss in the following, the estimation2.1. Instrumental and the measurement of these two quantities rises important issues. 2.1. Instrumental 14 12 The term represents the ratio between the C and the C concentrations in 14C The term 6 represents the ratio between the 14C and the 12C concentrations in the sample to be12C dated. The complexity of the experimental approaches needed to meas- 6 t theure sample this term to be is dated.related The to complexitythe low natural of the abundance experimental of approaches 14C (in a modern needed tosample measure the 14C/12C thisratio term is of is the related order to theof 10 low−12 natural) which abundance requires an of 14extremelyC (in a modern high samplesensitivity the 14 analyticalC/12C tech- rationique.
Recommended publications
  • Banda Islands, Indonesia
    INSULARITY AND ADAPTATION INVESTIGATING THE ROLE OF EXCHANGE AND INTER-ISLAND INTERACTION IN THE BANDA ISLANDS, INDONESIA Emily J. Peterson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Peter V. Lape, Chair James K. Feathers Benjamin Marwick Program Authorized to Offer Degree: Anthropology ©Copyright 2015 Emily J. Peterson University of Washington Abstract Insularity and Adaptation Investigating the role of exchange and inter-island interaction in the Banda Islands, Indonesia Emily J. Peterson Chair of the Supervisory Committee: Professor Peter V. Lape Department of Anthropology Trade and exchange exerted a powerful force in the historic and protohistoric past of Island Southeast Asian communities. Exchange and interaction are also hypothesized to have played an important role in the spread of new technologies and lifestyles throughout the region during the Neolithic period. Although it is clear that interaction has played an important role in shaping Island Southeast Asian cultures on a regional scale, little is known about local histories and trajectories of exchange in much of the region. This dissertation aims to improve our understanding of the adaptive role played by exchange and interaction through an exploration of change over time in the connectedness of island communities in the Banda Islands, eastern Indonesia. Connectedness is examined by measuring source diversity for two different types of archaeological materials. Chemical characterization of pottery using LA-ICP-MS allows the identification of geochemically different paste groups within the earthenware assemblages of two Banda Islands sites. Source diversity measures are employed to identify differences in relative connectedness between these sites and changes over time.
    [Show full text]
  • Essential Amino Acids
    Edinburgh Research Explorer Compound specific radiocarbon dating of essential and non- essential Amino acids Citation for published version: Nalawade-Chavan, S, McCullagh, J, Hedges, R, Bonsall, C, Boroneant, A, Bronk-Ramsey, C & Higham, T 2013, 'Compound specific radiocarbon dating of essential and non-essential Amino acids: towards determination of dietary reservoir effects in humans', Radiocarbon, vol. 55, no. 2-3, pp. 709-719. https://doi.org/10.2458/azu_js_rc.55.16340 Digital Object Identifier (DOI): 10.2458/azu_js_rc.55.16340 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Radiocarbon Publisher Rights Statement: This work is licensed under a Creative Commons Attribution 3.0 License. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 COMPOUND-SPECIFIC RADIOCARBON DATING OF ESSENTIAL AND NON- ESSENTIAL AMINO ACIDS: TOWARDS DETERMINATION OF DIETARY RESERVOIR EFFECTS IN HUMANS Shweta Nalawade-Chavan1 • James McCullagh2 • Robert Hedges1 • Clive Bonsall3 • Adina Boronean˛4 • Christopher Bronk Ramsey1 • Thomas Higham1 ABSTRACT.
    [Show full text]
  • Lorraine A. Manz
    Lorraine A. Manz Introduction “The discovery of cosmic-ray carbon has a number of interesting About 1 part per trillion (1012) of Earth’s natural carbon is 14C. implications . particularly the determination of ages of various The rest, effectively 100%, is made up of an approximately 99:1 carbonaceous materials in the range of 1,000-30,000 years.” mixture of the stable isotopes carbon-12 (12C) and carbon-13 (13C) These are the words with which Willard F. Libby and his coworkers (fig. 1). concluded their report on the first successful detection of 14C in biogenic material (Anderson et al., 1947). It was quite an understatement. Libby’s pioneering work on the development of the radiocarbon dating method won him the Nobel Prize in Chemistry in 1960, and as one of his nominees aptly observed: “Seldom has a single discovery in chemistry had such an impact on the thinking of so many fields of human endeavor. Seldom has a single discovery generated such wide public interest." (Taylor, 1985). Radiocarbon dating has come a long way since then. Its physical and chemical principles are better understood, high-tech instrumentation has improved its range and sensitivity, and there are currently more than 130 active radiocarbon laboratories around the world. The amount of literature on the subject is vast and what follows is just an overview of the essentials. The details may be found in any of the books listed among the references at the end of this article. And so . Basic Principles Figure 1. Carbon nuclides. A nuclide is an atomic species characterized Carbon-14 (14C) is a cosmogenic* radioactive isotope of carbon by the number of protons (red spheres) and neutrons (gray spheres) in its that is produced at a more-or-less constant rate in Earth’s upper nucleus.
    [Show full text]
  • Refining the Marine Reservoir Effect in the Northwest North Atlantic
    Refining the marine reservoir effect in the Northwest North Atlantic Thomas Neulieb Department of Geography McGill University Montreal, Quebec December, 2013 A thesis submitted to McGill University in partial fulfillment of the requirement of the degree of Masters of Science © Thomas Neulieb 2013 i Table of Contents Abstract ............................................................................................................................. vii Résumé ............................................................................................................................... ix Acknowledgements ............................................................................................................ xi Chapter 1: Background and Literature Review .................................................................. 1 The importance of dating in paleoclimatic research .................................................... 1 The basics of radiocarbon (14C) dating ........................................................................ 1 14C production and dilution ......................................................................................... 3 Radiocarbon dating and the Marine Reservoir Effect (MRE) ..................................... 5 The 8.2 ka Event, Preboreal Oscillation, the Younger Dryas, and the Marine Reservoir Effect ........................................................................................................... 7 Symbiosis in the foraminifera ...................................................................................
    [Show full text]
  • A Marine Reservoir Effect Δr Value for Kitandach, In
    Radiocarbon, Vol 58, Nr 4, 2016, p 885–891 DOI:10.1017/RDC.2016.46 © 2016 by the Arizona Board of Regents on behalf of the University of Arizona. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. A MARINE RESERVOIR EFFECT ΔR VALUE FOR KITANDACH, IN PRINCE RUPERT HARBOUR, BRITISH COLUMBIA, CANADA Kevan Edinborough1* • Andrew Martindale2 • Gordon T Cook3 • Kisha Supernant4 • Kenneth M Ames5 1Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, United Kingdom. 2Department of Anthropology, University of British Columbia, Vancouver Campus, 6303 NW Marine Drive, Vancouver, British Columbia, Canada, V6T 1Z1. 3Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, Glasgow G750QF, Scotland, United Kingdom. 4Department of Anthropology, 13-15 HM Tory Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2H4. 5Portland State University, ANTH, P.O. Box 751, Portland, OR 97207. ABSTRACT. Prince Rupert Harbour (PRH), on the north Pacific Coast of British Columbia, contains at least 157 shell middens, of which 66 are known villages, in an area of approximately 180 km2. These sites span the last 9500 yr and in some cases are immense, exceeding 20,000 m2 surface area and several meters in depth. Recent archaeological research in PRH has become increasingly reliant on radiocarbon dates from marine shell for developing chronologies. However, this is problematic as the local marine reservoir effect (MRE) remains poorly understood in the region.
    [Show full text]
  • Series Data from Flathead Lake Montana: Implications for Late Pleistocene and Holocene Paleoclimate
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2006 Acquisition and evaluation of sedimentologic paleomagnetic and geochemical time -series data from Flathead Lake Montana: Implications for late Pleistocene and Holocene paleoclimate Michael Sperazza The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sperazza, Michael, "Acquisition and evaluation of sedimentologic paleomagnetic and geochemical time -series data from Flathead Lake Montana: Implications for late Pleistocene and Holocene paleoclimate" (2006). Graduate Student Theses, Dissertations, & Professional Papers. 9599. https://scholarworks.umt.edu/etd/9599 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature Yes, I grant permission No, I do not grant permission Author's Signature: Date: Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner.
    [Show full text]
  • SAS Bulletin Society for Archaeological Sciences
    SAS Bulletin Society for Archaeological Sciences Volume 26 number 3/4 Winter 2003 From the Editor 2004 Fryxell Award to R.E. Taylor We apologize for the R.E. Taylor will be awarded the 2004 Fryxell Award for delay in the publication of Interdisciplinary Research at the 69th Annual Meeting of the the last 2003 issue of the Society for American Archaeology, Montreal, Québec SAS Bulletin, but there Canada, March 31 - April 4, 2004. A symposium in his honor, were some personal and entitled A Time for Science: Papers in Honor of R. E. other factors leading to the Taylor, will be sponsored by the SAA Fryxell Committee delay. We announce that and the Society for Archaeological Sciences. The symposium starting in 2004, there will co-organizers and chairs are Arleyn Simon and Christine be a co-editor (E. Christian Wells, U. of South Florida), which Prior. The symposium description follows: will enhance the newsletter’s production. In this issue we The SAA presents the 2004 Fryxell Award for present many of the regular sections found in previous issues, Interdisciplinary Research to R.E. Taylor for his outstanding along with reports about the SAS in 2002-2003. Immediately contributions to the field of radiocarbon dating and below are details on some SAS membership benefits. archaeological sciences. Erv Taylor has greatly influenced the archaeological discipline through his exacting rigor in the Robert H. Tykot development and application of chronometric techniques. This ---------------------------------------------------------------------- symposium honors his lifetime work by presenting recent advances in a broad range of radiocarbon and other SAS Membership Benefits - Journals & Books archaeological techniques applied to research issues in North America and throughout the world.
    [Show full text]
  • Dealing with Reservoir Effects in Human and Faunal Skeletal Remains
    Theses and Papers in Scientific Archaeology 20 Jack Dury This research was conducted at Stockholm University and the University of Groningen in the ArchSci2020 training programme, a Dealing With Reservoir Effects in Marie Sklodowska Curie International Training Network. This thesis Human and Faunal Skeletal explores how archaeologists can handle radiocarbon reservoir affected Remains Skeletal Reservoir Effects in Human and Faunal With Dealing samples and interpret the radiocarbon dates of humans consuming Remains aquatic organisms. The variables, which can affect the size of Theses and Papers in radiocarbon reservoir effects, are described in detail and novel ways to Scientific ArchaeologyUnderstanding 20 the radiocarbon dating of aquatic samples handle reservoir effects for archaeological research are presented. This research combines AMS radiocarbon dating, Bayesian modelling and Jack Dury palaeodietary reconstructionThis research to was answer conducted a numberat Stockholm of Universityquestions: and Howthe University of Groningen in the ArchSci2020 training programme, a Dealing WithJack ReservoirDury Effects in can reservoir effectsMarie be Sklodowska łestimated? Curie InternationalFor human Training populations Network. This thesis with Human and Faunal Skeletal complex diets, how canexplores reservoir how archaeologists effects canbe handlemanaged radiocarbon to increase reservoir affected dating Remains Skeletal Reservoir Effects in Human and Faunal With Dealing samples and interpret the radiocarbon dates of humans consuming accuracy? How varied can reservoir effects within a single aquatic Remains aquatic organisms. The variables, which can affect the size of system be and how doesradiocarbon this affectreservoir populationseffects, are described utilising in detail andresources novel ways from to Understanding the radiocarbon dating of aquatic samples handle reservoir effects for archaeological research are presented.
    [Show full text]
  • The Freshwater Reservoir Effect in Radiocarbon Dating Bente Philippsen
    Philippsen Heritage Science 2013, 1:24 http://www.heritagesciencejournal.com/content/1/1/24 RESEARCH ARTICLE Open Access The freshwater reservoir effect in radiocarbon dating Bente Philippsen Abstract The freshwater reservoir effect can result in anomalously old radiocarbon ages of samples from lakes and rivers. This includes the bones of people whose subsistence was based on freshwater fish, and pottery in which fish was cooked. Water rich in dissolved ancient calcium carbonates, commonly known as hard water, is the most common reason for the freshwater reservoir effect. It is therefore also called hardwater effect. Although it has been known for more than 60 years, it is still less well-recognized by archaeologists than the marine reservoir effect. The aim of this study is to examine the order of magnitude and degree of variability of the freshwater reservoir effect over short and long timescales. Radiocarbon dating of recent water samples, aquatic plants, and animals, shows that age differences of up to 2000 14C years can occur within one river. The freshwater reservoir effect has also implications for radiocarbon dating of Mesolithic pottery from inland sites of the Ertebølle culture in Northern Germany. The surprisingly old ages of the earliest pottery most probably are caused by a freshwater reservoir effect. In a sediment core from the Limfjord, northern Denmark, the impact of the freshwater reservoir effect on radiocarbon dating in an estuarine environment is examined. Here, freshwater influence causes reservoir ages to vary between 250 and 700 14C years during the period 5400 BC - AD 700. The examples in this study show clearly that the freshwater reservoir effect can seriously corrupt radiocarbon dating at inland sites.
    [Show full text]
  • Amino Acid Racemization Dating of Marine Shells: a Mound of Possibilities
    Quaternary International 239 (2011) 114e124 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Amino acid racemization dating of marine shells: A mound of possibilities Beatrice Demarchi a,*, Matt G. Williams b, Nicky Milner b, Nicola Russell c, Geoff Bailey b, Kirsty Penkman a a BioArCh, Department of Chemistry, University of York, Heslington, York YO10 5DD, UK b Department of Archaeology, University of York, King’s Manor, York Y01 7EP, UK c Scottish Universities Environmental Research Centre, Rankine Avenue, Scottish Enterprise Technology Park, East Kilbride G75 0QF, Scotland, UK article info abstract Article history: Shell middens are one of the most important and widespread indicators for human exploitation of Available online 12 June 2010 marine resources and occupation of coastal environments. Establishing an accurate and reliable chro- nology for these deposits has fundamental implications for understanding the patterns of human evolution and dispersal. This paper explores the potential application of a new methodology of amino acid racemization (AAR) dating of shell middens and describes a simple protocol to test the suitability of different molluscan species. This protocol provides a preliminary test for the presence of an intra- crystalline fraction of proteins (by bleaching experiments and subsequent heating at high temperature), checking the closed system behaviour of this fraction during diagenesis. Only species which pass both tests can be considered suitable for further studies to obtain reliable age information. This amino acid geochronological technique is also applied to midden deposits at two latitudinal extremes: Northern Scotland and the Southern Red Sea. Results obtained in this study indicate that the application of this new method of AAR dating of shells has the potential to aid the geochronological investigation of shell mounds in different areas of the world.
    [Show full text]
  • Late Holocene Marine Radiocarbon Reservoir Correction for the South and East Coast of South Africa
    Late Holocene marine radiocarbon reservoir correction for the south and east coast of South Africa Maboya, M. L., Meadows, M. E., Reimer, P. J., Backeberg, B. C., & Haberzettl, T. (2018). Late Holocene marine radiocarbon reservoir correction for the south and east coast of South Africa. Radiocarbon Journal, 60(2), 571- 582. https://doi.org/10.1017/RDC.2017.139 Published in: Radiocarbon Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2017 by the Arizona Board of Regents on behalf of the University of Arizona. This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:01. Oct. 2021 Radiocarbon For Peer Review
    [Show full text]
  • An Online Application for ΔR Calculation
    An Online Application for ΔR Calculation Reimer, R., & Reimer, P. J. (2017). An Online Application for ΔR Calculation. Radiocarbon Journal. https://doi.org/10.1017/RDC.2016.117 Published in: Radiocarbon Journal Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights This article has been published in a revised form in Radiocarbon [https://doi.org/10.1017/RDC.2016.117]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. © 2016 by the Arizona Board of Regents on behalf of the University of Arizona General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:29. Sep. 2021 An on-line application for ΔR calculation R. W. Reimer and P. J. Reimer 14CHRONO Centre for Climate, the Environment and Chronology, Queen’s University Belfast, Belfast BT7 1NN, UK * corresponding authors emails: [email protected] and [email protected] Abstract A regional offset (ΔR) from the marine radiocarbon calibration curve is widely used in calibration software (e.g.
    [Show full text]