SAS Bulletin Society for Archaeological Sciences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Banda Islands, Indonesia
INSULARITY AND ADAPTATION INVESTIGATING THE ROLE OF EXCHANGE AND INTER-ISLAND INTERACTION IN THE BANDA ISLANDS, INDONESIA Emily J. Peterson A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Peter V. Lape, Chair James K. Feathers Benjamin Marwick Program Authorized to Offer Degree: Anthropology ©Copyright 2015 Emily J. Peterson University of Washington Abstract Insularity and Adaptation Investigating the role of exchange and inter-island interaction in the Banda Islands, Indonesia Emily J. Peterson Chair of the Supervisory Committee: Professor Peter V. Lape Department of Anthropology Trade and exchange exerted a powerful force in the historic and protohistoric past of Island Southeast Asian communities. Exchange and interaction are also hypothesized to have played an important role in the spread of new technologies and lifestyles throughout the region during the Neolithic period. Although it is clear that interaction has played an important role in shaping Island Southeast Asian cultures on a regional scale, little is known about local histories and trajectories of exchange in much of the region. This dissertation aims to improve our understanding of the adaptive role played by exchange and interaction through an exploration of change over time in the connectedness of island communities in the Banda Islands, eastern Indonesia. Connectedness is examined by measuring source diversity for two different types of archaeological materials. Chemical characterization of pottery using LA-ICP-MS allows the identification of geochemically different paste groups within the earthenware assemblages of two Banda Islands sites. Source diversity measures are employed to identify differences in relative connectedness between these sites and changes over time. -
Essential Amino Acids
Edinburgh Research Explorer Compound specific radiocarbon dating of essential and non- essential Amino acids Citation for published version: Nalawade-Chavan, S, McCullagh, J, Hedges, R, Bonsall, C, Boroneant, A, Bronk-Ramsey, C & Higham, T 2013, 'Compound specific radiocarbon dating of essential and non-essential Amino acids: towards determination of dietary reservoir effects in humans', Radiocarbon, vol. 55, no. 2-3, pp. 709-719. https://doi.org/10.2458/azu_js_rc.55.16340 Digital Object Identifier (DOI): 10.2458/azu_js_rc.55.16340 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Radiocarbon Publisher Rights Statement: This work is licensed under a Creative Commons Attribution 3.0 License. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 COMPOUND-SPECIFIC RADIOCARBON DATING OF ESSENTIAL AND NON- ESSENTIAL AMINO ACIDS: TOWARDS DETERMINATION OF DIETARY RESERVOIR EFFECTS IN HUMANS Shweta Nalawade-Chavan1 • James McCullagh2 • Robert Hedges1 • Clive Bonsall3 • Adina Boronean˛4 • Christopher Bronk Ramsey1 • Thomas Higham1 ABSTRACT. -
Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies
water Article Radiocarbon Dating of Marine Samples: Methodological Aspects, Applications and Case Studies Gianluca Quarta 1,* , Lucio Maruccio 2, Marisa D’Elia 2 and Lucio Calcagnile 1 1 CEDAD (Centre for Applied Physics, Dating and Diagnostics), Department of Mathematics and Physics, “Ennio De Giorgi”, University of Salento, INFN-Lecce Section, 73100 Lecce, Italy; [email protected] 2 CEDAD (Centre for Applied Physics, Dating and Diagnostics), Department of Mathematics and Physics, “Ennio De Giorgi”, University of Salento, 73100 Lecce, Italy; [email protected] (L.M.); [email protected] (M.D.) * Correspondence: [email protected] Abstract: Radiocarbon dating by AMS (Accelerator Mass Spectrometry) is a well-established absolute dating technique widely used in different areas of research for the analysis of a wide range of organic materials. Precision levels of the order of 0.2–0.3% in the measured age are nowadays achieved while several international intercomparison exercises have shown the high degree of reproducibility of the results. This paper discusses the applications of 14C dating related to the analysis of samples up-taking carbon from marine carbon pools such as the sea and the oceans. For this kind of samples relevant methodological issues have to be properly addressed in order to correctly interpret 14C data and then obtain reliable chronological frameworks. These issues are mainly related to the so-called “marine reservoirs effects” which make radiocarbon ages obtained on marine organisms apparently older than coeval organisms fixing carbon directly from the atmosphere. We present the strategies used to correct for these effects also referring to the last internationally accepted and recently released Citation: Quarta, G.; Maruccio, L.; calibration curve. -
Lorraine A. Manz
Lorraine A. Manz Introduction “The discovery of cosmic-ray carbon has a number of interesting About 1 part per trillion (1012) of Earth’s natural carbon is 14C. implications . particularly the determination of ages of various The rest, effectively 100%, is made up of an approximately 99:1 carbonaceous materials in the range of 1,000-30,000 years.” mixture of the stable isotopes carbon-12 (12C) and carbon-13 (13C) These are the words with which Willard F. Libby and his coworkers (fig. 1). concluded their report on the first successful detection of 14C in biogenic material (Anderson et al., 1947). It was quite an understatement. Libby’s pioneering work on the development of the radiocarbon dating method won him the Nobel Prize in Chemistry in 1960, and as one of his nominees aptly observed: “Seldom has a single discovery in chemistry had such an impact on the thinking of so many fields of human endeavor. Seldom has a single discovery generated such wide public interest." (Taylor, 1985). Radiocarbon dating has come a long way since then. Its physical and chemical principles are better understood, high-tech instrumentation has improved its range and sensitivity, and there are currently more than 130 active radiocarbon laboratories around the world. The amount of literature on the subject is vast and what follows is just an overview of the essentials. The details may be found in any of the books listed among the references at the end of this article. And so . Basic Principles Figure 1. Carbon nuclides. A nuclide is an atomic species characterized Carbon-14 (14C) is a cosmogenic* radioactive isotope of carbon by the number of protons (red spheres) and neutrons (gray spheres) in its that is produced at a more-or-less constant rate in Earth’s upper nucleus. -
Late Quaternary Caspian: Sea-Levels, Environments and Human Settlement P.M
The Open Geography Journal, 2009, 2, 1-15 1 Open Access Late Quaternary Caspian: Sea-Levels, Environments and Human Settlement P.M. Dolukhanov*,1, A.L. Chepalyga2, V.K. Shkatova3 and N.V. Lavrentiev2 1School of Historical Studies, Newcastle University, UK 2Institute of Geography, Russian Academy of Sciences, Moscow, Russia 3A.P. Karpinsky Russian Geological Research Institute (VSEGEI), St. Petersburg, Russia Abstract: This paper is focused on the discussion of the exact age, and environmental setting of the ‘Khvalynian’ Trans- gression of the Caspian Sea with the use of novel radiometric, isotopic evidence and GIS-linked modelling. Based on this evidence the Khvalynian transgression is viewed as coeval with the warm Late Glacial episodes in the higher latitudes, reaching its peak at 13.6 - 11.8 ka. During that period the Caspian Sea was connected with the Caspian Sea via the ‘Ma- nych-Kerch-Spillway’ north of the Caucasus Mountains. We also suggest a younger age for Mousterian sites in the Cas- pian basin, which are usually associated with the populations of Neanderthal humans. The initial emergence of Mouste- rian industries in this area was broadly contemporaneous with MOI 3 that included the LGM (25-18 ka). Their expansion was largely coeval with the Khvalynian transgression. Keywords: Caspian Sea, Late Pleistocene, Khvalynian Transgression, Mousterian, Neanderthals. INTRODUCTION started) and in early 20th century the Caspian level remained at 25.5 - 26.0 m below the ocean, with a downward trend. The Caspian Sea is the world’s largest lake of inner Much greater changes of the Caspian sea-level are recorded drainage, with no outlet to the ocean (Fig. -
Refining the Marine Reservoir Effect in the Northwest North Atlantic
Refining the marine reservoir effect in the Northwest North Atlantic Thomas Neulieb Department of Geography McGill University Montreal, Quebec December, 2013 A thesis submitted to McGill University in partial fulfillment of the requirement of the degree of Masters of Science © Thomas Neulieb 2013 i Table of Contents Abstract ............................................................................................................................. vii Résumé ............................................................................................................................... ix Acknowledgements ............................................................................................................ xi Chapter 1: Background and Literature Review .................................................................. 1 The importance of dating in paleoclimatic research .................................................... 1 The basics of radiocarbon (14C) dating ........................................................................ 1 14C production and dilution ......................................................................................... 3 Radiocarbon dating and the Marine Reservoir Effect (MRE) ..................................... 5 The 8.2 ka Event, Preboreal Oscillation, the Younger Dryas, and the Marine Reservoir Effect ........................................................................................................... 7 Symbiosis in the foraminifera ................................................................................... -
Black Sea–Mediterranean Corridor During the Last 30 Ka: Sea Level Change and Human Adaptation”, Istanbul, 2005
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/248478781 IGCP 521: “Black Sea–Mediterranean Corridor during the last 30 ka: Sea level change and human adaptation”, Istanbul, 2005 Article in Quaternary International · March 2007 DOI: 10.1016/j.quaint.2007.02.016 CITATIONS READS 7 145 2 authors: Valentina Yanko Yücel Yilmaz Odessa National University Istanbul Technical University 81 PUBLICATIONS 1,223 CITATIONS 188 PUBLICATIONS 6,958 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Meiobenthos of methane outlets of the Black Sea View project IGCP-521: Caspian-Black Sea-Mediterranean Corridor during last 30 ky: Sea level change and human adaptation View project All content following this page was uploaded by Valentina Yanko on 04 May 2018. The user has requested enhancement of the downloaded file. ARTICLE IN PRESS Quaternary International 167–168 (2007) 91–113 Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence Valentina Yanko-Hombacha,Ã, Allan S. Gilbertb, Pavel Dolukhanovc aAvalon Institute of Applied Science, Charleswood Technology Centre, 3227 Roblin Blvd, Winnipeg, MB, Canada R3R 0C2 bFordham University, Bronx, NY 10458, USA cSchool of Historical Studies, University of Newcastle upon Tyne, NE1 7RU, UK Available online 2 October 2006 Abstract Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah’s Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story’s pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. -
A Marine Reservoir Effect Δr Value for Kitandach, In
Radiocarbon, Vol 58, Nr 4, 2016, p 885–891 DOI:10.1017/RDC.2016.46 © 2016 by the Arizona Board of Regents on behalf of the University of Arizona. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons. org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. A MARINE RESERVOIR EFFECT ΔR VALUE FOR KITANDACH, IN PRINCE RUPERT HARBOUR, BRITISH COLUMBIA, CANADA Kevan Edinborough1* • Andrew Martindale2 • Gordon T Cook3 • Kisha Supernant4 • Kenneth M Ames5 1Institute of Archaeology, University College London, 31-34 Gordon Square, London, WC1H 0PY, United Kingdom. 2Department of Anthropology, University of British Columbia, Vancouver Campus, 6303 NW Marine Drive, Vancouver, British Columbia, Canada, V6T 1Z1. 3Scottish Universities Environmental Research Centre, Scottish Enterprise Technology Park, East Kilbride, Glasgow G750QF, Scotland, United Kingdom. 4Department of Anthropology, 13-15 HM Tory Building, University of Alberta, Edmonton, Alberta, Canada, T6G 2H4. 5Portland State University, ANTH, P.O. Box 751, Portland, OR 97207. ABSTRACT. Prince Rupert Harbour (PRH), on the north Pacific Coast of British Columbia, contains at least 157 shell middens, of which 66 are known villages, in an area of approximately 180 km2. These sites span the last 9500 yr and in some cases are immense, exceeding 20,000 m2 surface area and several meters in depth. Recent archaeological research in PRH has become increasingly reliant on radiocarbon dates from marine shell for developing chronologies. However, this is problematic as the local marine reservoir effect (MRE) remains poorly understood in the region. -
Series Data from Flathead Lake Montana: Implications for Late Pleistocene and Holocene Paleoclimate
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2006 Acquisition and evaluation of sedimentologic paleomagnetic and geochemical time -series data from Flathead Lake Montana: Implications for late Pleistocene and Holocene paleoclimate Michael Sperazza The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Sperazza, Michael, "Acquisition and evaluation of sedimentologic paleomagnetic and geochemical time -series data from Flathead Lake Montana: Implications for late Pleistocene and Holocene paleoclimate" (2006). Graduate Student Theses, Dissertations, & Professional Papers. 9599. https://scholarworks.umt.edu/etd/9599 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature Yes, I grant permission No, I do not grant permission Author's Signature: Date: Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. -
Funeral Meal and Anthropophagy in Gumelniţa Chalcolithic Civilization
Funeral Meal and Anthropophagy in Gumelniţa Chalcolithic Civilization in the North-western Black Sea area Anne Dambricourt Malassé, Pavel Dolukhanov, Michel Louis Séfériadès, Leonid Subbotin To cite this version: Anne Dambricourt Malassé, Pavel Dolukhanov, Michel Louis Séfériadès, Leonid Subbotin. Funeral Meal and Anthropophagy in Gumelniţa Chalcolithic Civilization in the North-western Black Sea area. 2008. halshs-00343023 HAL Id: halshs-00343023 https://halshs.archives-ouvertes.fr/halshs-00343023 Preprint submitted on 28 Feb 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Funeral Meal and Anthropophagy in Gumelnia Chalcolithic Civilization in the North-western Black Sea area. Anne DAMBRICOURT MALASSÉ1, Pavel DOLUKHANOV2, Michel SEFERIADES3, and Leonid SUBBOTIN4. 1 Department of Prehistory, National Museum of Natural History UMR 5198 CNRS, Institut de Paléontologie Humaine, 1, rue René Panhard, 75013 Paris, France 2 Department of Archaeology Newcastle University, Upon Tyne, G.B. 3 CNRS UMR 6566, Rennes I University, France 4Museum of Archaeology, Odessa, Ukraine. Keywords: Anthropophagy, Gumelnita, Chalcolithic, funeral meal, North-Western Black Sea Abstract : The Gumelnitsa chalcolithic civilization appeared at the beginning of V millennium BC in border of Black Sea between the Danube and the Dniepr, is known for the wealth of its domestic religious figurines. -
Dealing with Reservoir Effects in Human and Faunal Skeletal Remains
Theses and Papers in Scientific Archaeology 20 Jack Dury This research was conducted at Stockholm University and the University of Groningen in the ArchSci2020 training programme, a Dealing With Reservoir Effects in Marie Sklodowska Curie International Training Network. This thesis Human and Faunal Skeletal explores how archaeologists can handle radiocarbon reservoir affected Remains Skeletal Reservoir Effects in Human and Faunal With Dealing samples and interpret the radiocarbon dates of humans consuming Remains aquatic organisms. The variables, which can affect the size of Theses and Papers in radiocarbon reservoir effects, are described in detail and novel ways to Scientific ArchaeologyUnderstanding 20 the radiocarbon dating of aquatic samples handle reservoir effects for archaeological research are presented. This research combines AMS radiocarbon dating, Bayesian modelling and Jack Dury palaeodietary reconstructionThis research to was answer conducted a numberat Stockholm of Universityquestions: and Howthe University of Groningen in the ArchSci2020 training programme, a Dealing WithJack ReservoirDury Effects in can reservoir effectsMarie be Sklodowska łestimated? Curie InternationalFor human Training populations Network. This thesis with Human and Faunal Skeletal complex diets, how canexplores reservoir how archaeologists effects canbe handlemanaged radiocarbon to increase reservoir affected dating Remains Skeletal Reservoir Effects in Human and Faunal With Dealing samples and interpret the radiocarbon dates of humans consuming accuracy? How varied can reservoir effects within a single aquatic Remains aquatic organisms. The variables, which can affect the size of system be and how doesradiocarbon this affectreservoir populationseffects, are described utilising in detail andresources novel ways from to Understanding the radiocarbon dating of aquatic samples handle reservoir effects for archaeological research are presented. -
The Chronology of Neolithic Dispersal in Central and Eastern Europe
Journal of Archaeological Science 32 (2005) 1441e1458 http://www.elsevier.com/locate/jas The chronology of Neolithic dispersal in Central and Eastern Europe Pavel Dolukhanov a,*, Anvar Shukurov b, Detlef Gronenborn c, Dmitry Sokoloff d, Vladimir Timofeev e,1, Ganna Zaitseva f a School of Historical Studies, University of Newcastle upon Tyne, NE1 7RU, UK b School of Mathematics and Statistics, University of Newcastle upon Tyne, NE1 7RU, UK c Ro¨misch-Germanisches Zentralmuseum, 55116 Mainz, Germany d Department of Physics, Moscow University, Vorobyevy Gory, Moscow, 119992, Russia e Institute for History of Material Culture, Russian Academy of Sciences, St Petersburg, 191186, Russia f Radiocarbon Laboratory, Institute for History of Material Culture, Russian Academy of Sciences, 18 Dvortsovaya nab., St Petersburg, 191186, Russia Received 1 July 2003; received in revised form 4 January 2005 Abstract We analyze statistically representative samples of radiocarbon dates from key Early Neolithic sites in Central Europe belonging to the Linear Pottery Ceramic Culture (LBK), and of pottery-bearing cultures on East European Plain (Yelshanian, Rakushechnyi Yar, Buh-Dniestrian, Serteya and boreal East European Plain). The dates from the LBK sites form a statistically homogeneous set with the probability distribution similar to a single-date Gaussian curve. This implies that the duration of the spread of the LBK is shorter than the available temporal resolution of the radiocarbon dating; therefore, the rate of spread must be larger than 4 km/yr, in agreement with earlier estimates. The East European sites exhibit a broad probability distribution of dates. We identify in these data a spatio-temporal sequence from south-east to north-west, which implies the rate of spread of the initial pottery-making of the order of 1.6 km/yr, comparable to the average rate of spread of the Neolithic in Western and Central Europe.